前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物医学范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1.1数据来源
以中国知网(CNKI)的《中国科技成果数据库》为数据源,采用“名称+关键词+成果简介”的组合检索策略,以“生物*医用*金属”、“生物*医用*高分子”、“生物*陶瓷”、“生物*复合材料”、“生物*医学*衍生物”为检索词,对2000-2010年间我国科技成果产出进行检索与数据清洗,得到1772条题录。
1.2方法
使用TDA、Excel2010和Origin等统计与绘图软件为分析工具,从科技成果计量分析的角度,对相关科技成果数量进行数值模拟与计算,研究我国尤其是中国科学院系统生物医学材料科技成果的年度分布、科技成果产出机构分布等,并进行对比分析、描述和数据挖掘等深入研究。
2结果
2.1科技成果产出数量趋势
我国生物医学材料科技成果数量的纵向变化规律,反映了生物医学材料的受关注程度和发展速度。2006-2009年是生物医学材料科技成果的高峰时期,与我国的生物医学材料技术研发投入主要分布在近5年即“十一五”相吻合。中国科学院系统在该领域的发展趋势与全国基本一致。图1我国生物医学材料技术成果产出年度分布
2.2我国科技成果产出内容分析
统计结果表明,生物复合材料在近年发展最为迅猛,从2006年开始取得跨越式发展,至2010年累计取得411项成果;而医用金属(188项)、医用高分子(177项)、生物陶瓷(189项)、生物医学衍生物等材料(209项)的发展速度低于生物复合材料,比较平稳。统计结果显示,从2000-2010年,中国科学院系统生物医学材料科技成果也主要集中在生物复合材料方面,共计62项;其他4种生物医学材料科技成果产出相对较少,分别为生物医学衍生物37项,陶瓷材料31项,医药高分子32项,医用金属材料35项。
2.3科技成果产出地区分布
分析我国主要省市在生物医学工程领域的科技成果产出,有助于挖掘不同地区间研发力量的差异,合理配置资源,进行深入研发。重点对我国北京市、上海市、江苏省等7个省市进行了技术领域构成计量分析,结果发现各主要省市生物复合材料研发成果仍然占据主体,生物医用金属材料科技成果的产出以北京市、天津市与江苏省较多,生物陶瓷技成果的产出以上江苏省与湖北省较多,详见图2。表明这些省市在生物医学工程某些关键材料的研究方面已占据先机。
2.4科技成果产出机构分析
2.4.1生物医用金属材料科技成果产出机构分析
医用金属材料是一类生物医用的金属和合金,是临床应用最广泛的植入材料,主要用于骨和牙等硬组织的修复和替换,心血管和软组织的修复以及人工器官制造中的结构元件[5]。检索结果显示,2000-2010年间共有医用金属材料相关的科技成果278项,大部分科研机构只有零星的成果产出,只有少数机构多年来保持着可观的科技成果产出。科技成果数量排名前3位的机构有中国科学院、南开大学、四川大学,分别完成科研成果36,12,6项;其他科研单位如浙江大学、上海交通大学、清华大学等成果数量达到5项;其他均少于5项。在中国科学院系统,山西煤炭化学研究所(5项)、金属研究所(4项)在医用金属材料上也取得较多科技成果。表明我国各主要机构的生物医用金属材料技术科技成果数量不均衡。
2.4.2生物医用高分子科技成果产出机构分析
医用高分子材料是指在生理环境中使用的高分子材料[6-7]。2000-2010年间共检索出医用高分子材料相关的科技成果263件,科技成果数量排名前5位的是中国科学院、浙江大学、武汉大学、清华大学、江南大学,分别获得科研成果32,8,5,5,5项,其成果数量占相关成果总数的21%;其他单位的成果数量均在5项以下。在中国科学院系统,医用高分子材料科技成果数量排名前3位的是微生物研究所、上海药物研究所、上海有机化学研究所,所获成果数量分别是4,3,3项,这10项科技成果占中国科学院总产出量的31%。
2.4.3生物陶瓷科技成果产出机构分析
生物陶瓷包括精细陶瓷、多孔陶瓷、某些玻璃和单晶[8]。2000-2010年间共检索到生物陶瓷相关的科技成果323项,多个科研机构在生物陶瓷研究中取得了较好的研究成果,科技成果在5项以上的机构有10个,其中中国科学院、武汉理工大学、清华大学、四川大学、上海交通大学分别完成科研成果33,18,13,11,10项,前5名机构成果数占总成果数的26%。在中国科学院院系统,生物陶瓷科技成果数量最多的有上海硅酸盐研究所、过程工程研究所贡献了20项科技成果,占中国科学院总产出量的65%。
2.4.4生物复合材料科技成果产出机构分析
生物复合材料是由两种或两种以上不同生物相容性优良的材料复合而成的生物医学材料,可以最大限度地模仿人体组织与器官的功能,进而实现组织的修复与再生,是最有发展潜力和应用前景的组织与器官替代和修复材料[9]。2000-2010年间共检索到生物复合材料相关的科技成果582项,可谓成果丰硕。多个科研机构取得了众多成果,成果数量在10项以上的机构有9个,其中中国科学院、清华大学、四川大学、上海交通大学、暨南大学分别获得63,24,18,17,13项,上述前5名机构的成果数占总成果数的23%。在中国科学院系统,生物复合材料科技成果数量排名前5位的是上海硅酸盐研究所(12项)、长春应用化学研究所(8项)、生态环境研究中心(5项)、金属研究所(5项)、兰州化学物理研究所(4项),总共贡献了20项科技成果,占中国科学院总产出量的55%。
2.4.5生物医学衍生物科技成果产出机构分析
生物衍生材料是经过特殊处理的天然生物组织形成的生物医学材料。由于它具有类似天然组织的构型和功能,在人体组织的修复和替换中具有重要作用,主要用作皮肤掩膜、血液透析膜、人工心脏瓣膜等[10]。2000-2010年间共检索到相关科技成果326项,获得5项以上科技成果的机构10余个。其中排名前5名的是中国科学院、南开大学、中国海洋大学、武汉大学、中国药科大学,分别获得科研成果36,13,9,8,6项,累计成果数占总成果数的23%。中国科学院系统中,成果数量排名前5的是上海有机化学研究所(4项)、长春应用化学研究所(4项)、上海应用物理研究所(4项)、生物物理研究所(3项)、上海原子核研究所(2项),总共贡献了17项科技成果,占中国科学院总产出的46%。
生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。在我国,生物医学工程做为一个专门学科起步于20世纪70年代,中国医学科学院、中国协和医科大学原院校长、我国著名的医学家黄家驷院士是我国生物医学工程学科最早的倡导者。1977年中国协和医科大学生物医学工程专业的创建、1980年中国生物医学工程学会的成立,有力地推进了我国生物医学工程的发展。目前,我国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研教学工作,在我国生物医学工程科学事业的发展中发挥着重要作用。
显微镜的发明“解剖”一词由希腊语“Anatomia”转译而来,其意思是用刀剖割,肉眼观察研究人体结构。17世纪LeeWenhock发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理学,从而将医学研究提高到细胞形态学水平。
普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、DNA等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm)级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。
影像学诊断飞跃进步影像学诊断是20世纪医学诊断最重要发展最快的领域之一。50年代X光透视和摄片是临床最常用的影像学诊断方法,而今天由于X线CT技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水平。即计算机体断层摄影(computedtomographyCT),即是利用计算机技术处理人体组织器官的切面显像。X线CT片提供给医生的信息量,远远大于普通X线照片观察所得的信息。目前,螺旋CT(spiralCT或helicaletCT)已经问世,能快速扫描和重建图像,在临床应用中取代了多数传统的CT,提高了诊断准确率[1]。医学工程研究利用生物组织中氢、磷等原子的核磁共振(nuclearmagneticresonance)原理。研制成功了核磁共振计算机断层成像系统(MRI),它不仅可分辨病理解剖结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在早期价段的改变,有利于临床早期诊断。可以认为MRI工程的进步,促进了医学诊断学向功能与形态相结合的方向发展,向超快速成像、准实时动态MRI、MRA、FMRI、MRS发展。根据核医学示踪,利用正电子发射核素(18F,11C,13N)的原理,创造的正电子发射体层摄影(PET),是目前最先进的影像诊断技术。美国新闻媒体把PET列为十大医学生物技术的榜首。PET问世不过30年历史,但它已显示出对肿瘤学、心脏病学、神经病学、器官移植,新药开发等研究领域的重要价值[2]。影像学诊断水平的不断提高,与20世纪生物医学工程技术的发展密切相关。
介入医学问世介入医学是一种微创伤的诊疗技术。Dotter和Judkin(1964年)是最早使用介入技术治疗疾病的创始人,他们用导管对下肢动脉阻塞性病变进行扩张治疗取得成功。1967年Margulis首先使用过介入放射学(InterventionalRadiology),这是医学文献出现“介入”一词的最早记载。1977年Gruenzing成功地进行了首例冠状动脉球囊扩张术获得成功以后,介入性诊疗技术由于其创伤小、患者痛苦少,安全有效而倍受临床欢迎。20世纪80年代随着生物医学工程的发展,高精度计算机化影像诊查仪器、数字减影血管造影(DSA)、射频消融技术以及高分子(high-polymer)新材料制成的介入技术用的各种导管相继问世,使介入性诊疗技术发生了飞速进步,临床应用范围不断扩大,从心血管、脑血管、非血管管腔器官到某些恶性肿瘤等都具有使用介入诊疗的适应证,并使诊疗效果明显提高,患者可减免许多大手术之苦。有人把介入诊疗技术视为与药物诊疗、手术诊疗并列的临床三大诊疗技术之一,也有人把介入诊疗技术称之为20世纪发展起来的临床医学新领域--介入医学[3,4]。
人工器官的应用当人体器官因病伤已不能用常规方法救治时,现代临床医疗技术有可能使用一种人工制造的装置来替代病损器官或补偿其生理功能,人们称这种装置为人工器官(artificialorgan)。如20世纪50年代以前,风湿性心脏瓣膜病的治疗,除了应用抗风湿药物、强心药物对症治疗外,对病损的瓣膜很难修复改善,不少患者因心功能衰竭死亡。而今天可以应用人工心肺机体外循环技术,在心脏停跳状态下切开心脏,进行更换人工瓣膜或进行房、室间隔缺损的修补,使心脏瓣膜病、先天性心脏病患者恢复健康。心外科之所以能达到今天这样的水平,主要是由于人工心肺机的问世和使用了人工心脏瓣膜、人工血管等新材料、新技术的结果[5]。
肾功能衰竭、尿毒症患者愈后不良,而人工肾血液透析技术已挽救了大量肾病晚期患者的生命,肾病治疗学也因此有了很大进步。
现代生物医学工程中人工器官的发展也非常迅速,除上述人工器官外,人工关节、人工心脏起搏器、人工心脏、人工肝、人工肺等在临床都得到应用,使千千万万的患者恢复了健康。可以说,人体各种器官除大脑不能用人工器官代替外,其余各器官都存在用人工器官替代的可能性。
此外,放射医学、超声医学、激光医学、核医学、医用电子技术、计算机远程医疗技术等先进的医疗技术和仪器设备都是现代医学工程研究开发的成果,综上可见,20世纪生物医学工程的发展,显著提高了医学诊断和治疗水平,有力地推动着医学科学的进步。
21世纪生物医学工程展望纵观医学新技术诞生和发展的历史,从伦琴发现X线到今天X射线诊疗技术的发展,从朗兹万发现超声波到今天B超诊断的广泛应用,从布洛赫和伯塞尔发现核磁共振到今天MRI的问世,从赫斯费尔德发明CT到今天CT成像系统的应用,都是以物理学工程技术为基础、医学需求为前提发展起来的医学新技术。循着20世纪医学发展的轨迹,我们有理由预测21世纪新的医学诊疗技术可能在以下10个方面有重大突破和创新:
(1)各种诊疗仪器、实验装置趋向计算机化、智能化,远程医疗信息网络化,诊疗用机器人将被广泛应用。[6]
(2)介入性微创,无创诊疗技术在临床医疗中占有越来越重要的地位。激光技术,纳米技术和植入型超微机器人将在医疗各领域里发挥重要作用。
(3)医疗实践发现单一形态影像诊查仪器不能满足疾病早期诊断的需要。随着PET的问世和应用,形态和功能相结合的新型检测系统将有大发展。非影像增显剂型心血管、脑血管影像诊查系统将在21世纪问世。
(4)生物材料和组织工程将有较大发展,生物机械结合型、生物型人工器官将有新突破,人工器官将在临床医疗中广泛应用。
(5)材料和药物相结合的新型给药技术和装置将有很大发展,植入型药物长效缓释材料,药物贴覆透入材料,促上皮、组织生长可降解材料,可逆抗生育绝育材料、生物止血材料将有新突破。
(6)未来医疗将由治疗型为主向预防保健型医疗模式转变。为此,用于社区、家庭、个人医疗保健诊疗仪器,康复保健装置,以及微型健康自我监测医疗器械和用品将有广泛需求和应用。
(7)除继续努力加强生物源性疾病防治外,对精神、心理、社会源性疾病的防治诊疗技术和相应仪器设备的研制受到越来越多的重视与开发,研制精神分析、心理安抚、生物反馈型诊疗技术和设备将是生物医学工程的新起点。
(8)创伤是造成青年人群死亡的主要原因,研制新型创伤防护装置、生命急救系统是未来生物医学工程的重要课题。
(9)即将迎来的21世纪是分子生物学时代,有关分子生物学的诊疗新技术将快速发展,遗传、疾病基因诊疗技术,生物技术和微电子技术相结合的DNA芯片、雪白芯片和诊疗系统将被广泛应用。
组织工程基质材料研究进展 闫玉华,周文娟,李世普,万涛
组织工程用高度多孔生物可降解支架的制备 罗丙红,卢泽俭
人工血管基因修饰的研究进展 王继亮,王国斌
组织工程骨修复中的局部基因疗法 易静,汤雪明
血液密度测量及其在基础医学和临床中的应用 吕霞付,蔡绍皙
微囊化细胞移植的研究进展 周薇,王正荣
α稳定分布噪声下诱发电位潜伏期变化的自适应检测 邱天爽,王宏禹,李小兵,张旭秀,鲍海平,张杨
脑电逆问题的研究进展 郑旭嫒,万柏坤
联合疗法与放疗的比较 高悦,杨国胜,王健琪,范晓宇,王华
常用蛋白交联方法及其对胶原的影响 曹正国,李成章
训练特伦德伦伯格症步态的微处理器步态分析系统
由心磁图信号的ST段偏移计算的总电流矢量检查心肌异常的方法
在慢性声刺激期间心率变异性的24小时节律变化
由运动心磁图计算的电流比分布图检查心肌异常的方法
小型的经腹胎儿和母体心电图长时间记录器
连续心输出量监护系统
磁共振图像中非均匀场的校正 李音
微电极技术与脑运动性信息传导的研究 宋毅军,田心
信息融合技术及其在医疗监护系统中的应用 陈鹏慧,吴宝明
隐马尔可夫模型的原理与实现 刘河生,高小榕,杨福生
肝脏组织工程学中的胚胎干细胞 胡安斌,郑启昌
骨组织工程种子细胞的研究进展 郭宗科
骨组织工程材料的表面修饰和细胞粘附 刘刚,胡蕴玉
聚氨酯的血液相容性评价 胡国栋
聚乳酸制备研究进展 李曹,王远亮
基因纳米粒子在血管再狭窄的基因治疗中的应用 李大伟,冷希岗
人工神经网络在基因组信息学中的应用 陈志宏,严壮志
胚胎干细胞向神经细胞诱导分化的研究 沈干,丛笑倩,刘晓音,汪铮,曹谊林
植入式装置与体外程控装置数据交换技术的进展 曹妮妮,金捷,孙卫新,狄亮
磁感应断层成像及其实验室设计 李世俊,秦明新,董秀珍
生物芯片及其在生物医学工程中的应用 刘伟庭,郭希山,王钟,陈裕泉,王立人
电磁场对骨组织和成骨细胞的作用 赵云山,张西正,郭勇
载药纳米微粒的临床应用研究进展 肖延龄,李伯
组织工程中生物材料表面修饰的研究 郝杰,郑启新
骨髓间充质干细胞分离培养的研究进展 王运涛
脂肪组织工程研究进展 梁伟中
高强度聚焦超声"切除"肿瘤过程中的空化效应 顾惠琼
睡眠监护技术的发展 叶志前,郑涛,裘利坚
软骨组织工程种子细胞及预防其老化的研究进展 何黎升,高瞻,陈富林
Platelet-rich Plasma(PRP)在骨组织再生中的应用 刘兴文
独立分量分析及其在脑电逆问题中的应用 高诺,朱善安
哺乳类动物心室肌细胞的Luo-Rudy模型及计算机仿真研究的进展 金印彬,杨琳,阔永红,张虹,黄诒焯,蒋大宗
3D-EIT图像重建的研究进展 王妍,任超世
血浆蛋白对生物材料细菌粘附影响研究进展 李艳星,黄云超,熊素华
生物人工肝的临床应用及其生物成分研究中的几个热点问题 舒桂明
共同培养在生物人工肝中的应用 黄艳欣,刘晨
有限元分析法研究脊柱生物力学的新进展 高允海
磁共振谱成像(MRSI)技术的研究进展 钱勇先,黄敏,林家瑞
生物电流检测和组织功能成像的新技术 刘军,李光,陈裕泉
心脏建模仿真研究进展 霍梅梅,夏灵
基于突变理论的心脏运动数学描述 刘,李迪,孙尧
骨组织力学信号转导的研究 王昊,张西正,张永亮,郭勇
心室辅助装置的内皮化 李晖
基因工程的下游技术 周思翔,华慧,王正荣
软骨组织工程种子细胞的来源、培养和评价 孙安科,裴国献
角朊细胞培养技术最新进展 李政
异种煅烧骨材料的研究进展 赵铭,郑启新
脑磁源成像技术的研究进展 胡净,胡洁,汪元美
数据挖掘技术在生物医学领域的应用 余辉,吕扬生
诱发电位的非线性动态提取方法 耿新玲,田心
用于组织工程化培养生物反应器的研究进展 吴金辉,张西正,郭勇,武继民,李瑞欣
一种新型医用成像技术--微波激励热声CT 吴石增,于阳,宋涛
上皮干细胞发育调控与临床应用的研究进展 平浩
组织工程化人工皮肤的构建与应用 刘德伍,刘德明
生物人工肝研究进展 李津荣
肝细胞的低温保存及应用研究进展 刘鸿凌,王英杰
体外循环中的肝素涂层技术 杨剑,易定华
人工髋关节翻修术中骨缺损的修复与重建 肖联平
光纤纳米生物传感器的研究进展 李逸尘,潘爱英,姜信诚
纳米控释系统的应用 刘源岗,王士斌,翁连进
磷酸钙骨水泥药物缓释载体研究进展 杨莽,张彩霞,陈德敏
BMPs载体及缓释系统研究新进展 尹绍雅,常祥平
软骨组织工程种子细胞的基础和应用研究进展 张艳,崔磊,曹谊林
破骨细胞细胞骨架的研究进展 李青南,陈槐卿
由猪肝细胞组成的人工肝支持系统的安全性问题 刘青,段钟平
用于生物人工肝的肝细胞组织化培养 吴宇澄,赵卫红,余多慰
生物人工肝中肝细胞来源及培养的新进展 胡安斌,田源
癌热疗中超声无创测温方法的研究 吴水才,白燕萍,南群,夏雅琴
肿瘤热疗的热剂量学应用研究 王伟,李迎新
半导体量子点(Quantumdots,QDs)指的是尺度在几埃与几十埃之间的半导体纳米晶体[1]。量子点是一类不同于本体又异于分子、原子特性的新型材料[2],具有量子效率和消光系数高、激发光谱宽、发射光谱窄、发射光的颜色随粒径变化、光化学稳定性好等特点[3]。早期半导体量子点的应用研究主要集中在微电子和光电子领域,直到20世纪90年代,随着半导体量子点合成技术的进步,其作为荧光探针应用于生物医学领域的前景逐渐展现出来[4]。1998年,量子点作为生物探针的生物相容性问题得以解决,其在生命科学的应用迅速发展。目前,用于生物探针的量子点主要由第二副族和第六主族的元素组成,如硒化镉(CdSe)、硫化锌(ZnS)、碲化镉(CdTe)、硫化镉(CdS)等[5]。在生物医学领域,对生命现象的观察和研究已深入到单细胞、单分子水平,量子点因在光学特性、表面修饰和生物功能化等方面具有的优势而在这些研究中得到了广泛应用[6]。
1量子点的制备方法
量子点的光谱性质与其晶体结构及单分散性密切相关,因此,制备方法和工艺是决定其荧光性能的关键因素。量子点的化学制备方法按溶剂的不同分为以下两种:在有机相中合成和在水相中合成。
1.1在有机相中合成
在有机溶剂中合成的量子点是基于有机物与无机金属化合物或有机金属化合物之间的反应而形成的,其光化学稳定性强、荧光效率高、合成方法成熟[7]。Stodilka等[8]在甲苯中合成CdSe量子点,然后再用ZnS进行包裹,得到CdSe/ZnS核壳结构的量子点。Murray等[9]利用高温反应在有机相中合成出具有较强荧光性能的CdSe量子点,以二甲基镉(CdMe2)和三辛基硒化膦(SeTOP)作为反应前体、三辛基氧化膦(TOPO)作为配位溶剂,将前体的混合溶液快速注入剧烈搅拌的高温TOPO中,待CdSe晶核形成后降温,使其不再成核,再升温使之缓慢生长,进而通过控制反应时间来控制量子点的大小。杨卫海等[10]以液体石蜡为高温反应溶剂、油酸和油胺为混合稳定剂,采用高温热解法一步合成了高质量的CdSe量子点。王香等[11]以Se和ZnO粉末为原料,在十六胺(HDA)、月桂酸(LA)和三辛基膦(TOP)有机溶剂体系中合成了胶体硒化锌(ZnSe)和ZnS量子点,合成的量子点分散性好、纯度高。然而,在有机相中合成的方法所选用的溶剂毒性大,合成条件苛刻,而且合成的量子点没有水溶性,难以直接应用于生物体系[12]。
1.2在水相中合成
水溶性是量子点应用于生物体系的关键因素。在水溶液中合成量子点,不仅解决了量子点的水溶性和生物相容性问题,而且原料成本低、合成方法简单、重复性高、绿色环保、量子点表面电荷和表面性质可控、可直接用于生物标记,因而成为当前研究的热点[13]。万异等[14]在水相中以巯基丙酸(MPA)作为稳定剂,合成出具有不同荧光发射波长的CdTe量子点,并考察了反应条件对CdTe量子点荧光性能的影响。杨旭等[15]以柠檬酸(CA)和MPA为稳定剂,采用低温水热技术合成了单分散的钴离子掺杂的ZnS量子点。赵旭升等[16]采用一步合成法在水相中合成了PbS量子点,所合成的量子点单分散,粒径为3~5nm,荧光量子效率高达11.8%。Xia等[17]以MPA作为配体,在水相中合成了CdTe/CdSe核壳结构的量子点,该量子点对某些金属离子如铜离子等显示了很高的灵敏度。王超等[18]以MPA为稳定剂在水相中合成了铜掺杂的ZnSe量子点,不仅克服了有机相合成量子点的生物相容性的问题,且避免了镉等重金属元素的使用。
2量子点的表面修饰
最初使用的量子点发光效率较低、易光化学降解和聚集,有机方法制备的量子点材料毒性大、生物相容性差、难以与生物细胞偶联[19],因此有必要对量子点表面进行修饰来提高它的光学特性及与生物大分子连接的能力。目前采用的表面修饰方法主要包括巯基化合物修饰、硅烷化修饰和聚合物修饰等。Chan等[20]首次提出用巯基乙酸(TGA)修饰量子点,成功地解决了量子点与生物分子偶联问题。宋冰等[21]用十八胺(ODA)对CdS量子点表面进行修饰,起到了钝化表面的作用,减弱了CdS表面缺陷造成的电子空穴复合,从而减小了CdS量子点通过表面态发生辐射跃迁的几率,有效地减弱了表面态发光。研究者还通过核壳结构对量子点进行表面修饰,在提高量子点稳定性和生物相容性方面取得了良好效果。曾庆辉等[22]采用连续离子层吸附技术合成了水溶性的CdTe/CdS核壳量子点,这种核壳结构量子点具有更好的化学和光学性质稳定性、更高的量子效率,且易于生物标记。Hu等[23]先在CdSe/ZnS量子点表面包裹一层亲水的二氧化硅(SiO2),然后用疏水的十八硅烷包裹,再与双亲性的聚乙烯-聚乙二醇分子进行组装,形成了多重功能化核壳结构,大大提高了所合成量子点的生物相容性。
3量子点荧光探针在生物医学领域的应用
量子点应用最广泛的领域是作为荧光探针对生物体系进行研究,已用于肿瘤的检测和诊断、DNA分子的检测、蛋白质的测定等方面。
3.1肿瘤的检测和诊断
通过制备能与特殊分子结构和基团结合的量子点,或将量子点与特异性的抗体键合,然后注入人体内,利用其专一性的结合和荧光特性,可以作为一种高效、稳定的新型荧光标记物应用于肿瘤的检测与诊断。Wu等[24]用巯基乙胺修饰的CdSe量子点对人肝癌细胞进行检测,通过观察其荧光图像及利用实时细胞电子传感系统对其追踪,发现CdSe很容易与细胞质膜结合进入癌细胞,并使癌细胞的新陈代谢速度明显减慢,为癌细胞的检测与治疗提供了新的方法。付志英等[25]用经羊抗小鼠免疫球蛋白(IgG)和聚乙二醇修饰的功能化的CdTe量子点荧光探针对胃癌细胞相关抗原进行了检测,与传统方法相比,不仅光稳定性得到很大提高,灵敏度也有所提高。Shi等[26]用缩氨酸修饰的CdSe/ZnS量子点对乳腺癌细胞进行检测,量子点可以和癌变细胞快速结合,检测时间大大缩短,且灵敏度较高。黄宇华等[27]用ZnS量子点荧光探针对裸鼠舌鳞癌移植癌组织切片中bcl-2蛋白进行分析,检测结果定位准确、特异性强,为舌鳞癌的检测提供了新的依据。陈军等[28]研究CdTe量子点的浓度对口腔鳞癌细胞活性的影响发现,量子点浓度在20nmol•L-1时,在几小时至1~2d内,口腔鳞癌细胞的生长都没有受到影响,甚至在较高浓度下的数小时内,活性也没有发生明显的变化,因此CdTe量子点可以用于对口腔鳞癌活细胞的观察。Hu等[29]发现水相合成的CdTe/CdS量子点与IgG结合可以有效地提高对癌胚抗原(CEA)检测的灵敏度,与荧光素Cy3(环磷酰胺)标记的IgG相比,量子点使荧光强度大大增强。#p#分页标题#e#
3.2DNA分子的检测
目前多采用荧光探针法进行DNA分子的检测。荧光探针法与传统的同位素法相比,具有检测快速、重复性好、用样量少、无辐射等特点。Han等[30]巧妙地将不同数量、不同荧光特征的量子点组合进内部镂空的高分子小球中,从而形成具有不同光谱特征和亮度特征的微球。这种量子点荧光微球标记物的发射荧光能力和稳定性都很强,可以编成密码标记不同的探针。根据微球上量子点的种类和它们之间荧光强度的比例,可以确定特异的DNA序列,同时获得固定探针DNA和游离探针DNA的荧光信息。Patolsky等[31]通过荧光共振能量转移研究了在CdSe/ZnS量子点表面进行调节聚合反应以及DNA复制的动力学过程。Dubertret等[32]利用胶束包覆的ZnO量子点与特定的DNA序列连接,通过荧光实验对比,可以方便地识别与其互补的DNA序列。
3.3蛋白质的测定
量子点与生物体或生物大分子通过特殊的相互作用链接,作为荧光探针标记细胞内的不同部位或组分,可同时观测到不同颜色的荧光,并可基于荧光共振能量转移原理进行蛋白质非特异性检测和定量分析[33,34]。蛋白质对量子点荧光探针有荧光增强或猝灭作用,如邱婷等[35]研究了用TGA修饰的水溶性量子点CdSe/ZnS与不同蛋白质的非特异性相互作用,发现牛血清白蛋白(BSA)、卵清蛋白、血红蛋白和免疫球蛋白均能增强量子点的荧光,而细胞色素C却使量子点的荧光猝灭,同时探讨了量子点与蛋白质相互作用导致荧光强度变化的原因。马金杰等[36]研究了不同巯基试剂修饰的CdTe量子点与BSA的相互作用,认为用巯基乙酸、L-半胱氨酸、还原型谷胱甘肽三种巯基化合物修饰剂包覆的CdTe量子点与BSA的非特异性相互作用均为静态猝灭过程。Liu等[37]用经二巯基丁二酸(DMSA)修饰过的CdTe量子点检测人免疫球蛋白(IgG),检出限低至0.05ng•mL-1。许国峰等[38]通过制备链霉亲和素修饰的CdTe量子点探针,建立了基于量子点探针的增强显色可视化检测方法,并结合蛋白质芯片分析技术,为反相蛋白芯片的制备提供了新的方法。
3.4其它方面
量子点荧光探针还可用于生物体内药物的检测。凌霞等[39]研究了CdTe量子点与广谱抗菌药物帕珠沙星的相互作用。结果表明,随着帕珠沙星浓度的增大,CdTe量子点的荧光强度线性降低,可对体内药物的剩余量进行测定。曹凤歧等[40]基于CdS纳米粒子的荧光强度增幅与诺氟沙星浓度成正比的作用机理,测定诺氟沙星的检出限为1.5×10-3μg•mL-1。Chert等[41]采用量子点荧光探针法成功地将量子点标记的抗体用于杀虫剂毒死蜱的定量检测,大大提高了检测的灵敏度。支援等[42]采用免疫磁珠磁性分离、免疫量子点荧光标记联合应用的检测方法,快速分析了乳品中阪崎肠杆菌的含量,有望应用于医疗卫生、食品安全等检测领域。
英文名称:Journal of Biomedical Engineering
主管单位:四川省科学技术协会
主办单位:四川大学华西医院;四川省生物医学工程学会
出版周期:双月刊
出版地址:四川省成都市
语
种:双语
开
本:大16开
国际刊号:1001-5515
国内刊号:51-1258/R
邮发代号:62-65
发行范围:国内外统一发行
创刊时间:1984
期刊收录:
CA 化学文摘(美)(2009)
CBST 科学技术文献速报(日)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(1996)
中文核心期刊(1992)
期刊荣誉:
联系方式