前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇柯洁人机大战范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
如果按照这个速度,用不了几年,每个业余围棋爱好者都能坐在家里的沙发上,泡上一杯茶,打开电脑,运行围棋人工智能程序,向“围棋上帝”学上一盘。以前,一个业余围棋爱好者一辈子都难得与职业高手下上一盘棋,将来这个梦想天天都可以实现。
人机大战第二季结束后,Google研发团队宣布,AlphaGo将退出围棋舞台,接下来它将挑战医疗、能源、材料等全新领域。谁又知道,人工智能在这些领域将取得哪些革命性的突破呢?
回到教育,虽然没有AlphaGo的轰动性效应,但从历史上看,教育一直是人工智能的重要应用领域。同样,人工智能在教育领域的前进步伐也从来没有停止过。智能导师、教育机器人、学习同伴、智能测评,这些最新的人工智能教育产品时刻提醒着我们,教育的人工智能时代已经不再遥远了。
如果从技术角度来说,我们丝毫不担心人工智能时代的到来,因为人工智能的脚步是不可阻挡的。但我们同样需要对人工智能保持一份警醒,毕竟,教育是一个远比围棋复杂的领域。AlphaGo在围棋上取得质的飞跃不过几年时间,而教育的“AlphaGo时刻”何时出现,谁也不敢断言。更为关键的是,围棋不过是棋盘上的输赢,教育却是人生的成长。胜负是一时的,而成长是不可逆的。
“我会抱必胜心态、必死信念。我一定要击败AlphaGo!”赛前,对于与围棋人工智能程序AlphaGo的对弈,目前世界排名第一的中国围棋职业九段棋手柯洁曾如此放出豪言。然而,AlphaGo之父却说,“我们发明AlphaGo,并不是为了赢取围棋比赛。”
毫无悬念,AlphaGo又赢了。在过去的一年间,人们已经听到太多人工智能程序战胜人类棋手的消息。在外界普遍不看好柯洁的情况下,比起比赛结果,更多人好奇的是:AlphaGo这次为什么还要来中国“踢馆”?连“当今第一人”柯洁都倒下了,“独孤求败”的AlphaGo是不是可以准备“退役”了?而AlphaGo背后的DeepMind公司在“玩坏”了围棋之后,下一步还打算玩什么?
不久前,在中国乌镇人工智能高峰论坛上,AlphaGo之父、DeepMind创始人戴密斯・哈萨比斯(Demis Hassabis)介绍道,AlphaGo的影响已经开始显现,比如在与韩国棋手李世石对决后,围棋的棋盘销量增加了10倍的增量;利用AlphaGo的算法,许多公司也开始深入研究人工智能下棋程序以及各种用场景的应用。
随后,他重申,下围棋并不是AlphaGo的终极目标,他们的目标是要利用AlphaGo打造通用的、探索宇宙的终极工具。
在哈萨比斯看来,要打造能探索宇宙的终极工具,就需要把AlphaGo改造成通用型学习机器。具体来说,这个机器能做到非程序预设,就能自主学习原始材料,并能在同一系统执行多种任务。要做到这两点非常困难,但AlphaGo正在利用下围棋的方式来向这个目标靠近。
为什么计算机下围棋非常困难?
1997年,国际象棋大师卡斯帕罗夫败给了IBM公司打造的“深蓝”程序,国际象棋被计算机攻克。相比国际象棋每一步棋后能引出三十种可能的走法,围棋棋局的每一步牵出的后续选择有数百种,计算机需要搜索的数量更加庞大。
在哈萨比斯看来,用计算机下围棋的困难主要有四点。首先,围棋是一个靠直觉来赢得比赛的项目,它不像象棋等游戏可以靠计算。其次,围棋中没有等级概念,所有棋子都一样。第三,围棋是筑防游戏,需要盘算未来。第四,围棋中小小的一颗子就可以撼动全局。
基于此,在AlphaGo打败李世石之前,许多人认为人类至少10年才能完成这个目标。但在2016年,DeepMind利用策略网络和价值网络打造AlphaGo,成功撼动了人类在围棋领域的统治力。
AlphaGo之所以有如此“神力”,甚至被柯洁称为“围棋上帝”主要就是依靠这两个网络。首先,AlphaGo用策略网络可以缩小每一步棋走法的选择。接着,每走完一步棋,AlphaGo都能利用价值网络来评估这步棋的胜率值。
AlphaGo已具备直觉和创造力
依靠这两个网络,通过向人类围棋大师学习,以及迭代后的自我学习,哈萨比斯认为当前版本的AlphaGo已经具备直觉和创造力。
比如,2017年初以“Master”马甲出现,对战中日韩顶尖高手取得60连胜时,AlphaGo在与辜梓豪、朴廷桓下棋的过程中,都走出了精彩的一招,显示出了创造力。
“游戏是用来训练算法最有效的做法,但是我觉得我们的最终目标并不是游戏,而是把我们的技术运用到现实生活当中,比如说用到医疗、智能手机以及教育当中。”哈萨比斯说。
据介绍,接下来DeepMind公司有意让AlphaGo与无数其他领域结合,从而得到无数的“组合轰炸”。目前,DeepMind的搜索技术已经运用到谷歌的数据中心,帮助该数据中心节省了15%的电能。
更为重要的是,哈萨比斯期望AlphaGo能成为元解决方案。简单理解就是,让AlphaGo成为人工智能科学家或者人工智能辅助科学家,更好地帮助人们理解人脑的奥秘。
2016年是世界围棋界极不寻常的一年,3月份在“阿尔法围棋”(AlphaGo,一款围棋人工智能程序)与围棋世界冠军、职业九段选手李世石之间展开的一场人机大战中,“阿尔法”的胜出震惊全球。7月份世界职业围棋排名网站公布了最新世界排名:“阿法围棋”以3612分,超越3608分的柯洁成为新的世界第一。
2016年12月29日到2017年1月4日,一个名叫 “Master”的神秘网络围棋手横扫中、韩、日围棋界。它凭借惊人的稳定性一路高唱凯歌,获胜60场,没有败绩。最终神秘的“Master”揭开了庐山真面目,宣布自己就是“阿尔法围棋”。
2017年1月,谷歌Deep Mind公司宣布推出真正2.0版本的“阿尔法围棋”,成为第一个不借助让子,在全尺寸19×19的棋盘上击败职业围棋棋手的电脑围棋程序,其特点是摈弃了人类棋谱,只靠“深度学习”的方式成长起来挑战围棋的极限。
围棋是人类最具智慧的竞技之一,而人工智能(Artificial Intelligence,简称AI)研发是人类最具挑战性的科技探索。人机大战的经典对决将被同时载入围棋史册和科技史册。它的意义已经远远超出围棋本身,人们热衷谈论“阿尔法围棋”更多是出于对AI技术的关切。从诞生到日益成熟,AI理论和技术的应用领域在不断扩大,不知不觉间渗透到人类当代生活的各个方面。AI时代,互联网、金融、医疗、教育、物流、娱乐、传媒等行业都在加速自己智能化的进程。可以想见,未来人工智能带来的科技产品,将会是人类智慧的“容器”。 而与此同时,人类命运和机器智慧的冲突与共存,已经由人机大战开始不断升温。
“人工智能百年研究”项目
2014年秋季,美国斯坦福大学开启了“人工智能百年研究”(AI100)项目。这是一个超大型长期项目,该项目发起人――美国人工智能发展协会会长、前微软研究员埃里克・霍维茨博士表示,“我们的职责是研究人工智能在2030年前对人类社会生活方方面面所产生的影响,尤其是在北美地区”,而“研究的核心是,人类不能丧失对人工智能的控制能力”。 “人机大战”
2016年9月1日,“人工智能百年研究”项目的第一项成果《人工智能与2030年的生活》。这是一份试图定义北美城市在未来10多年间将要面临的可以模拟人类行为的计算机和机器人系统 (即人工智能)问题的报告,涉及交通、家庭/服务、健康医疗、教育、低资源社区、公共安全与防护、就业、娱乐等关注领域,目的是推动相关政策的制定。业内人士认为,工业界和学术界目前正在联手倒逼政府出台人工智能的相关政策,希望可以获得更大力度的资金和法律扶持。
《人工智能与2030年的生活》所列举的关注领域,均面临着人工智能的影响和挑战。例如开发安全可信赖的硬件的困难(交通工具和服务机器人),获得工作信赖的困难(低资源社区和公共安防),对劳动力可能被边缘化的担忧(就业和职业),以及人际交往减少带来的社会副作用(娱乐)等等。
1.交通:自动驾驶的汽车、卡车、无人机投递将改变城市里的工作、购物和休闲娱乐模式,但需要增加可靠性、安全性和用户接受度,并根据新的交通模式改进当前的相关法规和基础设施。
2.家庭/服务机器人:现在进入家庭的扫地机器人或特种机器人能够为家庭和工作场所提供清洁和安保服务,当务之急是技术方面的挑战和机器人成本过高的问题。
3.健康医疗:个人健康监测装备与手术机器具有极大的发展潜力,人工智能软件将最终对某些疾病自动进行诊断和治疗。目前的关键是获取医疗从业者的信任。
4.教育:互动辅导系统在帮助学生进行语言、数学以及其他技能的学习方面已经发挥出作用,自然语言处理的发展将为这一领域的应用带来全新的方式。当务之急是教育资源分配不均的问题,以及教、学双方直接互动的减少会带来哪些消极影响。
5.低资源社区:投资最新技术领域有助于更充分地发挥人工智能的优势,比如避免铅污染和改进食品分配等,重要的是让公众参与进来以增强相互信任。
6.公共安全与防护:利用相机、无人机和软件进行犯罪模式分析,应用人工智能技术来降低人类判断的主观偏见,与此同时在不侵犯个人自由和尊严的情况下增强安全性。目前需注意的是如何保护隐私和避免固有偏见。
7.就业和职业:随着全球经济的快速发展,传统岗位开始被新岗位取而代之,有关人类如何适应这种新变化的相关工作需要立即展开,比如如何妥善处理劳动力下岗以及人工智能对新工作岗位不适应的问题。
8.娱乐:内容创建工具、社交网络和人工智能的结合,将开创全新的媒体内容收集、组织和分发模式。但问题是新的娱乐方式如何在个人价值和社会价值之间取得平衡。
《人工智能与2030年的生活》在回顾发展历程和展望发展趋势时指出,人类正加速在人工智能领域的研究,试图建立一个能与人高效协作的智能系统。其中最重要的是机器学习的成熟,它受到了数字经济崛起的部分影响――数字经济为机器学习提供了大量数据。此外其他影响因素包括云计算资源的崛起,以及消费者对语音识别和导航支持等技术服务的需求。研究人员认为,不管是从基本方法上还是应用领域,包括大规模的机器学习、深度学习、增强学习、机器人、计算机视觉、自然语言处理、协作系统、众包和人类计算、算法游戏理论和计算的社会选择、物联网、神经形态芯片在内的研究趋势,共同促进了人工智能研究的热潮。
这份报告试图严肃地讨论这样一个问题:如何更好地引导人工智能来丰富和服务于人类生活,同时推动和激励这一领域的创新。因为人类目前并不能清晰而完美地预测未来的人工智能技术及其影响,所以一定要对相关政策进行评估。未来几年公众在交通和医疗等领域内应用人工智能的机会日渐增多,因此必须以一种能构建信任和理解的方式将其引入,确保在尊重人权和公民权利,保护隐私和安全,维护广泛而公正的利益分配等方面措施周备。 世界经济论坛说,机器人和人工智能到2020年可以取代510万个工作岗位。
研究人员指出,传统的人工智能范式已被数据驱动型范式成功取代,对于定理证明、基于逻辑的知识表征与推理这些程序的关注度在降低。作为20世纪七八十年代人工智能研究的一根支柱,规划( Planning )强烈依赖于建模假设,难以在实际应用中得到满足;视觉方面基于物理的方法和机器人技术中的传统控制与制图,正让位于通过检测手边任务的动作结果来实现闭环的数据驱动型方法;还有曾颇受欢迎的贝叶斯推理和图形模式,在数据和深度学习的显著成果前也显得相形见绌。在未来15年中,针对人类意识系统开发,按照能够互动的人类特点进行建模和设计人工智能系统成为人们的兴趣点。在考虑社会和经济维度的人工智能时,物联网型的系统变得越来越受欢迎。数据驱动型产品的数量及其市场规模将会扩大。
“为机器人安装‘死亡开关’”
2017年1月,欧洲议会法律事务委员会召开会议,呼吁制定“人类与人工智能/机器人互动的全面规则”。议公布的报告对机器人可能引发的安全风险、道德问题、对人类造成的伤害等情况进行了讨论,探讨是否需要为机器人安装“死亡开关”、研究机器人抢走人类工作的应对措施等等,要求欧盟为民用机器人制订法律框架。专家认为,这或将是首个涉及管制机器人的立法草案,将有利于人类应对机器人革命带来的社会震荡。
会议认为,人工智能和机器人发动的新工业革命可能影响到所有的社会阶层。机器人可能创造无限的繁荣,与此同时将影响人类未来的就业情况。机器人取代人类在许多行业是大势所趋。在德国,每1万个雇员中就有301个是工业机器人。报告要求欧盟委员会对各国民众的就业情况进行调查,重点关注极易被机器人取而代之的职位。如果机器人成为职位“杀手”,欧盟各成员国应考虑为国民提供基本的生活保障。埃里克・希尔根多夫是一名德国法律教授,他非常认同欧洲议会讨论的这项议题。“这不仅在政治上是可取的,从法律角度也是必要的,这样我们才能及时应对机器人革命带来的社会震荡。”他指出,“即使是银行顾问、教师和记者等要求严格的职业,未来也无法在这场科技洪流中幸免。”
会议强调,因为人工智能在几十年内可能超越人类的智力,将对人类控制机器人构成挑战。随着机器人自我意识的崛起,甚至可能威胁人类的生存。近年来,机器人“杀人”的事件时有发生:2015年6月,在德国大众汽车公司,一名工人安装机器人时反被它抓起推向金属板压死;2016年6月,美国一家汽车零件生产商的一名女员工正在修理出现故障的机器人时,它突然启动,将修理女工活活压死。
报告参照美国科幻小说作家艾萨克・阿西莫夫提出的“机器人学三大法则”,将其作为立法框架,对机器人自我意识觉醒后的行为规范做出规定。“机器人学三大法则”包括: 1.机器人不得伤害人,也不得见人受到伤害而袖手旁观。2.机器人应服从人的一切命令,但不得违反第一法则。3.机器人应保护自身的安全,但不得违反第一、第二法则。由于规则无法转化为代码,欧洲议会正在着手建立一个针对机器人和人工智能研发的机构,为设计、生产和操作机器人的人员提供技术、伦理和监管方面的专门知识等。
报告还提出:1.在设计新型机器人时,设计师应该尊重人类的基本人权,事先获得道德研究委员会的批准。2.必须为机器人注册,以便在调查事故时查找涉事的机器人。3.确保机器人安装有“死亡开关”,可以随时被关闭。4.机器人不能对使用者造成“身体或心理伤害”。如果酿成事故,机器人不能逃脱责任。机器人所负担的责任应该与其接收的实际指令及其自主程度相对应:它的学习能力和自主性越高,那么人的责任就较低;倘若它“受教育”的时间越长,教它的“老师”负的责任就越大。报告还指出,机器人的生产商或拥有者将来需要购买保险,来承担机器人可能造成的损失。
人类与机器人的关系将会引起一场涉及私隐、尊严和安全的大讨论,在欧洲议会投票赞成立法之前,各成员国政府将对此做进一步的辩论和修正。
“机器人应当纳税”
英国牛津大学近期一项调查结果显示,今后数十年间,自动化改变生产线的速度将超过20世纪。在经济合作与发展组织(OECD)成员国,57%的工作岗位有被自动化取代的风险。英国中央银行英格兰银行预测,在自动化浪潮中,危在旦夕的英国工作岗位多达1500万个。美国白宫2016年预测,机器人取代时薪低于20美元以下岗位、介于20~40美元岗位和时薪40美元以上岗位的概率分别为83%、31%和4%。
在美国微软公司创始人比尔・盖茨看来,为暂时性减缓自动化蔓延速度,很有必要向企业为雇用机器人员工而征税,税单将是阻止机器人取代人类工作岗位的杀伤性武器。如果机器人将大范围取代人类工作岗位,那它们至少应为此买单。“目前一个人类员工在工厂中创造了5万美元的价值,这个价值会被征税。人类员工需要缴纳各种税,如所得税、社会保障税以及其他税款。如果一个机器人在工厂做与某个工人同样的事情,我们也应按同等水平向它征税。”
盖茨同时认为,尽管一些工作岗位可能被机器人取代,但人们可以在那些所需技能是机器人无法复制的领域里继续工作。世界需要抓住机遇解放劳动力,让人们从事更好的工作,例如关爱老人和帮扶特需群体。在这些领域,人类具有独特的同情心和理解力。
法国社会党总统候选人伯努瓦・阿蒙也呼吁法国对机器人征税,部分税收用于补贴全民基本收入保障。越来越多的政界人士和硅谷富翁支持推出全民基本收入保障,以化解自动化引发的大范围失业。而反对机器人税的人士则持这样的观点:自动化即使在短期也可以借助提高生产率创造新的就业岗位。
“人类需要成为‘半机器人’”
美国特斯拉汽车公司首席执行官伊隆・马斯克在2017年2月13日迪拜举行的 “世界政府峰会”上表示,未来20年,驾驶人员的工作将被人工智能所颠覆,之后全球12%~15%的劳动力将因为人工智能而失业。“从技术角度讲,最迫切的影响会来自自动驾驶汽车。它到来的速度将远快于人们的预期,当然它会为人类提供极大的方便。”
仅在一年前,被誉为“世纪之战”的李世石对战AlphaGo令人工智能(AI)进入公众视野。彼时,VR市场颓势已现,渐入谷底。AI概念的及时出现拯救了寥落许久的资本市场,凛冽的“资本寒冬”一度回暖。根据CBInsights的数据,2016年,全球人工智能领域的投资数量达到698笔,是2012年的近5倍。而在国内,BAT带头布局,创业项目四起,一时间全民AI,2016年也因此被称为“人工智能元年”。
潮水退去,才展现出行业的本来面目。“有一些泡沫,但没有‘’、O2O那会儿那么多。”创新工场技术副总裁、人工智能工程院副院长王咏刚告诉《21CBR》记者。
“扎实”、“踏实”是众多投资人谈及人工智能时提到的关键词。对创业者而言,技术的重大突破、庞大的用户市场以及多方政策的利好,似乎预示着人工智能的商业春天才刚刚开始。然而,要想站在下一波浪潮的潮头,成为这场堪比工业革命的时代获益者,既要比拼硬实力的突破,也依仗对行业的理解,二者缺一不可。在人工智能的商业化进程中,脆弱的科学家式创业将难以冲破重重阻碍。
李开复重仓
当下提及人工智能,不能不关联至创新工场。2016年,这家专注于Pre-A到C轮的早期投资机构重仓人工智能,投资相关领域创业公司超过30家。早年研究语音识别的创始人李开复身体力行,一举一动不离人工智能:演讲、出书、为投资公司站台、成立人工智能工程院。直到今年初,李开复公开表示:“能投的已经不多了。”
王咏刚告诉《21CBR》记者,人工智能尚处在行业发展的早期阶段,“我们看好整体的发展趋势,但现阶段项目的绝对数量是少的,找好项目相对来说也就困难一些。”对创新工场而言,好项目各有各的好,不投的项目归结起来则离不开三个方面:技术、团队和模式。
第一类是技术令人难以信服的概念炒作式项目。“开复就是搞人工智能出身的,我之前在谷歌工作,接触的项目比较多。有的创业公司说得天花乱坠,实际技术上是做不到的。”对于技术本身的发展趋势、在哪个领域能够解决哪些问题,创新工场自信在国内VC界的判断是较为准确的。
其次,对于纯科学家团队创业,由于不具备足够的商务落地渠道,“我们也会非常谨慎。当然不排除有的科学家确实技术很好,我们就帮他做孵化”。至于商业模式,在当下的国内互联网企业中,阿里、腾讯纷纷成立人工智能实验室,百度索性称自己是一家“人工智能公司”。那些巧妙避开了巨头现有业务冲击,自身具备不可复制和可持续性的创业项目,成功几率自然更高。
元Z资本合伙人陈洪亮认为,在人工智能这一强技术领域,图像和语音是已被验证的两个赛道。过去10年间,得益于深度学习算法和GPU等计算设备的发展,计算机视觉技术快速落地金融、安防、医疗等B2B领域。相比之下,语音技术偏重在客服、车载、智能家居等消费端领域,背后也有赖于语音识别、声纹识别等工业级算法的日趋成熟,“未来在这两块,将会出来一批比较扎实的成果。”
2014年底创立的Rokid(若琪)是元Z资本在语音赛道的代表项目,从天使轮到B轮一路跟进。5月15日,Rokid旗下第二款产品、名为Pebble(月石)的智能音箱在天猫开售。用户运用语音指令可以操控音箱播放音乐、报告天气,甚至控制家中的照明、电视等智能家居设备。Pebble意在通过日复一日的“自我学习”,无限趋近用户的偏好习惯。
相比用智能家居APP开关灯,一条语音指令显然要简单得多。无论是手机还是PC,都需要人去适应机器,声音似乎是人与机器更自然的交流方式。从天气到音乐,从新闻播报到童话朗读,元Z资本相信,声音将作为一种人机交互的无形界面,成为下一个平台级入口。而新入口的诞生,将带来变革性的机会。
不过,在陈洪亮眼中,对领域知识的依附使得创业初期的技术优势正在减弱,“行业细分,客户分散,即便有强悍的技术背景,过了一年左右的时间窗口,最后比拼的还是对商业的理解。”从这个角度而言,人工智能更以行业为导向,而非纯技术项目。“是行业+,不是AI+。”陈洪亮称。
这也是创新工场成立人工智能工程院的目的之一:源源不断向创业者推送产业项目,挖掘适合团队技术的商业模式并加以验证,为创业科学家寻觅商业合伙人,从而帮助团队尽快步入创业正轨。王咏刚表示,“商业合伙人具备的行业经验,必须令其懂得如何在行业里面拿到项目,纯科学家式的B2B创业很难。”
4月,在一次企业家公开活动上,北极光创投创始人邓锋面对两位业界人士发问:“讲究强关系的B2B行业会否影响人工智能的游戏规则?”依图科技CEO朱珑当时回应:“(关系)是现状,但产品真的能打动人。”或许可以这么理解,“关系”在某种程度上也代表着,你比别人更了解行业。
对于AI创业者,B2B意味着赚钱的难度和门槛更高了。不过,收费的价值也因此体现。在陈洪亮看来,一旦客户为此买单,其在组织机构内部能够被更高效地推行,避免沦为乏人问津的免费试用。王咏刚也相信,移动互联网的免费打法在人工智能时代将难以延续。
尽管业内少有公司公布自己的营收情况,但投资人大都表示,人工智能正在加速变现,“有些2B的项目,盈利已经很好了。”对于投资人和创业者而言,变现不仅仅代表了财务模型的转正,也意味着终于赢得了市场与用户的认可。
四家独角兽
拥有大数据支持的金融、安防和医疗,被视为是人工智能的下一个机会,也成为过去一年资本聚集的行业。国内计算C视觉赛道的创业公司接近30 家,人脸识别领域更是出现4 个独角兽――旷视(Face++)、商汤、依图、云从科技,纷纷完成融资。2017年,在工信部的“独角兽”企业榜单中,旷视的市场估值突破20亿美元。
旷视市场部副总裁谢忆楠告诉《21CBR》记者,2013年,旷视开始专注于人脸视觉的产品通用化。“当时主攻三方面的算法――人脸检测、关键点标注和人脸识别,团队基于行业做了很多技术上的研究。”2013-2014年,旷视拿下3项世界计算机视觉竞赛的第一名。2015年,在德国汉诺威IT博览会上,马云向德国总理默克尔演示Smile to Pay扫脸技术,就是由旷视提供核心算法,将刷脸支付模块内置到支付宝客户端中。
目前,旷视的Face++人工智能开放平台面向中小银行、地产园区、IT企业及独立开发者开放人脸、图像、文字等识别能力。其中,人脸识别API的日均调用量超过2400万次,是目前世界最大的人脸技术平台。旷视方面声称,其人脸识别技术在国内互联网金融领域拥有80%以上的份额。
旷视的快速崛起得益于技术和市场的多重利好。一方面,深度学习算法在过去10年间取得重要突破,给计算机视觉的大规模应用奠定了基础。另一方面,2014年,国家实名制工作相继在网络、电信和金融领域全面铺开。2015年,互联网金融雨后春笋般涌现,通过人脸识别技术完成远程开户和身份验证,成为各方普遍采用的技术手段。计算机视觉创业公司步入商业化时期。
谢忆楠表示,公司在商业化前期关键性地走通了“数据―算法―产品―技术”这一循环,面向行业的通用服务乃至更为深度的定制化方案得以落地。
而另一家独角兽公司――依图科技则啃下了安防这块骨头,其“蜻蜓眼”人像大平台服务于全国上百个地市的公安系统,是全国唯一拥有十亿级人像库比对能力的公司。
利用技g优势,快速切入一两个行业,从而形成深度合作,是上述独角兽公司早期脱颖而出的共同原因。在现有技术已然成熟、各家准确率纷纷达标的情况下,如何基于真实痛点挖掘场景,提供定制化且可复制的解决方案,成为打破传统行业壁垒、快速拿下市场的关键。
而在语音赛道,技术成熟也意味着消费级机器人市场的打开。Rokid并非头一个玩家,却自带网红体质。其迄今为止的两款产品,在未设独立展位的情况下,连续两年获得CES(国际消费电子展)创新类奖项。创始人Misa(祝铭明)在江湖上见首不见尾,研究团队的阵容却堪称强大:位于北京和旧金山的两个实验室由数十名全职博士科学家组成,来自中科院、哈佛、斯坦福、伯克利等一批海内外顶尖院校。
Rokid北京实验室负责人高鹏告诉《21CBR》记者,智能音箱Pebble的核心功能体验分为三类:音乐、儿童读物等内容服务,天气、闹钟等工具类服务,以及智能家居控制服务。凭借600万首320K码率高品质曲库和喜马拉雅FM等对接资源,Pebble向用户提供的内容涵盖音乐、新闻、电台、相声、戏曲和脱口秀等。一切体验从用户对其说出激活词“若琪”的一刻开启。
激活词“若琪”的设计和打磨用了将近一年时间。高鹏介绍,激活词的识别错误率随着音节的加长而降低。目前国内外同类产品的激活词大多设置在3-4个音节,而双音节的高激活率很难成功。在经历“若小琪”、“Hi,若琪”的反反复复后,研究团队还是通过算法验证实现了双音节。在公开的试用报告中,Pebble多个维度的人机交互体验超过了谷歌推出的业内首款产品Google Home。
而在声音定位上,祝铭明早年从威尔・史密斯主演的科幻电影《我,机器人》中的机器人女声获得灵感。高鹏坦言:“当时根本没有那样的现成声音。”团队开始在市场上寻觅适合的音色,同时自主研发TTS(Textto-Speech)语音合成技术,并由专门团队对声音处理和内容反馈进行设计,“若琪”最终被定位为一个温柔、幽默、聪明且不失个性的女声。
通过开放基于网络协议的API标准,Rokid还将飞利浦、小米、lifesmart等品牌纳入到其智能家居生态链中。在几乎未做投放、线下推广的情况下,开售三个星期的Pebble在天猫官网的销量逼近千台。祝铭明对媒体表示:“产品日活跃用户数量超过50%,用户使用时长平均超过1小时。”6月8日,Rokid宣布开通全渠道销售,Pebble登陆全国500多家经销商门店。
在Rokid的品牌文案中,“自然”是多次出现的一个词。产品负责人向文杰对此表示,语言、视觉和触摸是人类最自然的交流方式,“未来的产品方向就是向用户提供最自然的交互体验,希望让用户感受到,我们的产品是有温度的家庭成员,而不是一台冷冰冰的机器。”
智能的未来
人工智能的商业春天才刚刚开始。
埃森哲的研究结果显示,到2035年,人工智能将有望令包括美国、日本在内的12个发达国家的经济增长率翻番,劳动生产率增长40%。在谢忆楠看来,目前国内人工智能市场仍处在存量消化阶段,保守估计仍有七成左右的垂直行业尚待开发,在教育、交通、社保等领域潜力巨大。朱珑则表示,过去一年间,性能成倍提升的人工智能技术不断解锁应用场景,人类的想象力已经跟不上人工智能的发展速度。
机器的迷人之处在于智能未来。业内普遍认为,无人驾驶将是未来人工智能的重要落点。在创新工场的投资策略里,未来5-10年的投资项目中有相当一部分投给了无人驾驶。“机会太大了,将是万亿级的市场,且很难被个别巨头垄断。”王咏刚表示,无人驾驶是一个完整的产业链,从感知、决策、控制等多个模块的算法,再到各类传感器,乃至汽车共享和交通改造,有着巨大的想象空间,远未到技术收敛的阶段。
另一个充满未来感的方向则是沉浮数年的消费级智能硬件。亚马逊在6月初宣布,旗下智能音箱Echo的年出货量预期突破1000万台;苹果则被传即将在年度开发者大会中一款由语音助手Siri控制的智能音箱。国内方面则早有叮咚、小智者激起的浪花,“千箱之年”的说法因此在业内盛行开来。
Rokid将自身定位为一家科技公司而非硬件厂商,著眼于更宏大的语音技能生态建设。高鹏表示,Rokid将在近期推出开放平台,有望接入外卖、快递、叫车等来自第三方开发者的扩展功能,为用户提供更为丰富的语言技能应用。
人工智能从来就不是一场轻巧肆意的游戏,参与者面临的仍将是重重阻碍。
首先是巨大的人才缺口。陈洪亮称,未来很长一段时间,人工智能的马太效应将体现在人才方面。李开复提过一组数字,全球当下的人工智能专家不超过7000人,在中国这个数字可能是700个,且大多被BAT收入囊中。这也是创新工场成立人工智能工程院的一大使命:通过人才招聘和高校共建,同时加强与政府部门、国内外高科技公司的合作,培育和孵化高水准的人工智能技术团队。
数据壁垒则是人工智能创业打破大公司垄断、完成行业深度融合的另一项难题,一大原因在于数据安全泄露和用户隐私破坏。王咏刚认为,人工智能的发展与数据安全不是相互撕裂的关系,而是博弈均衡。
而最大的困难还是来源于技术本身。深度学习理论沿革每隔10年左右就会经历巨大变化,每一次的技术递进也推动着人工智能的工业化进程,新商业模式因此而生。“前沿技术当然对一线业务开展有着指导意义。”王咏刚说。
人工智能始终是强技术驱动的领域。谢忆楠称:“从算法、软件、硬件到解决方案,每一步都要靠硬实力说话。纯商业模式的东西,天花板很明显。”计算机视觉领域的四个独角兽之一云从科技CEO周曦也公开宣称:“人工智能是有门槛的,短期之内只要自己保持足够快的进步速度,别人很难对你构成威胁。”