前言:在撰写地质灾害论文的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。
地质灾害治理论文1
摘要:文中以某恢复治理工程为研究对象,阐述了地质灾害治理工程施工中边坡稳定问题及滑坡治理方法,希望通过诸多治理措施的应用,消除导致滑坡与边坡产生变形破坏的潜在因素,切实保证居民的生命安全,保护城镇的土地资源。
关键词:地质灾害;边坡稳定;滑坡治理
0引言
地质灾害防治是指针对不良地质状况实施全面评估,并采取切实可行的地质工程手段,改变灾害形成过程,从而达到消除或降低灾害产生的目的。为了分析后续提出的边坡稳定问题以及滑坡治理措施,需要对工程概况进行深入了解。只有这样,才能确保工程质量顺利实施,因此,研究此项课题对于环境治理具有十分重要的意义。
1工程概况
1地质背景
1.1地层岩性
葡萄沟景区及附近区域出露的地层按时代成因可以分为第四系下更新统和全新统,其中:下更新统主要由灰色巨厚的西域砾岩层,钙质胶结,夹有细砾岩、砾状砂岩及砂质泥岩的透镜体等岩性组成,岩层厚度大于50m,下伏第三系泥岩、砂岩;全新统主要包括全新统坡积层和全新统冲积洪积层,全新统坡积层分布在防治区葡萄沟东西两侧第一斜坡带山坡上及坡脚处,岩性为坡积碎石土,厚度1.5~3.5m,该层直接覆盖在下更新统西域砾岩层之上;全新统冲积洪积层呈条带状分布于葡萄沟现代河床中,岩性为单一圆砾或卵石,局部夹有细砂透镜体。圆砾厚度在北侧Ⅲ号防治区为7.42m,在南侧Ⅴ号防治区揭露厚度6.5m。卵石层在南侧Ⅴ号防治区揭露厚度为4.8m。
1.2地质构造及新构造运动
在区域地质构造上,吐鲁番葡萄沟风景区位于北天山优地槽褶皱带东段的吐鲁番—哈密山前坳陷的山间构造断陷盆地—吐鲁番盆地中部,其次级构造包括火焰山逆断裂褶皱带(火焰山背斜)和火焰山山前坳陷2个单元,两者被吐鲁番大断裂所分开。新构造运动对盆地内地貌、第四纪地质和气候的发展过程及特征具有明显的控制作用。吐鲁番盆地为地槽型封闭盆地,同时具有一些断陷盆地的特征。新构造运动活动强烈,上升幅度大,在时间上具有阶段性和间歇性,在空间上有较大的差异性,在景区区内形成构造剥蚀低山特征,由于新构造运动强烈,侵蚀切割剥蚀明显,形成了景区目前河谷地貌的特征。
1.3水文地质条件
1传统测量技术的应用
这里所说的传统测量技术地质灾害监测,就是通过各种专业仪器测量灾害的产生及发展过程,记录数据并传输到预报中心,进行分析研究后找出灾害的发展规律,并判断是否需要发出灾难预警。地质灾害的主要监测对象是地质形变,对形变的监测又可细分为内部形变监测与外部形变监测。其监测对象是将测量技术作为主要监测手段的外部形变。这类监测通常采取的测量方法是在平面上用经纬仪和三角测量法监测,高程测量采用全站仪测量或三角高程法和水准测量法。然后,建立误差单位为毫米级的小型平面控制网及高程控制网,以此测量出监测样本上各控制点在垂直与水平方向上的微小位移量及其形变形式,从而获得有用的形变数据,并最终达到有效防治地质灾害的作用。传统的测量技术缺陷在于,监测时需要安排人员进行实地观测,并且要记录大量的测量数据、进行大量的计算,加上工作周期长、经费偏高等各种问题,造成其工作效率不高。此外,在环境恶劣的荒野、深山、原始森林等地区,实时、实地测量是无法实现的。
2现代测量技术的应用
2.1GPS在地质灾害监测中的应用GPS即全球定位系统,通过接收定位卫星的信号进行测时定位、导航,采用静态差分定位技术,缩短观测时间,减小误差提高精确度。利用GPS技术监测地质灾害,监测站之间无须要求通视,大幅度削减了工作量。并且通过卫星通信技术能够将监测到的数据传送至数据处理中心,以此来实现远距离的监测工作。目前,GPS技术已在地震、地表塌陷、滑坡等突发性地质灾害的监测中被广泛应用。其优点在于它非常高效,且精准度已经达到百万分之一甚至可能更高,同时它还有全天候、自动化、多功能而且操作简便等特点。这些诸多优点让它在工程测量中得到广泛应用。GPS技术在地表外部形变监测中的应用有很多,大致的操作过程以岩体的外部形变监测为例,先在距离岩体较远的地方选取一个稳定点放置GPS信号接收机,然后选取目标点并放置接收机,经过计算分析可以得出各目标点的位移。利用GPS系统进行连续监测,就能实现对目标的实时自动监测。GPS技术取代传统水准测量法,可以降低劳动强度,缩短周期,准确及时地捕获有效信息,在获得高效率、高精度的数据同时,降低监测成本。
2.2GIS在地质灾害监测中的应用GIS技术全称地理信息系统技术,它融合了地理学、地图学以及计算机技术和测绘技术,是一项在计算机软、硬件支持下,采集、记录并储存相关的地理信息实现数据库的系统化,并将地理要素进行转化,对计算得出的相关数据进行分析处理的空间信息系统。测量人员按照测量需求,可以使用GIS技术很快的获取数据,再将结果用数字或图形的方式显示出来。它的主要作用是对空间数据进行分析,对决策和预报有辅助作用。其地理信息拥有空间性、区域性、动态性的特征,其地理数据是用符号来表示地理特征与现象之间的关系,即用文字、数字图像等来表示地理要素的质量、数量及其分布特征与规律。时域特征数据、空间位置数据及属性数据三部分是地理数据的主要组成部分。GIS技术的应用有效地解决了记录和计算量过大的问题,通过标准的矢量化扫描、数字化摄影测量的方式来测量地球表面物体,可以给我们提供及时且准确的标准化数字信息。还可以应用系统中的有关功能做到空间定点分析,按不同比例尺编制专题图像。
2.3RS在地质灾害监测中的应用RS技术全称遥感系统技术,它可以实现同步观测和实时数据信息的提供,并具有很高的综合性,同时在地形观测与资源勘查中RS技术也是最有力、高效的手段。它可以全天候的获取信息,且周期短、视域宽广、信息量丰富,还能够真实的展现地表物体的大小、形状甚至颜色,立体直观的影像有更好的观察效果。目前RS技术已广泛的应用于地质、农林业、气象、水文、军事等领域。在地质灾害的监测中,RS技术可以对灾害做出快速的应急反应,几小时内系统便能获取灾情数据,并迅速对灾情做出评估,其详实评估不超过一周即可完成。
1包兰铁路概述
包兰铁路属于京兰通道中一条十分重要的组成路段,在我国铁路交通枢纽中扮演着十分重要的角色。现阶段,包兰铁路的运量已处于超饱和状况,对这一路段的城市经济发展造成了一定的不良影响。为了解决这一现状,我国铁道部提出了一系列有关改建包兰线的工程项目。改建后的包兰线正线里程可达到469.305km,跨越宁夏、甘肃两省。改建线路计划通过区域的地貌特征复杂,包括黄河冲积平原、山间和山前冲洪积平原区、地中山区等;线路构造体系自北朝南,地质构造十分复杂,包括祁吕贺山字型构造体系之银川断陷盆地、贺兰山褶皱带等。
2遥感信息源的选择和处理
地质灾害体解译对空间分辨率、影像饱和度和地物相互反差等有着十分高的要求,通过对主成分进行融合、变换,可充分展现上述细节,便于其在原有图像的条件上,不仅留存多光谱图像信息,还能提升空间分辨率。通过已收集的DEM数据,可在指定模块下将DOM影像图纹理叠加至三维地形模型,得出相应的立体模型,从而从各个方面对解译进行辅助。
3主要地质灾害分析
3.1盐渍土可
1南山滑坡的特征和形成机制
1.1滑坡的特征(1)滑坡体:滑坡体地层由第四系黄土、第三系砾岩以及二叠系下石盒子组砂岩、泥岩组成。铝土质页岩遇到水后软化,该层是滑坡潜在的滑动面。另外,在现场踏勘过程中,发现滑体表面有大量碟形洼地和黄土陷落漏斗,表面雨水沿该漏斗直接进入滑动面,加速滑体的蠕动—剧动—蠕动的过程。(2)滑坡周界:滑坡东、西两侧周界由冲沟构成,正是由于冲沟深切,形成了两侧相对薄弱带及滑坡侧界,调查中未见到侧壁剪裂擦痕;老滑坡后缘滑坡壁较为明显,落差较大,最大处可达30m,后壁黄土擦痕依稀可辨,远处观察,后壁马蹄状地形地貌耸立、突出,与滑坡体外地形地貌比较,形成异样陡壁。(3)滑坡台阶:由于滑坡体在各区段的滑动速度不同形成了2~3级滑坡平台,台阶后壁成弧形,个别台面微向后倾。滑坡体内发育有数条切割深度不同的冲沟,滑坡平台呈不连续分布。(4)滑坡裂缝:从调查情况来看,目前地表发现的滑坡裂缝均集中于后缘附近,缝宽25cm左右,落差0~70cm,落差呈南高北低状。裂缝呈东西向延伸,总长约300m,裂缝中间100m段落差明显,两端裂缝和落差逐渐变小以至尖灭。自2005年滑坡复活以来,滑坡后缘可见拉张裂缝,在煤矿办公楼墙体和矿井井筒内亦可见不同程度的裂缝或错缝。(5)滑动面:为下石盒子组浅绿、灰白色、致密状具滑感的、遇水软化甚至崩解、饱水状态下强度很低的泥岩。
1.2滑坡形成机制泥岩构成了矿区山体的软弱结构面,而造成软弱结构面应力集中以致破坏的基本条件是:(1)软弱结构面有一定的坡度(5°~12°,平均9°),并倾向临空面,且临空面的坡度(老滑坡滑动之前的天然斜坡坡度应在20°以上,目前滑坡体地面平均坡度为16.7°)大于软弱结构面的坡度。(2)泥岩、特别是厚层泥岩具有良好的隔水性能,地下水遇到厚层泥岩被隔挡,在泥岩面滞留,使软弱结构面被软化,抗剪强度降低。2005年矿山企业在该滑坡体上挖方削坡修建了办公楼和厂房,并堆存了大量的煤矸石,扰动了老滑坡,破坏了滑坡的天然平衡,使滑坡稳定性降低,进入雨季之后,在长时间降雨条件下,滑坡开始复活。
2滑坡治理的主要工程措施
2.1抗滑桩工程在办公建筑、副井井筒南侧布置一排抗滑桩(共25根)。采用钢筋混凝土矩形桩,桩顶标高846.0m,断面尺寸为3m×2m,桩中心距4.5m,桩长25m,桩身混凝土为C30。抗滑桩桩顶一般低于现地面1.5~3.0m左右。受荷段10~13m,锚固段约12~15m,符合《滑坡防治工程设计与施工技术规范》(DZ/T0219-2006)要求。
2.2锚索根据初步设计及离柳焦煤集团决定,考虑到地质不确定性因素的特点,为增强抗滑桩的稳定性,在抗滑桩中间增加锚索,共设计锚索24根。