前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇放大电路范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
一、基本放大电路的放大概念
基本放大电路又称放大器,其功能是把微弱的电信号不失真地放大到所需要的数值。这里微弱的电信号是可以由传感器转化的模拟电信号,也可以是来自前级放大器的输出信号或是来自于广播电台发射的无线电信号等。基本放大电路,是指由一只放大管构成的简单放大电路。放大电路中的放大,其本质是实现能量的控制和转换。当输入电信号较小,不能直接驱动负载时,需要另外提供一个直流电源。在输入信号的控制下,放大电路将直流电源的能量转化为较大的输出能量,从而驱动负载。这种用小能量控制大能量的能量转换作用,即为放大电路中的放大。因此,基本放大电路实际上是一个受输入信号控制的能量转换器。
二、基本放大电路的分类及工作原理
在放大电路中,应用最广泛的是共发射极放大电路(简称共射电路),常见的共发射极放大电路有两种,一种是基本共发射极放大电路,另一种是静态工作点稳定的共发射极放大电路,也称分压式共发射极放大电路。
1.电路的组成及各元器件的作用
为了实现不失真地放大输入的交流信号,放大电路的组成必须遵循以下规则:
(1)加入直流电源的极性必须使晶体管处于放大状态,即发射结正偏,集电结反偏。
(2)为了保证放大电路不失真的放大输入的交流信号,在没加入输入信号时,还必须给晶体管加一个合适的直流电压、电流,称之为合理地设置静态工作点。
(3)如下图所示按照上述原则组成的基本共发射极放大电路。
电路中各元件的作用:
VT为NPN型晶体管,是放大电路中的核心器件,在电路中起放大作用。Vcc为直流电源,是放大电路的能源,其作用有两个,一是保证晶体管工作在放大状态,通过Rb、Rc(Rb>Rc)给晶体管的发射结提供正偏电压,给集电结提供反偏电压;二是提供能量,在输入信号的控制下,通过晶体管将直流电源的能量转换为负载所需要的较大的交流能量。
Rb为基极偏置电阻,作用有两个:一是给发射结提供正偏电压通路;二是决定静态基极电流Ib的大小。当Vcc、Rb的值固定时,Ib也固定了,所以这种电路也被称为固定偏置放大电路。
Rc为集电极负载电阻,作用有两个:一是给集电结提供反偏电压通路;二是通过Rc将晶体管集电极电流的变化转换成集成电极电压的变化,从而实现电压放大。
C■、C■为耦合电容,作用是“隔直通交”,即把输入信号中交流成分传递给晶体管的基极,再把晶体管集电极输出电压中的交流成分传递给负载。因此要求C■、C■在输入信号频率下的容抗很小(可视为短路)。在低频率放大电路中,C■、C■容量均取的很大,常采用几十微法的电解电容。
2.放大电路的工作原理
从放大电路的组成可知,放大电路正常放大信号时,电路中既有直流电源Vcc,又有输入的交流信号Ui,因此电路中晶体管各级的电压电流中有直流成分,也有交流成分,总电压、总电流是交直流的叠加。为了便于分析,通常把放大电路中的直流分量和交流分量分开讨论。当没加输入信号时电路中只有直流流过,称这种情况为放大电路的直流工作状态,简称静态。加入输入信号后,电路中交直流并存,当只考虑交流不考虑直流时,这种情况下称放大电路处于交流工作状态,简称动态。
(1)放大电路的静态,为了不失真地放大输入信号,必须保证晶体管在输入信号的整个周期内,始终处于放大状态。例如:当输入信号为正弦波时,如果不设置直流工作状态,则幅值为0.5V以下的输入信号都会使晶体管处在截止状态(硅管),而不能通过放大电路,输出信号将出现失真。因此,在没加输入信号前,需要给放大电路设置一个合适的工作状态。当电路参数(Vcc、Rb、Rc)确定之后,对应的直流电流、电压Ib、Ic、Uce也就确定了,根据这三个直流分量,可以在晶体管输出特性曲线上确定一个点,称这个点为静态工作点,用Q表示。通常直流工作点上的电流、电压用Ibq、Icq、Uceq表示。
(2)放大电路的动态,在放大电路的输入端加上正弦信号Ui,经过C■送到电路的输入端产生电压为Ubc,由Ubc产生一个按正弦变化的基极电流Ib,次电流叠加在静态电流Ibq上,使得基极的总电流为IB=Ib+IBQ。晶体管放大,集电极产生一个和Ib变化规律一样,且放大β倍的正弦电流Ic(Ic与Ui相位相同),这个电流叠加在静态电流ICQ上,使集电极的总电流为Ic=ICQ+Ic。当Ic流过Rc时,Rc上也产生一个正弦电压URC=RcIc(与Ic的变化相同)由于Uce=Uce-IcRc,所以Rc上的电压变化,必将引起压管压降Uce反方向的变化(与Ic的变化相反)。
由上述可知,基本共发射极放大电路是利用晶体管的电流放大作用,并依靠Rc将电流的变化转化为电压的变化,使输出电压的数值上比输入电压大很多,相位上与输入电压相反,从而实现电压放大。
3.基本放大电路的分类
(1)静态工作点稳定的共发射极放大电路。放大电路静态工作点位置不仅决定电路是否会产生失真,还影响着电路的电压放大倍数、输入电阻等动态参数。如果静态工作点不稳定,放大电路的这些参数就会发生变化,严重时会使放大电路不能正常工作。因此如何保持静态工作点的稳定是十分重要的。
(2)共集电极放大电路。共集电极放大电路具有输入电阻大、输出电阻小及较强的电流放大能力,但它不具备电压放大作用。因此,它从信号源索取的电流小,带负载的能力强,还可以通过输入输出电阻的变换,使多极放大电路前后级阻抗达到匹配。所以在多极放大电路中,共集电极放大电路常用作输入级、输出级缓冲级。
(3)共基极放大电路。共基极放大电路具有输入电阻小(只有几十欧)、输出电阻较大(与基本共发射极放大电路相同)的特点,虽然具有较强的同相电压放大能力,但不具备电流放大作用。它的同频率较好,适于做宽频带放大电路。
(4)共源极放大电路。常用的共源极放大电路有两种:一种是自给偏压式共源极放大电路,另一种是分压式共源极放大电路。
(5)共漏极放大电路。共漏极放大电路又称为源极跟随器、源极输出器,它与晶体管射极跟随器有类似的特点,如输入阻抗高、输出阻抗低、放大倍数小于且接近1等,应用比较广泛。
三、基本放大电路的主要性能指标
任何一个放大电路,均可将其视为一个两端口网络,如下图所示。
在放大电路的输入端A、B处接信号源,称此闭合回路为输入回路。信号源是所需放大的输入电信号,输入电信号可以等效电压源或电流源。图中Rs是信号源的内电阻;Us为理想电压源。
在放大电路的输出端C、D处接负载,称此闭合回路为输出回路。负载是接受放大电路输出信号的换能器。为了分析问题方便,一般负载用纯电阻RL来等效。
信号源和负载对放大电路的工作将产生一定影响。直流电源是用以提供放大电路工作时所需要能量的,同时也为放大电路中的放大管处于正常放大状态提供合适的直流电压。
四、结语
模拟电子技术在现代国防建设、科学研究、工农业生产、医疗、通信及文化生活等各个领域得到了极为广泛的应用,并起着巨大的作用。特别是在各个领域中的自动化控制中,模拟电子技术无处不在。所以在研究基本放大电路时我们应该持严谨的科学态度,认真对每一项工作负责,通过自己的努力能够更好地、更详细地运用基本放大电路。
关键词:前置放大器; NJM4580;AD620;Multisim 10
中图分类号:TN919-34 文献标识码:A
文章编号:1004-373X(2011)20-0156-03
Design of Pre-amplification Circuit in Electromagnetic Ultrasonic Transducer
HAN Na, LI Song-song, LI Xiang
(Dalian Ocean University, Dalian 116023, China)
Abstract: Because the signal received by electromagnetic acoustic transducer (EMAT) is very weak, two weak signal amplifying circuits which respectively adopted NJM4580 and AD620 were designed. The virtual simulation for the two pre-amplification circuits were conducted by Bode plotter and oscilloscope in Multisim10produced by NI and the simulated results of the two circuits were compared. The results show that the circuit with AD620 is better than the one with NJM4580. The structure of the former one is more simple and the amplification capability is more superior.
Keywords: pre-amplification circuit; NJM4580; AD620; Multisim 10
0 引 言
在无损检测中,EMAT因其独有的优点被广泛应用,但经EMAT接受线圈接受到的信号通常很微弱,信号幅值小,一般只有几十μV到几百μV,并且对周围环境噪声敏感度高 ,接收信号常被淹没在噪声中,辐射模式较宽 ,能量不集中[1-2]。为了得到适合显示观察的水平,需要对信号进行放大和滤波处理,以减少噪声和干扰。
为了避免EMAT的接收系统放大倍数过大引起信号失真和自激的现象,通常采用多级放大。主要包括前置放大器、滤波器、主放大器,以及用于在数字设备中的A/D转换电路等。为了得到更好的结果,前置放大器自然起着至关重要的作用。应用专业的EDA软件对其进行仿真分析,能够更迅速准确地分析电路性能,从而选出性能较好更适合需要的电路,本文设计了2种前置放大器,并且利用Multisim10仿真软件对这2种电路进行了仿真比较。
1 前置放大器
1.1 用NJM4580设计的放大器
在第一种电路设计中,选用NJM4580运算放大器,该放大器是日本新无线公司生产的双路运算放大器,具有无噪声、更高的增益带宽、高输入电流和低失真度,不仅适用于音响前置放大器的音响电子部分和有源滤波器,还适用于手工测量工具等。
NJM4580的主要特点是[3]:工作电压为±5~±18 V;低输入噪声电压为0.8 μV;增益带宽为15 MHz;低失真为0.005%;转换速率为5 V/μV;采用双极技术。应用NJM4580设计的放大器电路如图1所示。
本设计采用NJM4580,主要是在差分放大电路设计部分保持信号的带宽,使其不失真。采用3个运算放大器排成2级,由运放U1A,U2A按通向输入接法组成第1级差分放大电路,运放U3A组成第2级差分放大电路。在第1级电路中,信号源加到U1A的同相端,R6和R3,R4组成的反馈网络,引入了负反馈。
为了使电路对称,提高仪用放大器性能,选取的电阻应满足R3=R4关系,参数严格匹配,误差控制在很小范围内。经过计算,最终得到输出电压的关系如┦(1):
ИVout=-(RS/R1)(1+2R3/R6)ΔVin(1)И
所以,电压增益可以由式(2)得到:
ИAv=Vout/ΔVin=-(RS/R1)(1+2R3/R6)(2)И
从式(2)中可直观看到,根据选取R5/R1和R3/R6电阻的比例关系,达到不同信号放大比例的要求。所以电阻的选取也是仪用放大器设计中最重要的环节之一。考虑到电路的稳定和安全,固定R1~R5,R7,R8的阻值,都选精确的10 kΩ电阻,只将R6设置成可调,随着R6的减小,放大倍数越大,带宽越窄。所以设计时确定R6为2 kΩ。
该放大电路是级联放大电路,为前级放大,而后级级联放大电路则由2个741级联构成[4],共同组成一个完整的信号接收端的前置放大电路。
图1 应用NJM4580设计的放大器电路图
1.2 应用AD620设计的放大器
在进行微弱信号检测中,为了减少集成运算放大器对电路的干扰,应选择接近理想运算放大器的芯片。要求具有较小的输入偏执电流、输入偏执电压和零漂,具有较大的共模抑制比和输入电阻[5]。
因此,在另一种电路设计中,应用AD620对第一种电路进行改进。AD620是AD公司生产的高精度单片仪表运放,它拥有差分式结构,对共模噪声有很强的抑制作用,同时拥有较高的输入阻抗和较小的输出阻抗,非常适合对微弱信号的放大[5],而且AD620具有很好的直流和交流特性,更有低功耗、高输入阻抗、低输入失调电压、高共模抑制比等优点,其外部电路连接方便简单,只需要一个连接于1,8脚的外接电阻就可调节放大倍数[6]。增益G=49.4 kΩ/RG+1。其中:RG为1和8脚连接的外电阻。
AD620主要特点有以下几点[7]:带宽800 MHz,输出功率24 mW;功率增益120 dB;工作电压±15 V;静态功耗0.48 mW;输入失调电压≤60 μV;转换速率1.2 V/μs;最大工作电流1.3 mA;输入失调电压5 μV;输入失调漂移最大为1 μV/℃;共模抑制比 93 dB。应用AD620设计的电路如图2所示。
图2 应用AD620设计的放大电路整体电路图
2 采用Multisim 10软件仿真
2.1 软件介绍
Multisim 10是由美国国家仪器公司(National Instrument,NI公司)推出的,相对于Multisim 10的仿真软件,它具备更加形象直观人性化的特点,提供了16 000多个高品质的模拟、数字元器件;各种分析方法(直流扫描分析,参数扫描分析等);电压表、电流表和多台仪器(数字万用表、函数信号发生器等)。该软件大多数采用的是实际模型,保证了仿真和实验结果的真实性和实用性。应用Multisim 10可以进行模拟电路、数字电路、模数混合以及射频电路的仿真。其中,它的高频仿真和涉及环境是众多通用仿真电路软件中所不具备的。本文设计的是μV级的电压信号放大。采用了2种方案,通过Multisim 10的仿真来对这两种电路性能进行比较[8-10]。
2.2 仿真比较
(1) 函数信号发生器的设置。
在软件中打开信号发生器,因本文使用的信号频率范围一般为25 kHz~1 MHz,为了模拟传感器接收到的信号,在此范围中,选取输入信号频率为100 kHz,幅度为100 μF的正弦波信号来做分析比较,函数发生器设置如图3所示。
图3 信号发生器设置
(2) 电路的幅频特性仿真与比较。
应用此软件中的波特图仪(Bode Plotter)对两电路的幅频特性进行仿真比较,设置的观察频率范围是25 kHz~1 MHz,结果如图4所示。
通过波特图可以直接观察出当输入信号频率为25 kHz时,两电路的增益分别为85 dB和98 dB。比较可以得出,应用AD620改进电路的放大效果较好。通过移动波特图仪的光标柱可以观察2个电路在其他频率时的放大增益。将光标注移动到100 kHz,可以直接观察到此频率下两电路的增益分别为60 dB和72 dB。
(3)输出信号波形的比较。
在软件打开示波器,在示波器中进行设置,红色表示输入信号,绿色表示放大后的输出信号。选取频率100 kHz,幅度100 μV的信号,经电路放大,分别得出输出波形如图6所示。通过Multisim 10仿真可以很清晰地看出两电路的输出波形。为了便于对波形进行观察,将Channel A(输入信号通道)设置为100 μV/Div ,图6(a)的Channel B(输出信号通道)设置为100 mV/Div,图6(b)的Channel B(输出信号通道)设置为500 mV。从波形图可以看出,当输入信号均为100μF时,两电路输出的信号大小分别为100 mV和380 mV,很显然,应用AD620的改进电路二,放大倍数更大。
通过此方法,可以对输入信号为其他频率时的输出波形进行比较。
图6 输出信号波形
3 结 语
本文针对输入信号为微幅级的信号,用NJM4580运算放大器设计了与741共同构成的级联放大电路,并在此基础上应用AD620对电路进行改进以达到更加优良的性能;利用Multisim 10对设计的2个放大电路进行仿真、比较,从而验证了应用AD620的放大电路不仅电路构成简单,而且在放大性能上更加优于应用NJM4580运算放大器构成的差分级联放大电路。
参考文献
[1]王淑娟,康磊,赵再新,等.电磁超声换能器的研究进展综述[J].仪器技术与传感器,2006(5):6-8.
[2]王淑娟,康磊,翟国富.电磁超声换能器的微弱信号检测[J].无损检测,2007,29(10):591-595.
[3]新日本无线公司.NJM4580元件数据手册\.北京:新日本无线公司,2003.
[4]黄丽,李雪梅.基于Multisim仿真的超声波测距系统的设计与实现[J].湖南工程学院学报,2009(11):53-55.
[5]张石锐,郑文刚,黄丹枫,等.微弱信号检测的前置放大电路设计[J].电子设计,2009(8):106-108.
[6]常新华,王洪刚,于永江,等.一种程控放大滤波器设计[J].四川师范大学学报:自然科学版,2009(10):95-97.
[7]王树振,单威,宋玲玲.AD620仪用放大器原理与应用[J].微处理机,2008(3):33-35.
[8]李松松,李响,高晓也.Multisim在射频电路实验教学中的应用研究[J].现代电子技术,2010,33(9):125-127.
关键词:仪表;放大器;原理;设计
1.引言
一般智能仪表所采集到的信号都是非常微弱的信号,这些信号都具有小信号的基本的特征:信号的幅值很小通过在毫伏级别,并且所采集到的数据当中存在着较多的噪声。针对这种微弱的带有噪声的信号,一般首先利用智能仪表所自带的放大电路将信号进行放大处理。但是放大的目的不仅仅局限于提高信号的幅值大小,在很大程度上是为了提高信号的信噪比;仪表的等级是根据仪表所能够分辨的小信号的级别来进行划分的,其中动态范围也是衡量其很重要的一个指标。智能仪表的输入信号的范围在很大程度上取决于仪表自身所带的放大电路。本文在智能仪表自身所带的放大电路的结构和原理的基础上对仪表放大器的电路进行设计,并且设计出了常见的几种仪表的放大器的电路,并且给出了电路放大器的特点,为智能电子仪表的改进和改良提供了切实的理论依据和实践基础。
2.仪表放大电路的组成和原理
智能仪表的放大电路的结果如下图所示,其一般由两级的差分放大电路组成。其中前两个放大器A1和A2是通过同相输入的方式,这种输入的方式能够在一定程度上提高电路的输入的阻抗,能够减小电路结构对于输入信号的衰减的作用。利用差分的信号输入可以使得放大电路对于信号的方法仅仅局限在对差模信号的放大上,并且能够在一定程度上提高后级别的差模信号和共模信号的幅值之比,也就是共模抑制比,在本实例中A3是放大电路的核心,在控制共模抑制比不便的情况下最大程度的降低对于电路中各级电阻的精度的要求,最终使得仪表放大电路具有较好的抑制工模信号的能力,此外电路的增益和电路中的电阻有直接的关系通过调节电路中电阻值可以对放大电路的增益进行有效的调节。
3.仪表放大电路的设计
3.1放大电路的方案设计
从现在的技术角度来看实现智能仪表的放大电路的方式主要具有两种形式,一种是通过分立的元器件组合而成,另外一种是由单片机来进行实现。本文利用元器件LM741以及OP07以及集成运算放大器LM324和单片机AD620来对智能仪表的放大器电路进行了方案设计。首先第一种方案是由单个通用性的运放LM741来进行实现,利用3个LM741来组成仪表的运算放大器,另外还包括A1和A2两个集成运放,最后组成的集成运算放大器智能仪表放大电路的方案结构如下所示:另外智能仪表的放大电路亦可以由三个OP07组成,其电路结构和方案1类似,但是其可以用3个OP07来代表原来方案中的A1、A2、A3三个集成运算放大器。此外通过利用集成有四个集成运算放大器的LM324也可以实现智能仪表的放大电路的设计就是方案3,该方案将四个具有独立功能的集成运算放大器放置在一个芯片当中,因而就可以大大减少由于智能仪表在放大电路设计的过程中由于制造的工艺的不同而造成智能仪表的放大电路在性能上的不同,并且该方案在电源的供电方式上选择了单电源供电的方式,因而其能够大大减少电路在设计的过程中所出现的干扰和造成,能够在一定程度上降低干扰因素提高智能仪表放大电路的性能,但是在这过程中电路的工作的原理是和上述方案基本类似的。最后一个智能仪表的放大电路的设计方案是由一个单片机的集成芯片AD620来进行实现的,该电路的设计结构非常的简单,通过一个集成芯片AD620,外加用于调节放大电路放大倍数增益的电阻,再对电路进行电源进行供电就实现了智能仪表放大电路的第四种设计的方案,该方案具有设计方式简单使用非常方便等特点,并且也仅仅需要对相应的控制增益的电阻进行调节就能够对放大电路的增益进行调整。
3.2放大电路性能测试
对于上述所设计的四种智能仪表的放大电路,其中四种电路的设计的结构都非常的类似,其组成的形式都是桥式的电路,都是讲差分输入改为单端的信号输入,本文对于几种方案的信号源的最大输入值和最小输入值以及放大电路的最大增益以及共模抑制比等几个方面进行了测试,其中电路的最大输入和最小输入时在特定的测试条件下使得电路输入信号不失真的情况下能够输入的最大和最小的信号。而放大电路的最大的增益则是值在给定的条件下不失真的时候所能够对输入信号放大的最大的倍数。共模抑制比可以通过一定的公式来进行计算。从仿真的结果来看仿真的效果要比实际测试的效果要好,这是因为在仿真的过程中不会受到各种环节和信号的干扰。在实际使用的过程中各个硬件环节以及认为操作的因素都会对测试的结果产生不同程度的影响。通过测试发现方案2其信号的动态的输入范围是最大的,电路的增益也是最大的,共模抑制比也是最大的,因为该种方案是最优的,该方案的成本要比方案1和方案3稍高,但是要比方案4便宜不少,所以综合考虑成本和性能的因素方案2是最为适宜选择的智能仪表放大器放大电路的设计的方案。
4.结语
在智能仪表中,放大电路的性能直接影响到了仪表的性能,因而提高智能仪表的性能关键就是提高其中放大电路的性能,本文对放大仪表放大电路在其原来结构和原理的基础上进行了重新的方案的改进和设计,并且从输入信号的动态范围,增益以及共模抑制比等几个方面对放大电路的设计方案进行了仿真,综合成本和性能确定了最优的智能仪表的设计方案。
参考文献
[1]王余峰,王志功,吕晓迎,王惠玲.单片集成低功耗神经信号检测CMOS放大器[J].半导体学报.2006(08)
[2]梅玉芳.仪表放大器及其应用问题研究[J].中国科技信息.2006(16)
【关键词】放大电路;反馈;电压;电流;串联;并联
1.反馈回路的判断
电路的放大部分就是晶体管或运算放大器组成的基本电路。而反馈则是把放大电路输出端信号的一部分或全部送回到输入端的电路,反馈回路就应该是从放大电路的输出端引回到输入端的一条回路。这条回路通常是由电阻和电容构成。寻找这条回路时,要特别注意不能直接经过电源端和接地端,这是初学者最容易犯的问题。例如图1如果只考虑极间反馈则放大通路是由T1的基极到T1的集电极再经过T2的基极到T2的集电极;而反馈回路是由T2的集电极经Rf至T1的发射极。反馈信号uf=ve1影响净输入电压信号ube1。
图1 电压串联负反馈
2.交直流的判断
根据电容“隔直通交”的特点,我们可以判断出反馈的交直流特性。如果反馈回路中有电容接地,则为直流反馈,其作用为稳定静态工作点;如果回路中串连电容,隔开直流,则为交流反馈,改善放大电路的动态特性;如果反馈回路中只有电阻或只有导线,则反馈为交直流共存。图1中的反馈即为交直流共存。
3.正负反馈的判断
正负反馈的判断使用瞬时极性法。瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。这个信号通过放大电路和反馈回路回到输入端。反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。在这一步要搞清楚放大电路的组态,是共发射极、共集电极还是共基极放大。每一种组态放大电路的信号输入点和输出点都不一样,其瞬时极性也不一样。如表1所示。相位差1800则瞬时极性相反,相位差00则瞬时极性相同。运算放大器电路也同样存在反馈问题。运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反。
依据以上瞬时极性判别方法,从放大电路的输入端开始用瞬时极性标识,沿放大电路、反馈回路再回到输入端。这时再依据负反馈总是减弱净输入信号,正反馈总是增强净输入信号的原则判断出反馈的正负。
在晶体管放大电路中,若反馈信号回到输入极的瞬时极性与原处的瞬时极性相同则为正反馈,相反则为负反馈。其中注意共发射极放大电路的反馈有时回到公共极——发射极,此时反馈回到发射极的瞬时极性与基极的瞬时极性相同(使得净输入信号减小)则为负反馈,相反则为正反馈。
图1中的瞬时极性判断顺序如下:T1基极(+)T1集电极(-)T2基极(-)T2集电极(+)经Rf至T1发射极(+),此时反馈回到发射极的瞬时极性与基极的瞬时极性相同所以电路为负反馈。在运算放大器反馈电路中,若反馈回来的瞬时极性与同一端的原瞬时极性相同(使得净输入信号增大)则为正反馈,相反则为负反馈;若反馈回来的瞬时极性与另一端的原瞬时极性相同则为负反馈,相反则为正反馈。
图3中的瞬时极性判断顺序如下:输入同相端为(+)输出为(+)经Rf反馈至反相端为(+),侧为负反馈。
图4中:输入反相端为(+)输出为(-)经Rf反馈至反相端为(-),侧为负反馈。
4.反馈类型的判断
反馈类型是特指电路中交流负反馈的类型,所以只有判断电路中存在交流负反馈才判断反馈的类型。反馈是取出输出信号(电压或电流)的全部或一部分送回到输入端并以某种形式(电压或电流)影响输入信号。所以反馈依据取自输出信号的形式的不同分为电压反馈和电流反馈。依据它影响输入信号的形式分为串联反馈和并联反馈。
图2 电流并联负反馈
(1)串联并联的判断
反馈的串并联类型是指反馈信号影响输入信号的方式即在输入端的连接方式。串联反馈是指净输入电压和反馈电压在输入回路中的连接形式为串联,如图1中的净输入电压信号ube1和反馈信号uf=ue1;而并联反馈是指的净输入电流和反馈电流在输入回路中并联,如图2所示电流反馈中的净输入电流ib1和if的连接形式。
综合一下就是:
1)在分立元件组成的放大电路中若反馈信号如果引回到输入回路的发射极即为串联反馈,引回到基极即为并联反馈。
2)在运算放大器负反馈电路中,反馈引回到输入另一端则为串联反馈,如图3中uD与uF串联连接;如果引回到输入另一端则为串联反馈如图4中iD与iF并联连接。
图3 电压串联负反馈
图4 电流并联负反馈
(2)电压电流的判断
关键词:protel,三极管,计算机仿真
0.引言
计算机仿真软件在实践中的应用,使电路设计人员能够在电路设计阶段对所设计的电路电气特性进行分析、判断、校验,从而大大减轻物理实验验证阶段的工作量,是电子专业设计工作者提高工作效率的有效方法。
Protel 99内置了功能强大的SPICE 3f5电路仿真软件,能提供连续的模拟信号和数字信号仿真。该软件运行于Protel的EDA/Client进程环境下,与ProtelAdvanced Schematic原理图设计程序协同工作,为用户提供一个完整的从设计到仿真验证的设计环境【1】。
单管放大电路是模拟电路设计中最基础的电路。本文利用protel99软件,利用通用电子元件,对该电路参数赋值,仿真研究单管放大电路的工作过程。理论分析了单管放大电路的静态与动态参数,研究基于protel99软件仿真该电路的方法,并得到相关结论。
1.单管放大电路的理论计算
单管放大电路图如图1所示, 其中信号源的幅值为,频率为,则由估算法【2】可得: