前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇工程地质勘察范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
(一)工程地质勘察中地下水位动力作用的危害。
在不同工程地质中,其自身岩土体组成成分也往往会存在一定的差异,例如在含有大量蒙脱石的工程岩土体中,如果该部分岩体受到一定的地下水变化的影响作用,就会使得蒙脱石中的水分含量发生骤然的变化而导致其发生明显的缩胀问题,这种缩胀不仅能够使得蒙脱石自身出现严重的变形,同时也会导致整个岩土层的稳固度与承重能力受到一定的冲击,从而使得整个工程建设项目的地质条件出现问题与缺陷。
(二)工程地质勘察中地下水位上升的危害。
能够造成地下水位上升的因素非常的多,其中最关键性的也是影响最为深远的一个因素就是降水量的变化。就目前我国的工程地质勘察情况来看,在降雨多发的季节,如果工程建设人员不能对其进行及时的排水处理,就非常容易导致工程建设地段因为地下水的迅速上升,而使得工程地质中的岩土含水量变得过大而导致其自身的强度与稳固度受到不小的影响与冲击;同时,在降雨过少的季节,如果岩土体过分干燥就会使得其出现大面积的龟裂现象,而此时如果通过水库来对其进行给水灌溉工作,则会使得岩土在极端的时间内由干燥转变到湿润状态,这就非常容易使得工程建设中的岩土体变得过于松散,从而进一步引发其出现坍塌问题,造成严重的水文地质危害。
(三)工程地质勘察中地下水位下降的危害。
社会的不断进步与科学技术的发展提高,使得我国的工农业也迅速的发展起来,再加上人口数量的不断上升,导致人们的生活用水和工农业建设的生产用水量也全面的提升。一般情况下,人们的生产生活用水都是有地下水来进行供应的,社会用水量的增加使得地下水的使用也不断上升,大量的抽取活动就会在很大程度上导致地下水位发生沉降问题。一旦地下水位发生沉降现象,不仅会对工程建设项目的实际施工造成巨大的困难与影响,同时也非常容易导致建筑物出现下沉问题,且其还回在一定程度上促使道路出现塌陷现象,从而对整个工程地质勘察造成不小的影响。
二、工程地质勘察中的水文地质危害的解决方法
(一)强化对工程环境地下水状态的研究。
由于地下水位的变化往往能够对整个工程地质环境造成最直接的影响作用,因此,我们要向全面的解决工程地质勘察中的水文地质危害,就必须要对工程环境的地下水状态进行深入的调查与研究,并进一步对工程所在地区的气候特征与降水量等能够引起地下水位变化的因素进行资料收集,对工程建设地区的排水建设情况进行充分的了解。此外,为了能够更好的避免由地下水位变化而造成的工程地质环境破坏,就要求工程地质勘察人员必须要对工程所在地的含水层进行全面的勘察与检测工作,确保其能够对地下水位的变化发展趋势有一个合理的掌握,从而促使其能够更好的对工程地质勘察中的水文地质危害进行全面的处理与解决。
(二)对工程地质勘察工作进行全面的规范。
由于工程建设的地质环境具有明显的复杂性特征,从而导致工程地质勘察工作也具备了鲜明的系统性与专业性。就目前我国的工程地质勘察工作来看,经过不断地发展完善,使得其自身已经建立起了一套较为完善的规范制度与规章体系,这就在很大程度上使得我国工程地质勘察工作的准确性与科学性得以提升。然而,受自身专业素质水平的影响作用,使得我国的部分工程地质勘察人员在实际的地质勘察工作过程中,并没有真正的对这些具体的规章制度进行全面而又深入的了解分析,其往往更多的是依靠自己多年的工作经验来进行工程地质的勘察工作,使得勘察的质量与效果受到不小的影响与冲击。因此,我们必须要对工程地质勘察工作进行全面的规范与完善,来确保勘察人员能够对地质勘察的标准与要求有一个更加深入的了解与掌握,从而进一步提升其对于水文地质危害的防范与处理能力。
三、结语
关键词: 工程地质;勘察;地质分析
岩体力学实验研究: 地质分析是岩体力学实验研究的基础, 如何将地质结构条件概化为地质模型,又将地质模型转化为力学模型,而使边界条件、岩体变形和破坏机理不失真, 这要求对岩体结构第一手资料准确、可靠。因此,岩体力学参数有充分的代表性,针对性和对岩体变形机理深刻的认识以及力学模型是否表征的问题的关键和要害。
1 原则
1.1 岩土物理力学性质参数
试验成果可按岩土体质量类别、工程地质单元、区段或层位,分别用算术平均值、最小二乘法、图解法、数值统计法或优定斜率法进行整理,并舍去不合理的离散值。应采用整理后的试验值作为标准值,再根据水工建筑物地基或围岩的工程地质条件进行调整,提出地质建议值,当采用结构可靠度分项系数及极限状态设计方法时, 岩土性能的标准值宜根据岩土试验性能的概率分布的某一分位值来确定。
1.2 土的物理力学性质参数
地基渗漏系数采用室内试验或抽水试验的大值平均值作为标准值;用于水位降落、排水计算宜用小平均值,供水工程计算可用平均值。粘性土地基,f/可采用室内饱和固结快剪90%,c可取20~30%,对于砂性土,f采用85%~90%,不计c值;土的抗剪强度宜采用试验峰值的小平均值作为标准值; 软土宜用流变值。
1.3 岩体的物理力学性质参数
当试件呈脆性破坏时, 坝基抗剪强度取值。
拱坝应采用峰值强度的平均值作为标准值;重力坝应采用概率分布的0.2分位值作为标准值或采用峰值强度的小值平均值,或采用优定斜率法的下限作为标准值。抗剪强度采用比例极限强度作为标准值。当试件呈塑性破坏时, 以其屈服强度作为标准值,并考虑时间效应,并按流变影响进行折减。
总体变形指标应根据岩体实际承受工程作用力方向和大小进行原位试验, 并采用压力――变形曲线上建筑物最大荷载下相应的变形关系选取标准值。
1.4 结构面的抗剪强度
当结构面试件的凸起部分被啃断或胶结充填物被剪断时,采用峰值强度的小平均值作为标准值。
当结构面试件呈磨擦破坏时, 应采用屈服强度或流变强度作为标准值。
1.5 软弱层、断层的抗剪强度, 当试件呈塑性破坏时, 应采用屈服强度或流变强度为标准值
当试件粘粉含量大于30%或有泥化镜面或粘土矿物的蒙脱石为主时, 应采用流变强度作为标准值。
在固结剪切中, 峰值与流变折减系数为0.8,屈服值与流变折减系数为0.93,其剪切带屈服值相当于峰值60%~70%。
1.6 斜坡稳定计算参数
岩质边坡潜在的滑动面的抗剪强度可取峰值强度; 古滑坡或多次滑动面的抗剪强度可取残余强度。
2 方法
2.1 抗剪断强度试验资料整理分析方法
(1)检查原始试验资料,论证各试点峰值抗剪强度;(2)点绘原始资料水平位移―剪应力―垂直位移曲线;(3)确定抗剪强度特征值;对于脆性破坏型的砼/基岩抗剪,采用前端剪胀点作为砼/基岩胶结面不开裂的控制点,确定为近似比例极限。(4)依据大剪试验剪面地质素描图,分析多试点情况,确定剪切类型,点绘σ-τ关系曲线,分别整理单组及分类的抗剪强度指标。
2.2 岩体变形特征试验资料分析整理方法
(1)检查原始资料,判断多级压力下变形是否稳定;(2)对最后一级压力下变形值进行修正,确定变形稳定值;(3)采用某级荷载下回弹线延长近似计算弹性模量, 解决部分试点由于卸荷至零点荷载扳脱离而造成的弹性变形不确切的问题。
2.3 优定斜率法
(1)优定斜率法的基本思路。
尊重岩体的结构特征, 不搞机械式的分解和装配, 对组成岩体抗剪强度参数的两个随机变量f、c,利用其稳定性的差异和相关性,按先易后难的原则,先优定f,再求其c,建立参数取值较科学程度,习题减少主观随意性。其内容和步骤包括以下几个方面。
① 岩体力学测试研究, 成果整理分析和参数选取均建立在岩体工程地质分级基础上; ②加强现场试验点和剪切面具体结构条件的调查、统计和分析;③注意岩体变形、破坏机理的研究,重视测试成果与试点地质条件对应关系的分析;④通过分析后,先优定各岩级摩擦系数; ⑤在此基础上分别求出多各级相应斜率的凝聚力值。
(2)斜率优定的方法。
①综合分析法:首先分析岩石在三维状态下的强度特征,探索内摩擦角的变化规律,再根据各岩级试验成果绘制τ-δ关系图,从其点群分布的总趋势和,并注意岩级试点应力――应变关系所显示的特点,以及个别离散度试点的代表性,大致确定出点群上、下包线的斜率,最后参考工程实践经验,综合分析确定各岩级的斜率;②公式计算法(岩体破坏经验准则推求法)大量资料表明:库伦强度准则中的摩擦系数应理解为:在最大正应力下的瞬时摩擦系数综合值,因此,根据坝基岩体可能达到的应力水平,确定此应力区段骨的全部瞬时摩擦系数的平均值,以此作为摩擦系数的优定值,并按经验破坏准则导出各岩级的优定内摩擦角。
2.4 统计和概率方法
统计和概率方法是建立在足够有效的数据采集的基础上,根据这些数据样本求得统计学特征和经验概率分布,再由统计推断获得参数的理论概率分布函数的一种方法。
3 岩土力学参数的内容
3.1 地下洞室岩体物理力学参数内容
工程地质勘察经验汇编提出围岩主要物理力学参数有:密度γ、凝聚力c、内摩擦角φ、变形模量E0、泊桑比μ。
各个地勘报告提出一下洞室岩体力学参数内容是不一致的, 而不同功能的隧洞设计使用指标是不一致的, 大跨度地下厂房、地下洞室合作的指标也有不同。因此,地下洞室岩体力学参数必须根据水工建筑物结构、功能提出满足设计使用的指标。
3.2地基岩体物理力学参数的内容
在阅读我们的地勘报告中,地基岩体物理力学参数的内容也存在一定差异,但总的内容是一致的。其主要指标、岩体抗剪强度、地基承载力、变形指标、软弱夹层抗剪指标,但这些指标有个共同特点,指标基本相同, 没有根据地质环境分析评价,特别是软弱夹层指标,很多是无试验资料,都是所谓的“类比”。
综上所述,岩物理力学参数的内容是供设计使用的,因此,必须根据建筑物的结构、功能,才能提出相应的设计地质参数。同时,要分析岩土体在建筑物地基部分的地质环境,根据具体的地质环境,进行认真、细致的地质分析,并与岩土力学理论和实践紧密结合,重视取样质量、试验方法、地质描述有机地结合起来加以分析,才能得出可靠的可供设计使用的岩土力学参数。
参考文献
[1] 李君源,范维强.工程勘察中的水文地质问题[J].西部探矿工程,2005(S1).
关键词:公路;地质勘察;方法
中图分类号:X734 文献标识码:A文章编号:
引言:
公路工程建设中我们常会遇到各种各样的自然条件和繁杂的地质问题,如软土地基、岩溶地形等;而由此产生的投资数额亦是巨大的。一般来说公路工程中岩土工程往往占到总造价和总工期的30%一70%甚至更高。同时公路工程地质勘测直接关系到路基、桥隧的安全,应引起高度重视。
1.研究既有资料
收集和研究路线通过地区既有资料,不仅是外业测量准备工作的重要内容也是工程地质勘测的重要方法。特别在既有资料日益丰富、遥感技术日益详尽的今天这种方法尤为重要。
2.调查与测绘
公路工程地质调查与测绘的目的在于查明公路走廊范围内的地形、地貌、地质条件,并结合区域地质资料,对路基、桥梁、隧道及其他结构物的稳定性、适宜性做出评价,为工程地质勘探、测试工作及工点布置提供依据。工程地质调查与测绘宜采用下列方法:
2.1 根据任务要求对已有的地质资料进行分析研究,编写纲要。必要时选择有代表性的地段进行实地踏勘。
2.2 对线路所处第四系覆盖地段,宜先使用物探方法进行探测,对解释成果应选择性地进行验证,并应提供实测地质剖面和必要的岩土测试资料。
2.3 基岩、半区,宜采用路线地质追索法与横空法相结合进行调查与测绘,必要时可进行适量的勘探与测试。
2.4 地质复杂,宜采用填图的方法进行。当地质条件简单或既有地质资料比较充分时,可采用编图方法进行。编图地段应有剖面总数1/3的实测地质剖面。
2.5 对线路设计与施工有重要影响的地质问题。公路工程地质调查与测绘工作的主要内容有调查研究地形、地貌特征,划分地貌单元,分析各地貌单元的形成过程以及与地层、构造、场地稳定性的因果关系;查明岩土成因、性质、厚度、时代和分布范围;调查岩层产状,确定地质构造类型、软弱结构面的产状及其性质;调查新构造活动的痕迹、特点和与地震活动的关系。工程地质调查采用的方法主要有观察和访问群众,必要时可配合勘探和试验。特别是在对历史地震情况的调查,对沿线洪水位的调查,对滑坡、崩塌、风沙、雪害、泥石流等不良地质的发生情况、活动过程和分布规律的调查方面,都离不开调查访问。
3.勘探
勘探是工程地质勘察的重要方法,是获取深部地质资料必不可少的手段。能提供设计所需的技术参数,在桥隧、涵洞、不良地质处理中应用广泛。在进行地质勘探时,应充分利用地面调查测绘资料,合理布置勘探点,认真分析勘探成果,避免不必要的工作;公路工程地质勘探方法主要有挖探、钻探、地球物理勘探(简称物探)几种。
3.1挖探
挖探是工程地质勘探中最常用的一种方法,可分为坑探和槽探。它就是用人工或机械方式进行挖掘坑、槽,以便直接观察岩土层的天然状态以及各地层之间接触关系等地质结构,并能取出接近实际的原状结构土样,该方法的特点是地质人员可以直接观察地质结构细节,准确可靠,且可不受限制地取得原状结构试样,因此对研究风化带、软弱夹层、断层破碎带有重要的作用,常用于了解覆盖层的厚度和特征。
3.2简易钻探
简易钻探是公路工程地质勘探中经常采用的方法。具有工具轻,体积小,操作方便,进尺较快,劳动强度小等优点。但缺点是:不能采取原状土样或不能取样,在密实或坚硬的地层内不易钻进或不能使用。“麻花钻”是在公路工程中常见的简易钻探方法。
3.3钻探
在工程地质勘测工作中,钻探是广泛采用的一种最重要的勘探手段,它可获得深部地层的可靠地质资料。钻探按钻进方法分有回转、冲击、振动和冲洗四种。在公路工程地质勘测中,钻探主要用于桥梁、隧道及大型滑坡等不良地质现象的勘探,一般是在挖探、简易钻探不能达到目的时采用。钻探作为最重要的勘探手段其提供的成果亦是相当详尽的。
3.4物理勘探
物理勘探简称“物探”。不同成分、不同结构、不同产状的地质体在地下半无限空间呈现不同的物理场分布,物探采用专门的仪器,通过观测这些物理场的变化,来判断地下地质情况。物探的优点是效率高、成本低、仪器和工具比较轻便。但是由于不同土、石可能具有某些相同的物理性质,或同一种土、石可能具有某些不同的物理性质,因此有时较难得出肯定的结论,必须使用钻孔加以校核、验证,所以物探有其一定的适用条件。
4.试验
实验是工程地质勘测的重要环节,分为原位测试、室内试验。是对土石工程性质进行定量评价的必不可少的方法,是解决某些复杂的工程地质问题的主要途径。
工程地质调查测绘与勘探工作,只能解决土石的空间分布、发展历史、形成条件等问题,对土石的工程性质只能进行定性的评价,要进行准确的定量的评价必须通过实验工作。
在工程实践中,可能会遇到某些复杂的自然现象和作用,一时上不能从理论上认识清楚,而又急于解决,在这种情况下往往可以通过试验的方法加以解决。
原位测试主要有静力触探、十字板剪切、横(旁)压试验、动力触探和标贯。是在岩土所处之原位,保持着原位状态和原位应力条件下现场就地进行的测试工作。通过原位测试可取得岩土多种物理及力学参数。由于它所提供的数据较准确、设备较轻便、操作也简单易行,且便于多点使用,在工程实践中得到广泛应用。
室内试验是直接采用仪具试验并通过计算取得有关数据的方法。应注意试验结果只代表取样地点的性质特征,实际应用中应与其他方法综合使用以保证结果的可靠性。
5.定位观测
物理地质现象与作用是在自然环境不断变化的情况下发生与发展的,其中某些具有周年的变化过程,某些具有多年的变化过程,如滑坡、泥石流等,而另一些可能兼有这两种变化。通过直接观察和勘探,只能了解某一个短时期的情况,要了解其变化规律,就需要作长期的定位观测工作,而掌握其变化规律,有时则是工程设计所必需的。因此,定位观测是工程地质勘察的重要方法,在某些情况下是必需的。定位观测不仅可以为设计直接提供依据,而且可以为科学研究积累资料。
6.结语
岩土作为自然产物易受自然条件影响,具有显著的时空变异性,在实际工作中岩土工程往往是影响投资和制约工期的主要因素,如果处理不当可能会带来灾难性的后果。正确利用公路工程地质勘测方法对提高设计质量,有效控制工程造价和工期有着无法替代的作用。公路工程地质勘测作为岩土工程在公路建设中的重要手段,应引起我们足够的重视。
参考文献:
[1] 王云.浅析公路工程地质勘察方法[J] .工程技术.2009年15期
关键词:堤防 工程地质 勘察 规程 规范 隐患 险情 分类
堤防工程建设的基础是设计,而设计的依据是地质,这是工程建设的常识性问题,不会有什么质疑。然而在实际工作中却往往并非如此。问题主要出在人们对堤防工程地质勘察工作的片面理解或被一些假象所迷惑,走了两个极端。一个极端是过高地要求地质勘察能在“查明”工程地质条件的同时,“准确”地提供设计需要的地质图件和堤基岩土体物理力学参数,一旦在有限的勘探控制工作量之内不能完全同时达到“查明”和“准确”的要求时,就立即降低了对地质勘察工作的认可和重视程度;另一个极端是我们的祖先在数百年乃至上千年来与洪水搏斗的岁月里修建的大量堤防工程,却从来没有进行过任何地质勘察工作,许多堤防工程至今也是安全的。这两个极端,不同程度地影响着堤防工程地质勘察工作的有序开展,在大规模的堤防工程建设中,难免存在这样那样的问题。为使堤防工程地质勘察工作能够科学、客观、完整、系统地为设计提供可靠的地质资料,我们有责任将近年来堤防工程地质勘察工作中出现的若干问题展示出来,供同行们讨论参考。
1 堤防工程地质勘察的过去与现状
我国已建江河堤防工程总长20余万公里,98特大洪水后尚有大量堤防工程正在规划建设中。许多已建堤防工程过去基本上没有进行过真正工程意义上的工程地质勘察,更谈不上各大江河湖海堤防工程系统化规范性的地质资料的汇编与分析整理工作。正因为如此,许多堤防工程在98特大洪水期间险象环生,出险堤段堤基的地质条件没有足够的资料可供抢险分析,为确保万无一失,只能按最坏情况进行抢险,其人力物力的巨大付出实在是不得已而为之;洪水期间上至中央下到地方的各级领导以及全国人民的精神紧张程度和精力耗费更是无法用实物价值去衡量。如此被动局面,一方面是大自然教训人类的生动一课,另一方面则是祖先给我们留下的世纪难题。
建国以来,随着大规模工程建设的需要,工程地质专业从无到有,日益发展壮大,成为国家工程建设不可缺少的重要基础性专业。工程地质勘察的法规性准则也逐渐成熟与完善,与工程地质相关的规程规范相继出台,并结合工程实践的反馈信息进行修订修编。水利部1997年2月了行业标准《堤防工程地质勘察规程》(以下简称《规程》,编号SL/T188,同年5月1日起实施),这是我国堤防工程地质勘察的第一部法规性行业标准。而国家标准《堤防工程设计规范》(以下简称《规范》,编号为GB50286-98,自1998年10月15日起施行)则是98特大洪水之后出台的。特大洪水前后出台的这两部法定标准或许是历史的巧合,也许是历史的必然。巧合与必然都说明这样一个事实:工程地质是工程建设的基础和侦察兵,具有超前意识和预见性,信不信由你。
《规程》颁布前的堤防工程地质勘察工作基本上没有什么标准。《规程》颁布后,地质工作有规可循,有法可依。更为98特大洪水后大规模堤防建设奠定了基础。首次颁布此《规程》,与工程实际存在一些差异再所难免。《规程》实施三年多来,主要存在三方面的问题,一是《规程》本身的实践性与可操作性问题;二是地质师对《规程》的理解程度与把握尺度;三是人们对堤防工程地质勘察的认识程度与理解程度。近两年来,生产第一线的广大地质师对《规程》提出了许多好的意见和建议,我们在工程审查过程中,也在逐渐地深化对堤防工程和《规程》的理解,力求较准确地把握审查尺度,紧密地与工程实际相结合,避免教条和呆板地执行《规程》中明显与工程实际不相符合的条款,要求客观地、创造性地应用和执行《规程》,同时也强调执行《规程》的严肃性。
近年来,堤防工程地质勘察工作基本上可以满足堤防工程设计与施工的要求。随着工程实践经验的积累和对堤防工程深层次的认识与理解,一些具有全局性和普遍性的问题,迫切需要提出来进行讨论,以便引起足够的重视。
2 堤防工程隐患与险情分类
2.1 分类的意义与原则
堤防工程存在隐患出现险情,导致大洪水时十分紧张。大规模的堤防工程建设正是针对隐患和险情而提出来的“整险加固”或“除险加固”。显然,对隐患和险情实施科学分类,不仅是从实践上升到理论的成熟过程,也为堤防工程的勘测设计工作明确了任务,同时为“加固”工程指明方向,提供依据。
在分类之前,我们先给出险情和隐患的定义:
险情 是指正在发生或发生过程中被抢险保住了的事故堤段,具有直观性,措施明确性等特点。针对险情,需要分析出险原因,界定险情性质,预测再次出险的可能性,落实工程措施,确保大堤安全。
隐患 是指尚未发生或可能将要发生险情的事故堤段,具有隐伏性,随机性,再生性等特点,更需要技术人员的分析判断,以便对症下药,采取措施消除隐患。
险情与隐患有明显区别但又并没有严格的界线,往往在险情中存在着隐患,在隐患中孕育着险情。辩证地看,险情是隐患发展到一定程度后的质变或必然结果,隐患是潜藏着的险情。从过程时态来看,险情是现在进行时或过去完成时态;隐患是过去、现在和将来组成的全过程时态,或单个过程时态。
本文分类的原则主要体现在:水工建筑物(堤身、穿堤建筑物)与天然地质体(堤基)区别开来,出险堤段和存在隐患的堤段与非出险堤段和不存在隐患的堤段区别开来,再按险情和隐患的性质进一步细化,作为指导后续工作的纲要。
2.2 堤防工程险情分类
按出险部位可分为堤基险情、崩岸险情、堤身险情和穿堤建筑物险情,这是出险时首先要明确的基本类型。前两类与地质条件直接有关,后两类与地质条件间接有关。可进一步划分如下:
(1)与地质条件与河势演变均有关系的险情:崩岸险情,具有可预见性、直观性、发展性和多变性特征。
崩岸类险情多发生在河流凹岸迎流顶冲或深弘逼岸区段,地质条件往往是抗冲刷能力较差的细砂类土或粘性土。由于河水位与河势流态的变化关系,有的崩岸险情并不发生在洪水期(高水位)而是在退水期(低水位),因此可以进一步将崩岸险情分为洪水期崩岸险情和枯水期崩岸险情, 前者抢险紧张,后者可以从容对待。
(2)与地质条件直接有关的险情(主要为堤基险情,包括穿堤建筑物地基险情):堤基渗透破坏险情、堤基滑动破坏险情和堤基沉降破坏险情等。
堤基渗透破坏险情具有一定的隐伏性,往往不易准确判断,洪水期发生的渗透破坏实例与理论计算有较大出入。另外,还需注意将承压水性质的渗透破坏与堤基接触冲刷或砂性土堤基渗透破坏区别开来,因为渗透破坏机制不同,工程措施当然也不一样。
存在滑动或沉降破坏险情的堤段,堤基大多分布有软弱土层,土体抗剪强度低,压缩系数大;另一类滑动或沉降破坏是随着崩岸险情而产生的,此类险情危害最大,抢险最困难。此外,堤基内或堤基外可能存在陡坎或堤坡太陡,或堤身填筑施工速度太快,都可能出现类似破坏。
以上险情实际上也就是我们通常要求界定明确的堤防工程的三大主要工程地质问题:崩岸、渗透破坏、滑动或沉降破坏。
(3)与地质条件基本无关或关系不大的险情(主要为堤身险情):堤身渗透破坏险情(与堤身质量有关,如堤身土体的密实程度、填筑土体的渗透性质和堤身单薄等)、堤身滑动破坏险情和堤身沉降破坏险情等。
2.3 堤防工程隐患分类
按隐患存在的部位可分为:堤身隐患、穿堤建筑物隐患和堤基隐患。
按隐患的性质可分为:常规患和特殊患。
常规患:堤身单薄,堤坡太陡,填筑质量差,填筑体中存在砂性土夹层,有明显的堤身裂缝等。与地质条件直接有关的主要为堤基类隐患(包括穿堤建筑物地基)。例如上覆粘性土层薄,或本身即为砂性土堤基(包括浅层砂性土透镜体),存在渗透破坏的可能性;堤基有软弱土层分布,存在滑动稳定问题。
常规患具有直观性和可检测性,隐患的分析和工程处理措施都较为明确,一般情况下可以通过常规性的堤防工程维修加固予以消除。
特殊患:进一步可分为随机患(堤身或堤基随机分布有生物洞穴、植物腐烂物等)、再生患(生物洞穴类隐患具有再生性)、人类活动留下的隐患 (例如城市区与堤外江河相通的早已被废弃了的各类排泄管道,工程勘探留下的封堵不合格的钻孔等)以及地质条件不明的堤基隐患等等。
特殊患规律性差,检测困难,在洪水期一旦演变成险情,其突发性质增加了抢险难度。
2.4 险情和隐患与堤型之间的关系
堤防工程的主体~防洪大堤,绝大多数为就地取材填筑的土堤类型,由于筑堤的历史条件、筑堤材料、自然环境等等因素复杂,为后人留下了长期隐患,洪水期险情不断,令人心惊。鉴于土堤存在的这些问题,近年来一些城市区的堤防工程比较倾向于改土堤为混凝土防洪墙(堤)。混凝土墙可以基本排除堤身隐患和险情,但却增加了堤基的出险负担。一是堤基的受力条件发生了较大变化,原来的土堤是大面积分布荷载,混凝土墙改为集中荷载;二是堤基较长渗径变为水头集中的较短渗径。混凝土墙显然对堤基地质条件提出了更高的要求,这是地质工作需要重视的。
另一方面,险情和隐患与堤防工程的挡水性质在很大关系。例如一些丘陵山区城市堤防工程,其挡水性质为暴涨暴落,远不能与长江中下游堤防工程高水位较长时间运行情况相提并论,其险情和隐患的性质也是有差别的,需要区别对待。而《规范》中只是对堤防工程的等级标准有所规定,并没有对反映出险情和隐患与等级标准之间的关系,需要由有经验的地质师和设计师根据具体情况去理解与把握。转贴于 3 堤基工程地质分段
3.1堤基工程地质分段存在的问题
自然界的地质条件千差万别。堤防工程是长距离线状工程,跨越了不同的地质单元,不进行分段分类区别对待显然是不行的。堤基工程地质分段又称堤基工程地质分类。在实际工程中,一些勘测设计单位不进行工程地质分段,或分段不合理,或即便是进行了地质分段,但其岩土体的物理力学参数又不进行分段统计分析,工程地质条件明显不同的堤段没有区别开来。还有一些堤基工程地质分段的结果不同程度地存在自相矛盾性,对工程设计和工程措施的选定缺乏针对性。当然,更多的情况是工程地质分段的合理性与科学性不足。
例如某设计院参加过大量堤防工程地质勘察,有丰富的堤防工程地质勘察经验,他们进行堤基工程地质分段所考虑的因素有:上覆粘性土层的厚度、外滩宽度和历史险情等,将堤基分为工程地质条件好、较好、较差和差四个等级。如此分段其大原则没有什么问题,但对于一些特殊组合则不易明确。例如,某堤基段其上覆粘性土层足够厚,堤内也没有任何险情,但堤外无滩,受水流冲刷崩岸严重,是典型的险工险段。将这种堤段分成工程地质条件差或较差都不一定合适。因为出现的险情不是堤基本身的工程地质条件差,而是堤外脚受水流冲刷产生的崩塌或塌滑,且在不同水位条件下其险情不同,与江河水流及河势变化都有关系。显然,崩岸类险工险段在堤基工程地质分段时应结合河势水流特征单独进行分类,以便于有针对性考虑工程处理措施。例如对某一类崩岸问题,抛石护脚是有效的,而另一类崩岸问题或许要与“丁坝”挑流改变流态相结合才能从根本上解决问题,或者无建“丁堤”的条件,则需考虑“桩”、“笼”等工程措施。
另一方面,对于堤基工程地质条件用“好”与“差”来评价,其针对性不强。例如,存在渗透破坏的堤基划为工程地质条件差,而实际上可能此类堤基的承载能力和抗滑稳定性都是很好的,如砂性土堤基。又如淤泥质土类堤基,其承载能力和抗滑稳定性差些,但渗透系数却很小,抗渗条件是好的。如此等等,用常规的工程地质条件好或差来评价,都存在明显的矛盾。
目前各勘测单位自行制定的堤基工程地质分段原则,基本上是以工程地质条件为基础,再考虑一些自然因素和工程因素,笔者认为这种分段法的思路源自于常规的工程地质分类法,跳不出传统思维的约束,不能较好地适应堤防工程的实际,需要探索新路。
3.2 堤基工程地质分段
我们在进行传统意义上的工程地质评价时,通常从工程地质条件出发,结合工程建筑物特点,界定出主要工程地质问题。在堤基工程地质分段中,我们不妨借用逆向思维的思想,以工程地质问题为主线,以工程地质条件为基础,再结合历史险情类型,争取探讨出一个符合工程实际的堤基工程地质分段法。
本文强调的是“工程地质”分段,因此主要是对堤基而言的。我们知道,无论堤基地质条件有多复杂,其主要工程地质问题则是明确的,归纳起来主要为三类(即三大主要工程地质问题):崩岸、渗透破坏、滑动与沉降变形。绝大多数堤基岩土体不外乎为:砂性土、粘性土和砂性土与粘性土的混合结构;城市区杂填土较为复杂,另当别论。
根据以上以工程地质问题为主线的分段原则,我们首先将堤基分为三大类:Ⅰ类(不存在问题的堤基)、Ⅱ类(可能存在问题的堤基)和Ⅲ类(存在问题的堤基)。对于Ⅱ类和Ⅲ类堤基,按其存在问题的性质可继续划分亚类。
(1)Ⅲ类(存在问题的堤基)
堤基发生过历史险情,尤其是一些每年汛期都要出险的部位,在汛期要投入大量的人力物力抢险才能保证大堤安全的堤段。按出除性质又分为两个亚类:Ⅲ-1和Ⅲ-2类。
Ⅲ-1类:主要指崩岸类,这是在堤基分段时对有问题的堤基段应首先分出来的一类。
Ⅲ-2类:除崩岸之外的一切堤基存在问题的堤段。按工程地质问题继续分出两个子类:
Ⅲ-2-1类:存在渗透破坏的堤基段。汛期出现过冒砂、涌混水等险情;堤基为砂性土,或表层粘性土较薄,或浅层有砂性土透境体分布,或堤身与堤基接触部位存在渗漏破坏问题。
Ⅲ-2-2类:存在滑动与沉降变形的堤基段。运行期或施工期发生过堤基土层滑动,或沉降过大导致堤身开裂;堤基有压缩性大、承载力和抗剪强度低的软弱土层分布,或堤基清基不彻底,导致堤身与堤基接触面存在滑动软弱带。
(2)Ⅱ类(可能存在问题的堤基段)
此类与前述的堤基隐患相对应。在汛期有一定渗水情况发生,但并未发展成为险情;或经地质勘察,地基中存在砂性土透镜体、软弱夹层等不利地质条件,经渗控或稳定性验算,安全系数达不到规范要求的堤基;或存在生物洞穴等其它隐患的堤基。
(3)Ⅰ类(不存在问题堤基段)
历史上无险情发生,堤基为厚度较大的粘性土或基岩,物性指标和力学指标均较好,不存在三大主要工程地质问题。
(4)结合工程实际进一步细分亚类的原则
以上分类法,从宏观上将堤基分为三大类别,但在具体实施过程中,还可以根据工程实际按不同工程地质条件和工程地质问题进一步细化。例如,对于Ⅱ类堤基段,可以按可能存在问题的性质进一步细化;对于Ⅲ类堤基段,也可以按存在问题的严重程度或岩土体的性质等进一步细化。堤基分段的科学性、合理性、实用性和可操作性,不但是地质师对堤防工程理解程度的反映,更是一项创造性的工作。本文所提出的分段原则和方法,尚有待工程实践去检验。
3.3 堤基工程地质分段对勘测设计工作的指导作用
在进行工程地质勘察时,Ⅲ类是重点,应根据具体情况加密勘探点;Ⅱ类次之,实施常规性勘探即可;Ⅰ类基本上可以不考虑地质勘察。设计方面,Ⅲ类堤基必须考虑工程措施;Ⅱ类堤基应视具体情况而定,也可以通过进一步勘探和检测或监测结果来确定工程措施;Ⅰ类堤基则不需要采取工程措施,仅仅通过堤防工程的常规性维护即可。
4 执行《堤防工程地质勘察规程》的基本原则
从《堤防工程地质勘察规程》颁布实施三年多来的实践可以看到,除了《规程》本身存在一些尚需修订的问题之外,能够将《规程》与工程实际相结合,创造性地执行和应用《规程》,准确地把握《规程》的原则性与灵活性,是对地质师综合素质的高标准要求。业务能力和创新意识,是检验和考察我们对堤防工程的认识深度与理解能力。笔者的理解主要反映在以下几个方面。
4.1 勘测阶段
已建堤防除险加固工程可以一次进场,达到初设深度;新建堤防可按可研和初设两个阶段进行。其理由是:新建堤防存在线路比选问题,不可能将比选堤线的工程地质条件都按初设要求做到相同深度;已建堤防一般不存在线路比选问题,因此也就不存在多阶段多方案的反复比选问题。另外,新建堤防工程应该在规划阶段即开展工程地质工作,以便将规划线路从地质专业的角度先期界定其可行性。
4.2 勘测深度及勘探工作量
在实际工作中,对于堤防工程勘测深度与勘探工作量问题,在理解和把握上有较大差异。有人喜欢严格按《规程》要求布置勘探工作量,而少在工程地质条件的查明与工程地质问题的分析方面下功夫。笔者强烈主张,一是将安全正常运行的堤段与险工险段区别开来, 二是将堤身出险情况与堤基出险情况区别开来,分别对待。这也是本文费了较多笔墨进行险情隐患分类和堤基工程地质分段的目的之一。特别是经历了98特大洪水考验过的堤防工程,未出险的堤段完全没有必要“严格”按照《规程》要求的勘探工作量去实施地质勘探,即使按照《规程》中的上限要求,也是一种毫无意义的巨大浪费。而应在分析险工险段的具体问题之基础上明确勘察目的,研究和选择勘探方法,合理布置勘探工作量,重点在工程地质问题的分析上下功夫。如果认可本文提出的堤基分段原则和方法,地质勘探工作的布置则更为方向明确目标清楚。
4.3 《规程》原则性与灵活性的准确把握
《规程》的原则性和严肃性是不可置疑的,这并不等于“死”规定。明显与工程实际不相符合的具体问题,需要由地质师的创造性劳动加以“灵活”处理。规程规范是指导技术工作的法规性文件,并不等同于为犯罪分子定罪的法律条款,因此执行规程规范是可以有“灵活”性的。灵活性的把握原则是:不应因忠实严格执行规程规范而遗漏重大工程地质问题,留下工程隐患造成工程事故;也不应造成不必要的浪费。例如,对于某些特殊的险工险段、Ⅲ类堤基、城市区规律性差的杂填土和人类活动留下的隐患管道等,《规程》规定的勘探工作量可能就不能满足要求;而对于安全正常运行多年的Ⅰ类堤基,按《规程》规定的勘探工作量又显得没有必要。总之,准确把握执行规程规范的原则性与灵活性,需要地质师的责任心、业务水平和创新意识,同时也体现出了工程地质专业的特殊性与复杂性。
5 不同行业标准之间的关系
堤防工程地基多为土质地基,其工程地质评价的基本理论依据是土力学,因而容易与工民建基础设计相混淆。目前反映比较集中的是执行水利行业标准还是执行以工民建为主要对象的《岩土工程勘察规范》(国家标准GB 50021—94简称《岩土规范》)。两个标准既有共同之处,又有一定的差异。我们认为应该以水利行业标准为主要依据,同时参照《岩土规范》。原因是:①《岩土规范》主要是针对一般性工民建地基勘察与评价,而水工建筑物与工民建有根本性的区别,前者地基所承受的荷载以垂直向为主,建筑物对地基的要求主要反映在承载力;后者的荷载是垂向与水平向的组合,地基岩土体处于复杂应力状态,特别是水荷载对地基岩土体的复杂作用,是水工建筑物与工民建的根本区别。②《岩土规范》在总则中表示该规范适用于除水利工程、……以外的工程建设岩土工程勘察。明确了不适用于水利工程。③《岩土规范》中对勘探量的安排和勘探工作的布置主要依照岩土工程勘察等级来制定,而堤防工程则主要从工程勘测设计的阶段来确定。
关于土的分类问题,也是近年来较为混乱的问题之一。1990年以前,土的分类主要以1962年版的《土工试验操作规程》为依据,采用土的分类三角坐标,这种分类法以颗分为基础,以砾石、砂粒和细粒的含量百分比来给细粒土定名。广大设计院应用这种分类方法比较成熟。1991年国标《土的分类标准》(GBJ145-90)颁布,此标准以颗分为基础,以塑性指数和液限为控制指标对土进行分类,1999年颁布的水利行业标准《土工试验规程》对土的分类也沿用此国标。我们认为,目前两种分类都有各自的特点,原则上应使用国标和最新的行业标准为主,现阶段也可以根据各单位对标准的理解和与工程相结合的具体情况,互相参照使用,只要能够客观地反映工程实际,满足为工程设计提供有关地质参数的要求即可。另一方面,我们也提倡和鼓励对此类问题深入探讨,为进一步统一标准进行实践和理论准备。
6 堤防工程地质勘察的成果资料
堤防工程地质勘察所获得的基础性资料数据,具有种类繁多数量巨大的特点。这些资料数据的分析整理归纳汇总,要求标准化,计算机化,最后形成能够通过计算机综合管理的数字化的基础资料数据库系统,并与堤防工程的其它资料数据库系统集成,充分应用计算机网络技术,为堤防工程建设、管理和抗洪抢险提供使用方便功能强大的检索查询指挥调度系统。集成后的系统可在局域网、城域网、广域网和Internet/Intranet上运行。系统要求具有灵活的结构定义、多种存储方式、强大方便的查询定位功能、丰富的统计报表功能以及可靠的数据安全保证体系等;能够通过图示图表提供隐患预测、险情分析、抢险提示、决策支持、模拟溃堤和决口后洪水进堤的演变趋势。目前的基础性工作是制定目标,统一规划,结构设计,系统集成。
堤防工程数据库系统需要列为专题研究,力争全国统一,至少也应该全流域统一。各类资料数据的使用权限、归档管理、存储格式和形式、存储介质等等,都应该及早研究,统一规定。
7 结语
98特大洪水期间,抗洪抢险场面之惊心动魄,至今仍然令人难以忘怀。大洪水给人以大启示。中国历史上前所未有的大规模堤防工程建设在98特大洪水之后迅速拉开序幕。经历了98特大洪水洗礼过的江河堤防工程,其工程隐患基本暴露无遗,认真研究堤防工程的出险机理,总结未出险工程的成功范例,吸取前人修建堤防工程的历史经验,做好堤防工程的勘测设计工作,是肩负着堤防工程建设的各级领导和工程技术人员的神圣职责。
近几年来我们参加了大量堤防工程审查,在向生产第一线的广大工程技术干部学习的同时,也对堤防工程地质勘察中普遍存在的一些问题进行了认真思考。本文对于执行《规程》的原则、勘探工作量的控制、勘测资料的整理等等问题表明了我们的观点;关于堤防工程险情和隐患分类,我们认为是实践上升到理论的必然过程;关于堤基分段分类的原则与方法,属于工程地质理论与实践相结合的探讨性课题,同时又是指导工程勘测设计的基础性工作。
本文观点供同行们参考,愿与大家共同讨论。
参考文献:
1 韦港、冀建疆,关于《堤防工程地质勘察规程》中若干问题的探讨,《水利水电技术》,1999年第10期。
2 韦港、冀建疆,堤防工程与环境地质问题,《水利规划设计》,水利部水利水电规划设计总院院刊,2000年第1期。
3 《岩土工程勘察规范》,中华人民共和国国家标准,GB50021-94,中国建筑工业出版社1995年。
关键词:水文地质;工程地质勘察;影响
中图分类号:P641.72文献标识码: A 文章编号:
一、引言
在国民经济迅速发展的情况下,工程地质勘察也得以完善,因此,更多的人开始关心水文地质勘察的进展,并且希望工程地质勘察能够达到更高的质量要求。在整个工程地质勘察的过程中,一个非常重要的环节就是水文地质勘察工作。据此,为了保障这一重要环节能够顺利完成,相关人员就要高度关注该过程中的制度化与标准化,同时,对于质量规范、责任的承担、职责的分配和技术规程等问题,都需要相关的单位和部门作出相应的规范和监督。而完善工程地质勘察单位对于岩土水文地质的研究就显得尤为重要,其在实施对岩土水文地质的系统、良好的研究中,就必须对其勘察流程及其之间的联系进行深入的分析与研究,进而作出合理、科学的管理。本文就是在现实的工程地质勘察工作的基础上,简单研究和分析了水文地质对于工程地质勘察的影响,以及水文地质问题对于工程地质勘察的主要危害等有关问题。
二、水文地质对于工程地质勘察的影响探讨
当进行岩土工程勘察工作时,如何做到合理的对遇到的水文地质问题做出科学的研究是不可或缺的重要过程。第一,必须认真的分析出地下水可能会对上层的建筑物,或者是岩土体造成什么样的影响,保证在勘探工程开始之前就做到对这一影响做出合理的预测分析,进而当问题出现时,能够及时的给出解决问题的办法。第二,如果在勘探工程中出现了一些水文地质方面的问题,就应该科学合理的结合当地具有的建筑物的地基性质特征以及基础工程的性质特征,系统的分析出该地出现水文地质问题的具体原因,只有这样才能够具体详细的给出关于当地水文地质方面的资料。第三,如果在处理一些地下建筑物的地基处于地下水位之下的问题时,就应该把地下水对建筑物的腐蚀作用进行考虑,只有这样才能够增加建筑物的建筑质量。有一些工程场地的基础持力层属于岩土体,例如软质或强风化岩层,残积或膨胀土层等,很有可能在施工时发生持力层崩解、膨胀、收缩以及软化的状况,因此在发生地下水活动时,需要着重关注分析这些场地的情况;有一些工程的场地的细粉砂层会出现饱和或松散的情况,这一现象的产生范围在地基和基础的压缩层内,因此在这样的工程场地中,要对可能产生的流砂、管涌以及潜蚀等情况加以关注,并给予分析与评价;而有些工程场地的地基和基础下存在承压水层,这一承压水层可能会对基坑地板造成一定程度的损坏,因此,开挖基坑以后,需要重新计算这一可能性,并进行分析评价;有些佛哪个城场地的基坑可能比地下水位更高,因此在施工时需要进行渗透实验以及富水实验,以确保工程安全可靠。
三、水文地质问题对于工程地质勘察的主要危害探讨
1、由于地下水的动水压力影响导致产生的危害
一般来说,如果没有人为的对地下水做出一些处理,在岩土工程的勘察时遇到的地下水的动水压力不会对勘探工程造成太大的影响。但是动态水压受人为因素的影响也比较大,刻意破坏这种平衡型,可能会使得动态水压变大,为勘探带来诸多不便,甚至会在勘探工程中产生重大问题,例如产生流砂等现象,勘探工程受这些地质上的影响也比较大。
2、由于地下水位的升降变化导致产生的危害
首先,由于地下水位下降导致产生的危害。通常情况下,自然条件不会导致地下水有明显的下降行为,只有人为的因素才是导致地下水下降的主要原因。造成地下水水位下降的人为因素主要包括勘探地区的地下水被严重的抽取、矿业企业生产过程中对地下水的抽取、勘探地区的水利工程建设等,这些都可以严重的造成地下水水位的下降。当某一地区的地下水下降程度非常大时,这一地区就很可能会产生各种地质灾害,比如说地质塌陷等,并且能够造成当地的地下水严重缺失以及地下水质量下降的严重影响,这些由于地下水水位下降造成的问题都从很大程度上对人类的生产生活造成影响。
其次,由于地下水位上升导致产生的危害。通常情况下,地下水水位的增加受到很多因素的影响,在这些影响因素中,最为重要的分为两大部分,意识地质因素,例如含水层的结构以及总体岩性产状;二是水文气象因素,例如施工或灌溉等,而很多时候,水位升高是众多影响因素综合作用导致的。水位不正常的升高会带来一系列严重的后果,会对建筑物基础造成腐蚀影响,导致斜坡或者河岸等土体产生崩塌等严重情况,将土层的承载能力减弱,使得一些土层加快液化速度,甚至可能产生管涌或流砂等更为严重的地质损害,严重破坏了工程特别是基础工程的情况。
最后,由于地下水位频繁升降导致产生的危害。对于一些膨胀性的岩土来说,如果地下水水位发生了很大程度上的变化,很可能会导致岩土层的膨胀,或者是岩土层的收缩等地质变化,而一旦地下水位升降过于频繁,则不但会造成岩土往复地产生膨胀收缩变形,而且还可能会引起岩土膨胀收缩幅度的持续加强,从而产生地裂等危害,并最终造成建筑物尤其是轻型建筑物出现严重的破坏。此外,一旦某一个地区的地下水位的变动频率过大,就会导致岩土层中的铁和铝等元素迅速流失,这一情况会降低岩土层的承载能力,因此,工程的基础需要更为谨慎的对待,要求也更为严格,与此同时,成熟的勘探技术在这样的勘探工程中也有着举足轻重的作用。
四、结束语
综上所述,水文地质极大程度上对当代工程地质勘察有着促进作用。在以往对于岩土地质勘察的研究,一般只关注其勘察现场质量的管理而对其它方面基本上属空白,这种情况下工程地质勘察的研究存在着很多的漏洞,很难满足现代社会进步的步伐。所以完善工程地质勘察单位对于岩土水文地质的研究就显得尤为重要。而在实施对岩土水文地质的系统、良好的研究中,就必须对其勘察流程及其之间的联系进行深入的分析与研究,进而作出合理、科学的管理。另外随着当代工程地质勘察领域的快速发展,企业间的竞争也更加强势,势必会影响到其利益的减少。所以,岩土水文地质的勘察人员需转变以往统粗放的管理理念,进而向集约式管理方式转变。若想在市场竞争中突出优势,也只有在工程地质勘察的岩土水文地质研究中强抓核心问题点,管控勘察要点才行。
参考文献:
[1] 王燕. 工程地质勘察中的水文地质危害分析及对策研究 [J].科技致富向导,2012(09).
[2] 粟俊江. 重庆地区环境影响评估中水文地质勘察研究 [J].科协论坛(下半月),2012(03).
[3] 李坚. 岩土工程勘察中的水文地质问题分析 [J]. 中国新技术新产品,2012(08).
[4] 葛超. 关于工程地质勘察中水文地质问题的探讨 [J].科技创新与应用,2012(13).