前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇基础设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
一.桩基设计中静载荷试验的重要性
目前的桩基础设计过程,往往受到时间的约束首先根据地质报告提供的参数确定单桩承载力设计值,根据这个估算的单桩承载力直接进行桩基础设计并施工,等工程桩施工结束后再挑选试桩进行静载荷试验。这个过程具有相当的不科学性,结果符合估算要求,则皆大欢喜,否则因工程已施工完毕补桩也会很困难,且有时因地质报告有出入会给施工中带来相当的不便。这里主要有两个问题,下面举例来说明。一是根据地质报告提供的桩周土摩擦力标准值及桩端土承载力标准值由规范JGJ94-94计算的场区单桩承载力标准值,这是一个经验数值,不宜直接采用。近几年来笔者通过各类桩基础中试桩及工程桩的检测,发现绝大多数桩的实际承载力均大于计算值,有些相差幅度较大,因此按试桩获得的实际承载力将会比按勘察报告估算的承载力来布置基础将产生巨大的经济效益。例如,笔者曾设计过苏州工业园区南都·玲珑湾花园住宅,主体为地下一层、地面十八层的高层住宅,根据地质勘察报告拟采用 D500的预应力管桩,桩长20m,按JGJ94-94公式5.2.8估算单桩承载力设计值约为1400kN,而我要求进行的3根破坏性试桩显示实际单桩承载力可达1850kN,整整比估算值提高了30%左右,实际工程桩设计就采用试验值进行,为甲方大大节省了投资。其二是当场地不均匀或地质报告数值有偏差的情况下,不进行试桩而直接按地质报告进行工程桩施工将给施工带来巨大的困难且造成不必要的浪费。例如唯亭某五层商住楼,根据地质报告采用10m 长的预制方桩,桩径400x400,单桩承载力极限标准值约为1350kN,采用静力压桩,实际施工中几乎每根桩都压至2000kN而未达到预定深度,而此时已达到预制桩的桩身强度,故施工过程中每根桩都采用了劈桩,在时间金钱上都造成了巨大的浪费。经过静载荷试验未达设计标高的工程桩均达到了设计承载力,也就是说设计上如先进行试桩则至少可减短1.5m左右的桩长,桩承载力不减小且不需要劈桩。由上可见,桩基础设计过程中静载荷试验是一个十分重要的环节。因为次项工作质量直接影响到桩基形式、桩规格和桩入土深度的确定,同时也对施工难易有密切影响。通过科学试验,取得准确数据,能使设计方案更加合理、可行和经济,远远超过缩短工期所获得的效益。
二.桩基设计中桩型、桩长设计的重要性
桩基础设计中对桩型及桩长的合理选择均会对基础设计产生重大的影响,合理的桩型、桩长选择将产生巨大的经济效益。笔者在“昆山华地”住宅设计中,开始由于考虑时间原因(有现成的D400预应力管桩),甲方要求采用D400的预应力管桩,根据地质报告采用桩长L=16m,单桩承载力极限标准值为850kN,预算基础部分造价约为160元/m2,在整个住宅造价中占了相当大的比例。在其后的设计中,笔者桩长不变,结合当地的设计经验,将桩型改为250x250的预制钢筋混凝土小方桩,单桩承载力极限标准值约为600kN.预制小方桩在当地的施工价才约50元/m,而预应力管桩的单价约为100元/m.采用小方桩后预算造价约为90元/m2,综合经济价值明显。可见选择合理的桩型,将对工程的造价产生巨大影响。同样桩基设计中对桩长的选择也至关重要,在某一高层住宅桩筏基础设计中,根据勘察报告采用D500预应力管桩,可选桩长有:桩长25m ,单桩承载力特征值Ra=900kN;桩长34m,单桩承载力特征值Ra=1300kN.采用25m桩,约需要桩数290根;而采用34m 桩,则需要工程桩200根。从桩本身而言,两种方案总的工程桩延米数量相当,但我们分析一下由此而相对应的筏板设计,采用25m 桩为满樘布桩,所需筏板厚约为1200mm,而采用34m 桩为墙下布桩,筏板厚可减至900mm,经济效益明显。因此,我们设计人员在桩基础设计中一定要采用多方案比较,选择合理的桩型与桩长,这都将对整个基础设计的合理性与经济性产生巨大的影响,当然我们也应考虑施工可行性等多方面因素。
三.关于桩偏差的控制和处理
桩基施工中对桩的偏差必须严格控制,特别是对于承台桩及条形桩,桩位的偏差都将产生很大的附加内力,而使基础设计处于不安全状态。对于桩位偏差我们主要控制两个方面,其一是竖向偏差,根据JGJ94-94第7.4.12条我们控制桩顶标高的允许偏差为-50~+100mm,但实际施工中偏差这么大将引起繁重的施工任务及损失。当桩顶标高高于设计标高,则需要劈桩,特别对于预应力管桩等空心桩来说,桩顶有桩帽劈桩既困难又不经济;而当桩顶标高低于设计标高时,又需要补桩头,这既影响工期又浪费金钱。这就要求施工单位在施工过程中必须严格控制桩顶标高,尽可能地使工程桩标高同设计一致,特别是施工过程中必须考虑到桩在卸载后的回降量,否则不加考虑则每根桩都将高于设计标高。而我们设计人员在设计过程中对施工误差亦应有所考虑,笔者建议针对目前的施工质量,设计中可以考虑2mm左右的偏差容许,这样就可以免除大量小偏差桩的劈桩,这在实践工程中具有相当的可操作性,避免了大量不必要的工作。其二则是桩位的水平偏差。根据JGJ94-94第7.4.11条控制各桩位偏差,施工过程中发现桩位偏差较大则应及时补桩处理。这里针对4~16根承台的桩基,JGJ94-94规范第7.4.11条中规定允许偏差为1/3桩径或1/3边长,而根据GB50202-2002第5.1.3条则规定允许偏差为1/2桩径或边长。这显然是矛盾的,在实际过程中很容易与施工验收方产生不同的理解,因此笔者强调在设计过程中可以明确桩位偏差允许值所执行的标准。另外,对于小直径桩(D≤250)笔者强调必须对其偏位进行严格控制而不应按上述规范标准,笔者建议对承台桩可控制70mm;而对于条形承台则区分垂直于条形承台方向50mm,平行于承台方向为70mm,当然这些要求必须在施工前予于明确。当然桩位偏差满足规范或设计要求仅仅代表桩基本身验收合格,而对于由此引起的承台整体偏心或基础高度损失,我们必须另行处理。对于桩偏心我们可以采取增加承台刚度或加大拉梁刚度、配筋来解决,这在实际工程中需针对具体情况相应处理。
四.施工殊情况处理
桩基施工由于地层的不可知性,经常会遇到很多异常情况,这就要求我们根据具体的情况,仔细分析,采用妥善的方法去解决各类问题。
1)桩基达到其极限承载力而无法压至设计标高。这里可能存在两种情况,其一是地质报告有误,桩实际承载力大于计算值,必须先做试桩以确定其合理的桩长及承载力。其二则可能由于土层本身原因,譬如说饱和砂土产生的孔隙水压力使桩基根本无法压入,这就需要我们从施工措施上去解决。首先是必须制定合理的施工顺序,譬如说跳打,使先期施工的桩产生的水压力消散后再施工下一根桩;其次对静力压桩来说必须选择有足够压桩力的施工机械,要避免抬机等现象出现;另外可以采取引孔,设置排水孔等措施尽量减少空隙水压力。当然压桩时必须注意压桩力应控制在桩身极限强度范围以内,且应注意压桩挤土作用对周边建筑物的影响。
2)桩基施工时压桩力远低于设计承载力。苏州阊胥公寓小高层住宅采用18m长D400预应力管桩,根据地质勘察报告单桩承载力设计值为650kN,进行工程桩试打时连续4根桩的最大压桩力均仅为300kN,远远小于设计承载力。我们仔细分析了勘察报告认为报告所提供的各土层特性基本准确,而从周边其他工程的地质报告也证明勘察报告无误,因此我们分析可能由于压桩机械的压桩速度偏快,而土层的粘聚力又偏小,故压桩时桩将土直接剪坏,引起压桩力偏低,随着时间土能恢复固结。在15天后进行的试桩,证明我们的判断准确,试验承载力满足设计要求。这一点也从侧面强调了先进行静载荷试桩的重要性。
3)桩基静载荷试验不合格。某工程由于时间限制,甲方要求试桩与工程桩同时进行,待试桩满足JGJ94-94附录c.0.6条时进行静载荷试验,结果三组试桩有一组满足设计要求而另外两组试桩均在小于设计承载力时产生破坏。这就让我们从设计、施工和试验等各方面去分析这两组试桩,但经过与周边工程比较及现场施工试验记录分析,均未发现特殊情况,即不存在施工,试验中的失误。笔者对第一组合格试桩的情况进行了比较,终于发现后二组试桩本身的停歇时间已够,但周边的其余工程桩施工在试验前2天才完成,完全有理由认为是因为工程桩施工时将试桩周边的土破坏而没有固结,影响了试桩的承载力。于是等工程桩停歇时间也满足JGJ94-94附录c.0.6条时再次对2根试桩进行了静载荷试验,结果与我们判断完全一致,试桩均满足设计要求。这一实例告诉我们影响试桩结果的因素有很多,我们在工程实践中对各种情况一定要仔细分析,找出问题所在,而不要盲目处理,造成不必要的损失和浪费。
关键词:地基;基础;处理;方法
一、引言
基础是建筑物和地基之间的连接体。基础把建筑物竖向体系传来的荷载传给地基。从平面上可见,竖向结构体系将荷载集中于点,或分布成线形,但作为最终支承机构的地基,提供的是一种分布的承载能力。
如果地基的承载能力足够,则基础的分布方式可与竖向结构的分布方式相同。但有时由于土或荷载的条件,需要采用满铺的伐形基础。伐形基础有扩大地基接触面的优点,但与独立基础相比,它的造价通常要高的多,因此只在必要时才使用。不论哪一种情况,基础的概念都是把集中荷载分散到地基上,使荷载不超过地基的长期承载力。因此,分散的程度与地基的承载能力成反比。有时,柱子可以直接支承在下面的方形基础上,墙则支承在沿墙长度方向布置的条形基础上。当建筑物只有几层高时,只需要把墙下的条形基础和柱下的方形基础结合使用,就常常足以把荷载传给地基。这些单独基础可用基础梁连接起来,以加强基础抵抗地震的能力。只是在地基非常软弱,或者建筑物比较高的情况下,才需要采用伐形基础。多数建筑物的竖向结构,墙、柱都可以用各自的基础分别支承在地基上。中等地基条件可以要求增设拱式或预应力梁式的基础连接构件,这样可以比独立基础更均匀地分布荷载。
如果地基承载力不足,就可以判定为软弱地基,就必须采取措施对软弱地基进行处理。软弱地基系指主要由淤泥、淤泥质土、冲填土、杂填土或其他高压缩性土层构成的地基。在建筑地基的局部范围内有高压缩性土层时,应按局部软弱土层考虑。勘察时,应查明软弱土层的均匀性、组成、分布范围和土质情况,根据拟采用的地基处理方法提供相应参数。冲填土尚应了解排水固结条件。杂填土应查明堆积历史,明确自重下稳定性、湿陷性等基本因素。
一、地基的处理方法
利用软弱土层作为持力层时,可按下列规定执行:1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施;2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层;3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。
地基处理设计时,应考虑上部结构,基础和地基的共同作用,必要时应采取有效措施,加强上部结构的刚度和强度,以增加建筑物对地基不均匀变形的适应能力。对已选定的地基处理方法,宜按建筑物地基基础设计等级,选择代表性场地进行相应的现场试验,并进行必要的测试,以检验设计参数和加固效果,同时为施工质量检验提供相关依据。
经处理后的地基,当按地基承载力确定基础底面积及埋深而需要对地基承载力特征值进行修正时,基础宽度的地基承载力修正系数取零,基础埋深的地基承载力修正系数取1.0;在受力范围内仍存在软弱下卧层时,应验算软弱下卧层的地基承载力。对受较大水平荷载或建造在斜坡上的建筑物或构筑物,以及钢油罐、堆料场等,地基处理后应进行地基稳定性计算。结构工程师需根据有关规范分别提供用于地基承载力验算和地基变形验算的荷载值;根据建筑物荷载差异大小、建筑物之间的联系方法、施工顺序等,按有关规范和地区经验对地基变形允许值合理提出设计要求。地基处理后,建筑物的地基变形应满足现行有关规范的要求,并在施工期间进行沉降观测,必要时尚应在使用期间继续观测,用以评价地基加固效果和作为使用维护依据。复合地基设计应满足建筑物承载力和变形要求。地基土为欠固结土、膨胀土、湿陷性黄土、可液化土等特殊土时,设计要综合考虑土体的特殊性质,选用适当的增强体和施工工艺。复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定。常用的地基处理方法有:换填垫层法、强夯法、砂石桩法、振冲法、水泥土搅拌法、高压喷射注浆法、预压法、夯实水泥土桩法、水泥粉煤灰碎石桩法、石灰桩法、灰土挤密桩法和土挤密桩法、柱锤冲扩桩法、单液硅化法和碱液法等。
二、不良地基处理方法
在确定地基处理时,根据地质情况的不同、建(构)筑物的承载条件需要以及各种处理的成本比对,选择既能达到要求,成本又较低的处理方法。
1.1.1 物理性质
粘粒含量较多,塑性指数Ip一般大于17,属粘性土。软粘土多呈深灰、暗绿色,有臭味,含有机质,含水量较高、一般大于40%,而淤泥也有大于80%的情况。孔隙比一般为1.0~2.0,其中孔隙比为1.0~1.5称为淤泥质粘土,孔隙比大于1.5时称为淤泥。由于其高粘粒含量、高含水量、大孔隙比,因而其力学性质也就呈现与之对应的特点――低强度、高压缩性、低渗透性、高灵敏度。
1.1.2 力学性质
软粘土的强度极低,不排水强度通常仅为5~30kPa,表现为承载力基本值很低,一般不超过70kPa,有的甚至只有20kPa。软粘土尤其是淤泥灵敏度较高,这也是区别于一般粘土的重要指标。
软粘土的压缩性很大。压缩系数大于0.5MPa,最大可达45MPa,压缩指数约为0.35―0.75。通常情况下,软粘土层属于正常固结土或微超固结土,但有些土层特别是新近沉积的土层有可能属于欠固结土。渗透系数很小是软粘土的又一重要特点,一般在10-5~10-8cm/s之间,渗透系数小则固结速率就很慢,有效应力增长缓慢,从而沉降稳定慢,地基强度增长也十分缓慢。这一特点是严重制约地基处理方法和处理效果的重要方面。
1.1.3 工程特性
软粘土地基承载力低,强度增长缓慢;加荷后易变形且不均匀;变形速率大且稳定时间长;具有渗透性小、触变性及流变性大的特点。
杂填土主要出现在一些老的居民区和工矿区内,是人们的生活和生产活动所遗留或堆放的垃圾土。这些垃圾土一般分为三类:即建筑垃圾土、生活垃圾土和工业生产垃圾土。不同类型的垃圾土、不同时间堆放的垃圾土很难用统一的强度指标、压缩指标、渗透性指标加以描述。杂填土的主要特点是无规划堆积、成分复杂、性质各异、厚薄不均、规律性差。因而同一场地表现为压缩性和强度的明显差异,极易造成不均匀沉降,通常都需要进行地基处理。
关键词:三大构成;设计基础;变革
由于国情的原因,跟西方有着上百年的现代设计教育相比,中国的高等设计教育最早应当从国立北京美术学院1918年首创的图案系开始,一直到1956年中央工艺美术学院的成立,才标志着“设计”学科的建立。建国以后的中国工艺美术教育一直以从日本引进的三大构成为基础教学的课程之一,在当代的设计设计教育中已经滞后,在课程的实施中也显露出课程教学的一些问题。我们有必要对于“构成”重新定义,以进行了更深层地思考,并实现教学改革。
一?绘画艺术的变革——从具象走向抽象,构成的产生
19世纪末到20世纪初,在近一个世纪的时间里,绘画艺术发生了非常大的变革。达芬奇发明了最伟大的透视法——他用分隔好的玻璃对绘画对象进行分割。对于达·芬奇而言,玻璃再现物体的最准确形式,空间在玻璃面前变成了单一的平面,玻璃建筑的透视不过是将原先体、面的透视转换为面、线的透视,从而使得在面的之中比例问题变成空间设计的中心。而塞尚被认为是西方现代艺术史上最早自觉使用“散点透视”作画的先驱,塞尚无法聚焦的斜眼经受不住古典一点透视的煎熬。他最终决定用他的斜眼把他所看到的世界同时也让其它人的世界看到。“塞尚认为,为了达到绘画的永恒性,艺术家必须像一个具有耐性的泥水匠一样,需要依靠整体的建构观念来工作。他强调的,是一种隐含在事物中的‘结构’,而非只是对自然事物的简单摹仿。”要把自然界的一切事物用圆柱体、球体、圆锥体等形体来做处理……对人类而言,若说自然在于表面的话,倒不如说自然构成于其内里的深度。塞尚绘画的观念和达芬奇的透视法一起在欧洲世界得到了沿续,而由他引导的观察自然界的方法——形态抽象的方法——在法国出现的立体主义运动中得到了进一步的深化研究。以毕加索(Pablo Picasso)和乔治·布拉克(Georges Braque)为首的立体主义向人们展现了创造“艺术真实性”的方法。描绘世界的结构是立体派的核心,我们观察世界时,不可能只从一个固定的视点去理解绘画对象,要达到理解事物本质,应当主张多个视点多个角度来表达对象的形状、结构、外表、内部和其它面。这时,“时间”这一概念从而可以从容步入绘画二维的世界,杜桑(Duchamp Marcel)、巴拉(Balla Giocomo)等人开始把时间放入具体事物当中,开始对事物多角度的同时,引入时间变化的描绘世界的方法。
蒙特里安从吸收了“野曽派”的纯色系和立体主义的结构中继续从具象走向抽象。他于1908年所画的《红树》(图1)到1912年所画的《灰色的树》(图2)、《开花的苹果树》(图3)、《树》(图4)向我们展现了风格派是如何从具象走向抽象的过程,最后形成了用格栅要,线条和红、黄、蓝的方形色块组合了整个画面。世界进一步得到了抽象。“几何结构”,“体积空间”,“时间”在20世纪开端是二维绘画里表达世界方法,而这一抽象的方法在后来的构成主义、风格派中加入二个重要的概念——“分解”,“色彩空间”,最终使得事物可以脱离原有的形象,并自由的组合。
无论是构成主义、风格派、立本主义,还是至上主义、未来派;对于这些艺术家来说,对于视觉构成原理的研究正是对形式的研究,这一研究是基于视觉秩序下如何合理的运用这些原理和手段来构成新色彩、空间、时间、元素等一系列形式的画面,是“构成”产生的基础。
二?现代设计教育模式的建立——构成基础成为设计课
1919年的包豪斯宣言向世界展现了另外一种组织制度,工匠和艺术家互不相轻、亦无等级隔阂,将融建筑、雕塑和绘画于一体。
包豪斯的成立一开始就注定了它的不凡:建立于工业革命盛期,以德罗斯顿车间和应用美术为主体,1903年由当时最著名的设计理论家彼得·贝伦斯(Peter Behrens)为校长。然后,在1915年当时最著名和先锋的教育思想家、实践者沃特·格罗皮乌斯(Walter Gropius)为校长,并组建出了一座由美术学院和工艺美术学校组成的综合学校。最重要的是其建立时段正是立体主义、至上主义、风格派、结构主义最为广泛传播的地方。同时著名风格派艺术家约翰·伊顿(Johannes Itten),西奥·凡·杜斯堡(Theo van Doesburg),瓦西里·康定斯基(Wassily Kandinsky)等人对设计教育改革得以使包豪斯的师生从各种艺术手法吸收营养。伊顿等人所制定的独特的基础课课题研究要求每一个一年级的学生都要参加;在课程中要求学生凭借拼贴不同材料和质感,用各种色彩理念,各种色块构成手法来丰富原有的绘画基础课。其目的是要释放学生的个人创造力,并使得每一个学生能判断他本人的特殊能力。
另外,这些个性的艺术家的加入使得风格派之间的画法争论可以带到课堂当中,使得学生可以吸收到最新的想法,并同时直接影响于工作车间之间。他们的影响甚至可以从格罗皮乌斯私人办公室的家具设计中反映出来,也反映在格罗皮乌斯设计的建筑中。从这些设计的作品当中我们可以知道,当时这种探索性构成基础课对于创造设计的影响力有多么的大。
论文摘要:为了给刚接触建筑设计或施工人员了解认识地基基础在建筑设计施工中的作用及其重要性,本文主要对各种基础在实际工作中的应用做个详细阐述。
在建筑工程上,把建筑物与土壤直接接触的部分称为基础,把直接支承建筑物重量的土层叫地基。基础是连接上部结构(例如房屋的墙和柱,桥梁的墩和台等)与地基之间的过度结构,起承上启下作用。基础把建筑物竖向体系传来的荷载传给地基。从平面上可见,竖向结构体系将荷载集中于点,或分布成线形,但作为最终支承机构的地基,提供的是一种分布的承载能力。
1.注意地基基础设计的基本原则同一建筑结构单元,宜设置在承载力和变形性能基本相同的地基土上,不宜设置在承载力和变形性能截然不同的地基土上(如部分为老土,部分为新土;部分为一般土或硬土,部分为软土)。同一建筑结构单元,一般宜采用相同类型的地基,不宜采用不同类型的地基(如部分采用天然地基,部分采用刚性桩基;部分采用天然地基,部分采用复合地基;部分采用复合地基,部分采用刚性桩基)。同一建筑结构单元,宜采用相同类型的基础,不宜采用不同类型的基础(如部分采用箱基、筏基,部分采用条形基础;部分采用条形基础部分采用单独桩基;内框架砖房、底层框架砖房,一般外墙宜采用条形基础,内柱宜采用十字交叉条形基础)。
在软弱地基和严重不均匀土层上,宜采取措施,加强基础的整体性和竖向刚度。尽可能采用天然地基,如地基较差,通过经济比较,天然地基造价较高时,可采用桩基或其他人工基础。
2.地基基础设计选型时应考虑的因素有以下几点。工程地质水文条件;上部结构类型和荷载情况;建筑安全等级、体型和使用要求;建筑结构单元的划分;邻近建筑基础和地下设施情况及其相对关系;地下室的设置及防水要求;材料供应和地方材料;施工水平和设备;工期及造价;抗震设防及其他特殊情况。
3.基础的类型,在基础工程中我们常见的建筑工程地基基础设计中,通常按基础所用的材料和受力特点分,有刚性基础和非刚性基础;依据构造形式分,有条形基础、独立基础、筏形基础、箱形基础。
3.1由砖、毛石、混凝土或毛石混凝土、灰土和三合土等刚性材料组成的基础称为刚性基础(也称无筋扩展基础)。从受力和和传力角度考虑,由于土壤单位面积的承载能力小,上部结构通过基础将其荷载传给基础时,只有将基础底面积不断扩大,才适应地基受力要求。上部结构(墙或柱)在基础中传递压力是沿压力分布角(也称刚性角)分布。由于刚性材料抗压能力强,抗拉能力差,因此,压力分布角只能在材料抗压范围内控制。若基础底面宽度超过控制范围,致使刚性角扩大,这时基础会因受拉而破坏。在混凝土基础底部配以钢筋,利用钢筋来承受拉力,使基础底部能够承受较大的弯矩。这时,基础宽度的加大不受刚性角的限制。故有人称墙下钢筋混凝土条形基础和柱下钢筋混凝土独立基础为柔性基础(钢筋混凝土扩展基础)。《建筑地基基础设计规范》的第8.1.2条(P.55-56)规定,扩展基础的构造要求应符合下列要求:(1)锥形基础边缘高度,不宜小于200mm,阶梯形基础的每阶高度,宜为300-500mm;(2)垫层厚度不宜小于70mm;垫层混凝土强度等级应C10;(3)扩展基础底板受力钢筋的最小直径不宜小于10mm;间距不宜大于200mm,也不宜小于100mm。墙下钢筋混凝土基础纵向分布钢筋的直径不小于8mm;间距不大于300mm;每延米分布钢筋的面积不小于受力钢筋面积的1/10。当有垫层时钢筋保护层的厚度不小于40mm;无垫层时不小于70mm;(4)混凝土强度等级不应低于C20;(5)当柱下钢筋混凝土独立基础的边长和墙下钢筋混凝土条形基础的宽度大于或等于2.5m时,底板受力钢筋的长度可取边长或宽度的0.9,并宜交错布置。 钢筋条形基础底板在T形及十字形交接处,底板横向受力钢筋仅沿一个主要受力方向通长布置,另一方向的横向受力钢筋可布置到主要受力方向底板宽度1/4处。在拐角处底板横向受力钢筋应沿两个方向布置。3.2常见的几种结构体系建筑物的地基基础应用。1砌体结构建筑六层或六层以下的多层民用建筑和砖墙承重的轻型厂房可采用砌体条形基础(毛石或砖);地下水位较低且具有施工经验石,可采用刚性灰土基础;地下水位较高或冬季施工时,宜采用钢筋混凝土扩展基础;在软弱地基上,多层建筑可设置筏形或浅埋板式基础。2框架结构建筑:(1)如无地下室、地基较好、荷载不大时,可选用混凝土单独立基础,柱机基之间可根据有关要求,考虑是否设置基础系梁。(2)有地下室且有防水要求时,如地基较好,可选用混凝土单独立基础加防水板做法。防水板下宜铺一定厚度的易压缩材料,以减小柱基沉降的不利影响。(3)有地下室且有防水要求时,如地基较差,可选用筏形基础(有梁或无梁)。(4)有地下室的单独柱基础,基础的底面到地下室地面的距离,不宜小于1m,对于防水要求较高的地下室,宜在防水板下铺延性较好的防水材料,或者在防水板上增设架空层。3框剪结构建筑:(1)如无地下室,地基条件较好且承载较均匀时,可选用单独柱基加基础系梁。如地基较差或荷载较大时,为加强基础整体性和增加基础底面积,可选用钢筋混凝土十字交叉条形基础,当条形基础不能满足地基承载力或变形要求时,可选用钢筋混凝土筏形基础。(2)有地下室,无防水要求时,也可选用单独柱基或十字交叉形基础。同时验算地下室外墙的承载能力。有防水要求时,当地基较好时,可选用单独柱基或条形基础另加防水板做法,此时应考虑基础沉降对防水板的不利影响而采取的相应措施(同框架结构建筑)。当地基较差或条形基础不能满足地基承载力或变形要求时,可选用钢筋混凝土筏形或箱形基础。4剪力墙结构建筑:无地下室或有地下室但无防水要求时,如地基较好,宜优先选用交叉条形基础。有防水要求时,可选用箱形基础或筏形基础。当基础埋置深度不小于3m时,如原无地下室,应建议甲方增设地下室,或与勘察单位研究改用桩基础的可能性和经济性,同时也研究设置架空层的可能性和经济性。如地基土质较差,当采用上述各类基础不能满足设计要求,或经过经济比较,天然地基造价较高时,可选用桩基础或其他人工基础。高层建筑的地下室,如需用做停车库、机房等要求较大空间时,也可不一定设计成箱形基础,应优先选用筏形基础。
参考文献
关键词:机械基础 教学方法 学习兴趣 教学手段 探索
《机械基础》课程是中等职业学校机械类及工程技术类相关专业的应用性强的一门重要技术基础课程。其任务是:使学生掌握必备的机械基本知识和基本技能,懂得机械工作原理,了解机械工程材料性能,正确操作和维护机械设备;培养学生分析问题和解决问题的能力,使其形成良好的学习习惯,具备继续学习专业技术知识的能力;对学生进行职业意识培养和职业道德教育,使其形成严谨、敬业的工作作风,为今后解决生产实际问题和职业生涯的发展奠定基础。
学生对本课程的掌握情况和熟练程度,不仅关系到后续专业课程的学习,而且反映了学生的基础课理论水平及职业技术素质。在教学中要十分重视充分应用各种教学方法和手段,发挥不同教学方法的长处,以提高学生的学习热情和效率,提高教学效果。我在长期的教学工作中对《机械基础》进行了一系列教改探索。
1、激发学生的学习兴趣
心理学家调查:“学习成败的诸因素中,有无兴趣占30%。”教育心理学名言:“兴趣是最好的老师。”托尔斯泰指出:“成功的教学所需要的不是强制,而是激发学生的兴趣。”布鲁纳也说过:“学习的最好的刺激,乃是对所学材料的兴趣。”学习兴趣是学生学好一门课程的关键。为激发学生的学习兴趣,充分调动学生的学习主动性,教师首先是上好第一节课,收拢学生的心。接着是上好每一节课,除了收拢学生的心以外,还要用知识的力量、老师为人师表的言行去征服和感染学生的心。
2、贯彻理论联系实际的原则
与公共基础课程相比,本课程更加结合工程实际;与专业技能课程相比,本课程更具有普遍意义;与其他技能课程相比,本课程更突出综合性、实践性和创新性。教师在讲授中应贯彻理论联系实际的原则,注重讲练结合,注重理论与日常生活、生产的融合。要多注意列举一些与生产、生活实际密切相关的例子,如在讲平面四杆机构时,列举缝纫机、汽车前窗刮雨器、公交车门的启闭、折叠板凳、折叠推拉门,讲凸轮机构时,列举补鞋机,讲齿轮传动时,列举汽车的变速系统,讲带传动和链传动时,列举缝纫机、自行车和摩托车,讲蜗杆传动时,列举电梯、钓鱼行竿等等,这些实用性很强的实例对学生有很大的吸引力,使学生认识到本课程中所学知识可直接用于生产实际,服务于生活,就在自己的身边,让学生感到这门课有学头,而非“没用”。 工程中的问题需要综合运用所学的基本知识去加以解决,所以在教学过程中,有意识地引入一些工程中的问题。
3、重视实践教学环节
实践教学内容包括实验、实习、实训、社会实践、课程设计、毕业设计(论文)、学年论文等,也包括创业活动以及纳入教学计划的社会调查、科技制作、学科竞赛活动等。上述内容要形成科学合理的体系,对实现人才培养目标有重要作用。实践教学是评估中的关键性指标。实践教学是巩固理论知识和加深对理论认识的有效途径,是培养具有创新意识的高素质工程技术人员的重要环节,是理论联系实际、培养学生掌握科学方法和提高动手能力的重要平台。培养学生动手能力和操作基本技能是职业教育的重要环节之一。如组织学生到实习车间和生产企业中去参观,进行现场教学,使学生把所学知识系统地结合起来,达到不断深化以及灵活应用的目的,进而提高学生的感性认识。可以设置“齿轮参数测定”、“各种机械传动和减速器的装拆”、“轴承与齿轮的组合设计”等实训项目,通过实训来巩固和加深所学的理论知识,促进理论教学,提高教学效果。
4、教学方法和手段多样化
确定教学目的和相应的教学内容之后,如采用的教学方法和手段不适当,那要实现教学的目的仍然是一句空话。教学过程要本着学生为主体的思想,教法创新,由具体到抽象讲授知识。
4.1 引导学生进行对比
学生在感到惊讶、疑惑或者兴奋的时候,才能启迪思维,激发智力。积极采用启发式教学,引导学生逐步掌握知识和技能。运用相互联系、又容易混淆的事物和知识,引导学生进行对比,从而达到启发效果。比如:机器与机构,构件与零件,链传动与同步带传动,螺纹与蜗杆,零件强度与零件刚度等。
4.2 设置疑点
巴尔扎克说:“打开一切科学殿堂的钥匙毫无疑问是问号。”有效的提问不仅能激发学生的学习兴趣,同时还能启发思维,激励学生积极思考。课堂教学是师生情感交流的场所,教师要充分给予学生参与的权利和机会,充分体现教师的主导地位和学生的主体地位。教师善于提出问题,会影响学生养成“发现——提出”问题的好习惯,培养学生批判性思维,进而不断发现问题、提出问题。所以教师应该学会在适当的时候设计适当的问题,鼓励学生发表意见,从而有效地提高学生的学习兴趣,激发学生的学习动机,提高教学效果。例如:V带传动中带与带轮之间产生的摩擦力越大越好吗?带轮和圆柱齿轮直径较大设计成腹板式、轮辐式有什么优势?铰链四杆机构中机架与其它三个活动构件有什么位置关系?常见的轴为什么设计阶梯形状?等。设置疑点的方式:自问自答,自己问,稍作停顿,自己回答;师问生答,老师问,引而不发,学生作答;只问不答,问而不答,让学生课后去思考。
4.3 充分运用实物、教具、挂图加强直观性教学力度