前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇传感器论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
本文工作中设计的便携式电场传感器标定装置,其基本结构由两个平行极板构成,标定装置的下极板开有圆孔,并采用特殊夹具固定被检电场传感器。被检电场传感器的动片与标定装置的下极板平齐,使得被检电场传感器无需进入标定装置的上、下极板之间的空间,即可感应到其电场。
2电场传感器标定装置结构参数的优化设计分析
基于有限元的相关理论,首先对标定装置的机械结构建立模型。黄色部分为标定装置,蓝色部分为电场传感器。然后,对几何模型进行单元剖分、加载,可求解出标定装置两极板间的电场分布情况。根据求得的电场分布情况,可进行标定装置结构参数的设计。在计算求解过程中,改变加载在两极板间的电压,使两极板间形成的电场强度的理论值始终为20kV/m。被标定的场磨式电场传感器外壳直径8cm,感应片直径6cm,传感器外壳与标定装置的下极板接触。
2.1标定装置极板间距和极板直径对电场的影响研究
在标定装置的设计上,受限于被检电场传感器的尺寸,以及要考虑标定装置的便携性,把标定装置的极板直径L固定为16cm。在L固定的条件下,分析两极板间距H对极板间电场强度的影响,并以此确定极板间距H。依照图2所建立的模型,取H值分别为1cm,2cm,3cm,4cm和5cm,,。横坐标是电场传感器感应片距离标定装置中心的横向距离,单位为m;纵坐标是感应片某一位置处的电场强度,单位是V/m。同时,在感应片的敏感范围(x<0.03m)内,电场强度并非恒定值,而是随着与标定装置中心距离的增加发生了畸变。图6为极板间电场强度实际值的畸变情况。理想情况下,在感应片的敏感范围内,电场强度应保持不变,但由于标定装置中极板边缘效应的存在,使得感应片敏感区域内的电场不是一个恒定值,距离电场传感器的外壳越近,畸变程度越大。定义在感应片敏感范围(x<0.03m)内各个位置处电场强度的平均值与理论值之比为电场强度的畸变率,并用该值来衡量电场强度的变化程度。畸变率越小,说明所产生的电场越接近均匀分布。综上,在极板直径固定为16cm时,极板间距为5cm时,电场强度的实际值与理论值最为接近,且在电场传感器感应片感应区域内电场的畸变最小。同时,在保证H/L小于0.5的条件下,极板直径L对实际电场的影响非常小。
2.2传感器外壳与标定装置的相对位置研究
当标定装置与被检电场传感器配合不好时,容易使被检电场传感器相对于标定装置发生倾斜。模型中,极板直径为16cm,极板间距为1cm,倾斜角度为1.5°。标定装置的倾斜,会对被检电场传感器感应片上方的电场分布造成较大影响。图9是基于图8的倾斜模型计算得到的感应片上方的电场强度的横向分布。由于相对倾斜后,模型不再对称,因此分析了整个感应片上方(-3cm~3cm)的电场强度的横向分布,并将结果与没有相对倾斜时的感应片上方电场分布作了比较。被检电场传感器与标定装置在相对倾斜角为1.5°时的电场的畸变情况,比没有相对倾斜时严重。有相对倾斜时,感应片上方电场分布更加不均匀,因而被检电场传感器与标定装置间的相对倾斜会对标定结果产生较大影响。在标定装置设计中,应使标定装置与被检电场传感器的外壳的直径尽可能接近(极限情况是外径与孔径的差值为零),以使得两者紧密结触,从而保证被检电场传感器与标定装置之间不会发生相对倾斜。
3便携式标定装置的优化设计和实验结果分析
当输出为-3kV至+3KV的可调直流电源加在两极板上时,两极板间的电场强度理论值的范围为-60kV/m~+60kV/m。使用在标准标定装置中标定好的电场传感器测量本文工作中所设计的便携式标定装置中的实际电场。实测电场强度与所加电源电压之间有良好的线性关系,同时,实测电场小于理论电场,两者的比值约为0.92,这与给出的仿真结果吻合。在野外的实际标定过程中,保持被检电场传感器与标定装置的位置不变,使得电场强度理论值与实际值的比值保持不变,在此基础上,可以通过加在两极板间的电压计算出电场强度的理论值,计算出电场强度的实际值。然后,通过电场强度实际值与被检电场传感器输出值两者间的关系,计算出被检电场传感器的灵敏度,实现对被检电场传感器的标定。经过较长时间的现场使用,所研发的便携式标定装置能够方便、快捷地对场磨式电场传感器进行校准。目前,该校准装置已经应用于中国电力科学研究院特高压直流实验基地高压直流输电线路地面合成电场测量系统中,并已取得了良好的效果。
4结论
一、汽车电子操控和安全系统谈起
近几年来我国汽车工业增长迅速,发展势头很猛。因此评论界出现了一些专家的预测:汽车工业有可能超过IT产业,成为中国国民经济最重要的支柱产业之一。其实,汽车工业的增长必将包含与汽车产业相关的IT产业的增长。例如,虽然目前在我国一汽的产品中电子产品和技术的价值含量只占10%—15%左右,但国外汽车中电子产品和技术的价值含量平均约为22%,中、高档轿车中汽车电子已占30%以上,而且这个比例还在、不断地快速增长,预期很快将达到50%。
电子信息技术已经成为新一代汽车发展方向的主导因素,汽车(机动车)的动力性能、操控性能、安全性能和舒适性能等各个方面的改进和提高,都将依赖于机械系统及结构和电子产品、信息技术间的完美结合。汽车工程界专家指出:电子技术的发展已使汽车产品的概念发生了深刻的变化。这也是最近电子信息产业界对汽车电子空前关注的原因之一。但是,必须指出的是,除了一些车内音响、视频装备,车用通信、导航系统,以及车载办公系统、网络系统等车内电子设备的本质改变较少外,现代汽车电子从所应用的电子元器件(包括传感器、执行器、微电路等)到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器(智能执行器、智能变送器)。
实际上,汽车电子已经经历了几个发展阶段:从分立电子元器件搭建的电路监测控制,经过了电子元器件或组件加微处理器构筑的各自独立的、专用的、半自动和自动的操控系统,现在已经进入了采用高速总线(目前至少有5种以上总线已开发使用),统一交换汽车运行中的各种电子装备和系统的数据,实现综合、智能调控的新阶段。新的汽车电子系统由各个电子控制单元(ECU)组成,可以独立操控,同时又能协调到整体运行的最佳状态。例如为使发动机处于最佳工作状态,就需要从吸入汽缸的空气流量、进气压力的测定开始,再根据水温、空气温度等工作环境参数计算出基本喷油量,同时还要通过节气门位置传感器检测节气门的开度,确定发动机的工况,进而控制,调整最佳喷油量,最后还需要通过曲轴的角速度传感器监测曲轴转角和发动机转速,最终计算出并发出最佳点火时机的指令。这个发动机燃油喷射系统和点火综合控制系统还可以与废气排放的监控系统和起动系统等组合,构筑成可使汽车发动机功率和扭矩最大化,而同时燃油消耗和废气排放最低化的智能系统。
还可以举一个安全驾驶方面的例子,出于平稳、安全驾驶的需要,仅只针对四个轮子的操控上,除了应用大量压力传感器并普遍安装了刹车防抱死装置(ABS)外,许多轿车,包括国产车,已增设了电子动力分配系统(EBD),ABS+EBD可以最大限度的保障雨雪天气驾驶时的稳定性。现在,国内外的一些汽车进一步加装了紧急刹车辅助系统(EBA),该系统在发生紧急情况时,自动检测驾驶者踩制动踏板时的速度和力度,并判断紧急制动的力度是否足够,如果需要,就会自动增大制动力。EBA的自控动作必须在极短时间(例如百万分之一秒级)内完成。这个系统能使200km/h高速行驶车辆的制动滑行距离缩短极其宝贵的20多米。针对车轮的还有分别监测各个车轮相对于车速的转速,进而为每个车轮平衡分配动力,保证在恶劣路面条件下各轮间具有良好的均衡抓地能力的“电子牵引力控制”(ETC)系统等。
从以上列举的两个例子可以清楚看到,汽车发展对汽车电子的一些基本要求:
1.电子操控系统的动作必须快速、正确、可靠。传感器(+调理电路)+微处理器,然后再通过微处理器(+功率放大电路)+执行器的技术途径已经不再能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、可靠性和适时性。
2.现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。理想的情况当然是,电子控制单元应与受控制部件紧密结合,形成一个整体。因此器件和电路的微型化、集成化是不可回避的道路。
3.电子控制单元必须具有足够的智能化程度。以安全气囊为例,它在关键时刻必须要能及时、正确地瞬时打开,但在极大多数时间内气囊是处在待命状态,因此安全气囊的ECU必须具有自检、自维护能力,不断确认气囊系统的可正常运作的可靠性,确保动作的“万无一失”。
4.汽车的各种功能部件都有各自的运动、操控特性,并且,对电子产品而言,大多处于非常恶劣的运行环境中,而且各不相同。诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。因此,电子元器件和电路必须要有高稳定、抗环境和自适应、自补偿调整的能力。
5.与上述要求同样重要,甚至有时是关键性的条件是,汽车电子控制单元用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。一些微传感器和智能传感器就是这方面的典范。例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低(几美元至十几或几十美元),所以在汽车工业中找到了自己最大的应用市场,反过来也有力地促进了汽车工业的电子信息化。
二、智能传感器:微传感器与集成电路融合的新一代电子器件
微传感器、智能传感器是近几年才开始迅速发展起来的新兴技术。在我国的报刊杂志上目前所使用的技术名称还比较含混,仍然笼统地称之为传感器,或者含糊地归纳为汽车半导体器件,也有将智能传感器(或智能执行器、智能变送器)与微系统、MEMS等都归入了MEMS(微机电系统)名称下的。这里介绍当前一些欧美专著中常用的技术名词的定义和技术内涵。
首先必须说明的是,在绝大多数情况下,本文大小标题及全文中所说的传感器其实是泛指了三大类器件:将非电学输入参量转换成电磁学信号输出的传感器;将电学信号转换成非电学参量输出的执行器;以及既能用作传感器又能用作执行器,其中较多的是将一种电磁学参量形式转变成另一种电磁学参量形态输出的变送器。就是说,关于微传感器、智能传感器的技术特性可以扩大类推到微执行器、微变送器-传感器(或执行器、或变送器)的物理尺度中至少有一个物理尺寸等于或小于亚毫米量级的。微传感器不是传统传感器简单的物理缩小的产物,而是基于半导体工艺技术的新一代器件:应用新的工作机制和物化效应,采用与标准半导体工艺兼容的材料,用微细加工技术制备的。因此有时也称为硅传感器。可以用类似的定义和技术特征类推描述微执行器和微变送器。
它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(MCU)间的接口电路和MCU。这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。应该指的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。
智能传感器(SmartSensor)、智能执行器和智能变送器-微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力,自诊断、自维护等。显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。
在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口(SPI)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成CMOS电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车工业。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快(现在约为几美元一只)。
顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将SmartSensor(或device)和Intelligentsensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。
相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。这是一种非智能型传感器莫属的情况,因为CCD阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、高档长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。
微系统(Microsystem)和MEMS(微机电系统)-由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。
MEMS芯片的左侧给出的是制备MEMS芯片需要的基本工艺技术。它的右侧则为主要应用领域列举。很明显,MEMS的最好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的CMOS工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。
微传感器合乎逻辑的发展延伸是智能传感器,智能传感器自然延伸则是微系统和MEMS,MEMS的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的微机械(Micromachines)。现在,开发成功、并已有商业产品的MEMS品种已不少,涵盖图4所示的各大领域。其中包括全光光通信和全光计算机的关键部件之一的二维、三维MEMS光开关。
关键词:传感器精度温度补偿径向基函数神经网络温度传感器DSl8B20
一般工业测控现场的环境温度变化急剧,传感器大多数都对温度有一定的敏感度,这样就会使传感器的零点和灵敏度发生变化,从而造成输出值随环境温度的变化而变化,导致测量出现附加误差,因此温度补偿问题一直是工业测控系统中的关键环节[1]。本文采用DSl8B20智能温度传感器和RBF神经网络相结合的温度补偿新方法来实现传感器高精度温度补偿。本文介绍的方法将DSl8B20测量值作为温度补偿输入,将传感器本身的测量值作为另一输入,用RBF神经网络构成双输入单输出的补偿模型,输出即为补偿后的测量值。RBF神经网络主要用于传感器的数据处理,以改善传感器测量精度。
1DSl8B20数字温度传感器测温原理
1.1DSl8B20的特性
DSl8B20是美国DALLAS公司继DSl820之后推出的增强型单总线数字温度传感器,它在测温精度、转换时间、传输距离、分辨率等方面较DSl820有了很大的改进,这给用户带来了更方便的使用和更令人满意的效果。其特点如下:
(1)单线接口:仅需一根口线与单片机连接;
(2)由总线提供电源,也可用数据线供电,电压范围:3.0~5.5V;
(3)测温范围为:-55~+125℃,在-10~+85℃时,精度为0.5℃;
(4)可编程的分辨率为9~12位,对应的分辨率为0.5~0.0625℃;
(5)用户可编程的温度报警设置;
(6)12位分辨率时最多在750ms内把温度值转换为数字量。
1.2DSl820引脚功能说明
DSl820的PR-35封装形式见图1,其外表看起来像三极管。另外还有8脚SOIC封装形式,只用3、4和5脚,其余为空脚或不需连接引脚。不过最常见的形式是PR-35封装,其引脚说明如表1所示。
表1DS1820引脚说明
8脚SOICPR-35符号说明
51GND地
42DQ单线数据输入输出引脚
33VDD正电源,一般为+5V
1.3DSl820温度数据格式
在DSl820中,转换温度值是以9位二进制形式表示的,而输出温度则是以16位符号扩展的二进制补码读数形式提供。采用的办法是将低八位用补码表示,第九位以符号扩展形式扩展至其它七位。具体温度表示格式见表2。
表2温度/数据关系
温度数字输出(二进制)数字输出(十六进制)
+125000000001111101000FAH
+2500000000001100100032H
+1/200000000000000010001H
+000000000000000000000H
-1/21111111111111111FFFFH
-251111111111001110FFCEH
-551111111110010010FF92H
在实际应用中,测量温度往往在0℃以上,此时可只取16位二进制温度输出的低8位,即1个字节,这样将使计算和编程工作更为便利。
1.4DSl8B20的测温原理
DSl8B20的测温原理为:内部计数器对一个受温度影响的振荡器的脉冲计数,低温时振荡器的脉冲可以通过门电路,而当到达某一设置高温时,振荡器的脉冲无法通过门电路。计数器设置为-55℃时的值,如果计数器到达0之前门电路未关闭,则温度寄存器的值将增加,这表示当前温度高于-55℃。同时,计数器复位在当前温度值上,电路对振荡器的温度系数进行补偿,计数器重新开始计数直到回零。如果门电路仍然未关闭,则重复以上过程。温度转换所需时间不超过750ms,得到的温度值的位数因分辨率不同而不同[2]。DSl8B20同AT89C52单片机的接口电路如图2所示。这种接口方式只需占用单片机一根口线,与智能仪器或智能测控系统中的其它单片机或DSP的接口也可采用类似的方式。
2RBF神经网络及学习算法
RBF神经网络即径向基函数(RadialBasisFunction)神经网络[3~4],其结构如图3所示。它很容易扩展到多输出节点的情形,在此只考虑一个输出变量Y的情况。
RBFNN包括一个输入层、一个隐含层和一个输出层的最简模式。隐含层由一组径向基函数构成,与每个隐含层节点相关的参数向量为Ci(即中心)和σi(即宽度)。径向基函数有多种形式,一般取高斯函数[5]。具体如下:
上式中,m是隐含层结点数;·是欧几里德范数;X,Ci∈Rn,ωi是第i个基函数与输出结点的连接权值(i=1,2…,m)。
RBF神经网络是一种性能良好的前向网络,它具有最佳逼近性能,在结构上具有输出一权值线性关系、训练方法快速易行、不存在局部最优问题的特点。该网络的学习算法有很多种,本文将带遗忘因子的梯度下降法应用于RBF神经网络的参数调整[6],即在考虑当前时刻(k时刻)的网络状态的变化时,将前一个时刻(k—1时刻)的网络参数变化也包括进去。其具体算法如下:
上式中,m是隐含层结点数;||·||是欧几里德范数;X,Ci∈Rn,ωi是第i个基函数与输出结点的连接权值(i=1,2,…,n)。
RBF神经网络是一种性能良好的前向网络,它具有最佳逼近性能,在结构上具有输出一权值线性关系、训练方法快速易行、不存在局部最优问题的特点。该网络的学习算法有很多种,本文将带遗忘因子的梯度下降法应用于RBF神经网络的参数调整,即在考虑当前时刻(k时刻)的网络状态的变化时,将前一个时刻(k-1时刻)的网络参数变化也包括进去。其具体算法如下:
其中,J为误差函数,Y(k)代表希望的输出,Y(W,k)为网络的实际输出,W是网络的所有权值组成的向量。
隐层一输出层连接权值矩阵的调整算法为:
其中,μ(k)为学习率,α(k)为动量因子,也称为遗忘因子,又称动量项或阻尼项。将其称为遗忘因子可从对于新旧信息的学习与遗忘的角度来理解;称为动量项或阻尼项是因为在网络的学习训练中,此项相当于阻尼力,当训练误差迅速增大时,它使网络发散得越来越慢。总之,它使网络的变化趋于稳定,有利于网络的收敛。
3测试方法及推广应用分析
实验中以测量压力为例,采用Honeywell的24PCG—FAlG型压力传感器。将传感器测量值和DSl8B20的输出值作为网络输入层节点的输入,与其对应的压力是网络输出层节点的输出。采用的RBF神经网络为三层网络结构,其中,输入层有2个节点,隐含层有8个节点,输出层有1个节点。基于上一节中提到的网络参数调整算法,通过调整RBF网络中的可调参数(隐层节点数、学习速率、遗忘因子和网络权值、隐层标准偏差等)进行网络的训练和测试,并采用均方根(RMS)计算其训练精度和测试精度。共采集样本数据120组,其中72组作为网络训练样本,48组作为网络测试样本,在环境温度变化范围为-5℃~75℃时,最佳RBF的神经网络的训练精度为0.048%,测试精度为0.062%。同时基于获得的实验数据,采用最小二乘拟合方法建立的数学模型,其拟合精度为0.170%;用单片机直接预存线性插值补偿的方法,测试精度为0.280%。
煤矿安全监控系统应该是一个功能完善结构复杂的系统。该系统要具有对各类信号积累计量、开关量、模拟量等进行实时采集,快速传递,完整保存,及时处理,清晰显示,声光报警,控制等功能。系统可以对现场的一氧化碳,甲烷等气体的浓度,井下的湿度,温度,风速以及矿井内有无粉尘和烟雾进行实时监控。对于矿井下的各类设备可以进行远程遥控,比如打开或关闭主通风机,开启或关闭风门。为了监控甲烷浓度,一氧化碳浓度,风速,累计产煤量,温度,烟雾,馈电状态,油门状态,风筒状态,局部通风机打开和关闭,所以系统较为复杂,组成部分也比较多。系统包括主机、I/O接口电路、分站、无线传感器、报警器、电缆、接线柜、电源箱等设备。无线传感器网络的基本组成单位是数量众多的移动或静止的传感器。传感器是以多跳及自自组织的形式来构建监控网络的。它的功能是对网络覆盖区域内的监控对象进行信息的测量、采集、传送、处理,并报告给用户。用户接受到的数据其实是先由现场的传感器探测到,数据汇合到汇聚节点后在通过网络发送过来的。无线传感器网络的英文是WirelessSensorNetwork,简称WSN。系统中使用了三大基础技术,首先利用传感器技术采集数据,然后利用通信技术传输信息,最后利用计算机技术进行处理。煤炭监控管理系统,无线数据传输平台和地面中心站这三个部分构成了煤矿无线安全监控网络系统。
(1)煤炭监控管理系统:包括用户使用的操作界面,网络通讯的服务器以及实时数据库的服务器。
(2)无线数据传输平台:平台使用的是像CDMA网络这样的无线公网。
(3)地面中心站:包括监控主机、I/O接口、UPS电源、CDMA无线路由器、打印机、配套的监控软件、分站、温度传感器、风速传感器、烟雾传感器、一氧化碳传感器、瓦斯传感器、设备开停传感器、远动开关等等各类设备组成。
二、网络节点结构
WSN技术具有非常良好的应用相关性,其应用相关性的优越性很好即使是利用平台构建的系统也无法企及。一个性能完善的无线传感器网络一般都要涉及多个不同学科,例如拓扑控制,网络协议和安全,数据融合等。在应用WSN技术的希望达到使用小能量即可使系统长期稳定地工作,所以WSN技术应用的重要目标就是能效比要高。下面用一个图形来反映WSN节点的构造。
三、网络协议栈
无线网络要想构建的好那么先决条件就是网络协议建立的是否合理。五协议,三平台架构比较得合理,所以五层协议被九成的无线网络使用。五层协议包括:
(1)提供无线信号收发和信号转换的物理层。
(2)支持媒体实时访问,数据成帧及帧检测的数据链路层。
(3)负责路由器相关工作的网络层。
(4)负责各类信息快速流通的传输层。
(5)为保障硬件系统正常工作而提供软件支撑的应用层。三平台是:
(1)进行能源配置的能源管理平台。
(2)负责传感器运行的移动管理平台。
(3)进行煤矿各项工作任务协调的任务管理平台。
四、ZigBee介绍
ZigBee是IEEE802.15.4协议的代名词。依据这个协议规定的是一种适用于无线网络的通信技术,这种技术适用于较短的距离,功率消耗低是它的一个突出的优点。ZigBee网络拓扑结构,拓扑结构(NetworkTopology)即网络中各处的连接策略,拓扑结构的形式有很多种。一个ZigBee网络是由协调器,路由器和终端设备等三类设备组织而成的。一个ZigBee网络可以最多使用的网络拓扑形式很多,主要以树形,环形,星形,网状为主,网络上的节点数根据现场的实际情况制定少则几十个多则可达65536个。灵活的保证,无线网络可靠性的大大提高主要依靠网络的自恢复能力,网络中数据传输的可靠性也随着数据路由的自由灵活组合而大幅度增强。这些特点使得它非常适合于对可靠性要求高的无线网络。一个ZigBee网络可以包括多个路由器和终端设备,而协调器只需要一个就够了。无线网络的建立、维护由协调器来负责,而路由器的作用是把最佳的路由器为数据选择出来。标准的7层开放式系统互联(OSI)模型是ZigBee协议栈体系结构的基础,但不需要对每层都进行定义,定义的只是针对那些要涉及到的ZigBee层。实际应用中七层中仅有物理层(PHY)和介质接入控制层(MAC)两层涉及其中,所以在设计时IEEE802.15.42003标准只定义了处于底部的这两层。ZigBee联盟已经设计出网络层和应用层(API)这两层的框架,无需再另外设计。其中,应用层的框架结构包括了ZigBee设备对象(ZDO),应用支持子层(APS)和制造商开发的应用程序对象三个部分。体系结构如图3所示:ZigBee的功能造成它使用上针对性较强,它可以使用在包括工业,农业以及建筑等自动化网的建设中。由于ZigBee中传感器可以对数据实时采集和监控,利用这个特点那么电力行业,矿山行业和物流行业等都可以成为ZigBee技术的用武之地。对所建网络范围内的各个区域内的移动目标可以进行良好定位是ZigBee技术的又一个特色,所以ZigBee技术在遥测方面也大放异彩。
关键词:无线传感器网络;组成;应用;发展
科技发展的脚步越来越快,人类已经置身于信息时代。而作为信息获取最重要和最基本的技术——传感器技术,也得到了极大的发展。传感器信息获取技术已经从过去的单一化渐渐向集成化、微型化和网络化方向发展,并将会带来一场信息革命。具有感知能力、计算能力和通信能力的无线传感器网络(WSN,wirelesssensornetworks)综合了传感器技术、嵌人式计算技术、分布式信息处理技术和通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些信息进行处理,获得详尽而准确的信息,传送到需要这些信息的用户。
由于WSN的巨大应用价值,它已经引起了世界许多国家的军事部门、工业界和学术界的广泛关注,被广泛地应用于军事,工业过程控制、国家安全、环境监测等领域。
无线传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等多种领域,是当前计算机网络研究的热点。
一、发展概述
早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感器网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制器的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。
无线传感器网络是新一代的传感器网络,具有非常广泛的应用前景,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。发达国家如美国,非常重视无线传感器网络的发展,IEEE正在努力推进无线传感器网络的应用和发展,波士顿大学(BostonUniversity)还于最近创办了传感器网络协会(SensorNetworkConsortium),期望能促进传感器联网技术开发。美国的《技术评论》杂志在论述未来新兴十大技术时,更是将无线传感器网络列为第一项未来新兴技术,《商业周刊》预测的未来四大新技术中,无线传感器网络也列入其中。可以预计,无线传感器网络的广泛是一种必然趋势,它的出现将会给人类社会带来极大的变革。
二、无线传感器网络的定义和特点
无线传感器网络可以看成是由数据获取网络、数据分布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、数据处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。无线传感器网络操作系统Tiny0S141的研制者,JasonHill博士把WSN定义为:
Sensing+CPU+Radio=Thousandsofpotentialapplication
哈尔滨工业大学的李建中教授将WSN定义为:WSN是由一组传感器节点以自组织的方式构成的有线或无线网络,其目的是协作地感知、采集和处理网络覆盖的地理区域中感知对象的信息,并给观察者。从硬件上看,WSN节点主要由数据采集单元、数据处理单元、无线数据收发单元以及小型电池单元组成,通常尺寸很小,具有低成本、低功耗、多功能等特点;从软件上看,它借助于节点中内置传感器有效探测所处区域的温度、湿度、光强度、压力等环境参数以及待测对象的电压、电流等物理参数,并通过无线网络将探测信息传送到数据汇聚中心进行处理、分析和转发。
WSN与传统传感器和测控系统相比具有明显的优势。它采用点对点或点对多点的无线连接,大大减少了电缆成本,在传感器节点端即合并了模拟信号/数字信号转换、数字信号处理和网络通信功能,节点具有自检功能,系统性能与可靠性明显提升而成本明显缩减。
无线传感器网络具有以下特点:
1、硬件资源有限。WSN节点采用嵌入式处理器和存储器,计算能力和存储能力十分有限。所以,需要解决如何在有限计算能力的条件下进行协作分布式信息处理的难题。
2、电源容量有限。为了测量真实世界的具体值,各个节点会密集地分布于待测区域内,人工补充能量的方法已经不再适用。每个节点都要储备可供长期使用的能量,或者自己从外汲取能量(太阳能)。当自身携带的电池的能量耗尽,往往被废弃,甚至造成网络的中断。所以,任何WSN技术和协议的研究都要以节能为前提。
3、无中心。在无线传感器网络中,所有节点的地位都是平等的,没有预先指定的中心,是一个对等式网络。各节点通过分布式算法来相互协调,在无人值守的情况下,节点就能自动组织起一个测量网络。而正因为没有中心,网络便不会因为单个节点的脱离而受到损害。节点可以随时加入或离开网络,任何节点的故障不会影响整个网络的运行,具有很强的抗毁性。
4、自组织。网络的布设和展开无需依赖于任何预设的网络设施,节点通过分层协议和分布式算法协调各自的行为,节点开机后就可以快速、自动地组成一个独立的网络。
5、多跳(Multi-hop)路由。WSN节点通信能力有限,覆盖范围只有几十到几百米,节点只能与它的邻居直接通信。如果希望与其射频覆盖范围之外的节点进行通信,则需要通过中间节点进行路由。WSN中的多跳路由是由普通网络节点完成的。
6、动态拓扑。WSN是一个动态的网络,节点可以随处移动;一个节点可能会因为电池能量耗尽或其他故障,退出网络运行;也可能由于工作的需要而被添加到网络中。这些都会使网络的拓扑结构随时发生变化,因此网络应该具有动态拓扑组织功能。
7、节点数量众多,分布密集。WSN节点数量大、分布范围广,难于维护甚至不可维护。所以,需要解决如何提高传感器网络的软、硬件健壮性和容错性。
8、传输能力的有限性。无线传感器网络通过无线电波进行数据传输,虽然省去了布线的烦恼,但是相对于有线网络,低带宽则成为它的天生缺陷。同时,信号之间还存在相互干扰,信号自身也在不断地衰减,诸如此类。不过因为单个节点传输的数据量并不算大,这个缺点还是能忍受的。
9、安全性的问题。无线信道、有限的能量,分布式控制都使得无线传感器网络更容易受到攻击。被动窃听、主动入侵、拒绝服务则是这些攻击的常见方式。因此,安全性在网络的设计中至关重要。
三、应用现状
虽然无线传感器网络的大规模商业应用,由于技术等方面的制约还有待时日,但是最近几年,随着计算成本的下降以及微处理器体积越来越小,已经为数不少的无线传感器网络开始投入使用。目前无线传感器网络的应用主要集中在以下领域
1.环境的监测和保护
随着人们对于环境问题的关注程度越来越高,需要采集的环境数据也越来越多,无线传感器网络的出现为随机性的研究数据获取提供了便利,并且还可以避免传统数据收集方式给环境带来的侵入式破坏。
2.医疗护理
无线传感器网络在医疗研究、护理领域也可以大展身手。罗彻斯特大学的科学家使用无线传感器创建了一个智能医疗房间,使用微尘来测量居住者的重要征兆(血压、脉搏和呼吸)、睡觉姿势以及每天24小时的活动状况。英特尔公司也推出了无线传感器网络的家庭护理技术。该技术是做为探讨应对老龄化社会的技术项目
CenterforAgingServicesTechnologies(CAST)的一个环节开发的。该系统通过在鞋、家具以家用电器等家中道具和设备中嵌入半导体传感器,帮助老龄人士、阿尔茨海默氏病患者以及残障人士的家庭生活。利用无线通信将各传感器联网可高效传递必要的信息从而方便接受护理。而且还可以减轻护理人员的负担。英特尔主管预防性健康保险研究的董事EricDishman称,“在开发家庭用护理技术方面,无线传感器网络是非常有前途的领域”。
3.军事领域
由于无线传感器网络具有密集型、随机分布的特点,使其非常适合应用于恶劣的战场环境中,使其非常适合应用于恶劣的战场环境中,包括侦察敌情、监控兵力、装备和物资,判断生物化学攻击等多方面用途。
4.商业化用途
无线传感器网络还被应用于其他一些领域。比如一些危险的工业环境如井矿、核电厂等,工作人员可以通过它来实施安全监测。也可以用在交通领域作为车辆监控的有力工具。尽管无线传感器技术目前仍处于初步应用阶段,但已经展示出了非凡的应用价值,相信随着相关技术的发展和推进,一定会得到更大的应用。从应用的情况来看,北美的状况最好,在楼宇自动化、环境监控等方面,无线传感器网络已经开始大展拳脚。超级秘书网
四、需要解决的问题
就目前的技术水平来说,让无线传感器网正常运行并大量投入使用还面临着许多问题:
1.网络内通信问题。无线传感器网络内正常通信联系中,信号可能被一些障碍物或其他电子信号干扰而受到影响,怎么安全有效的进行通信是个有待研究的问题。
2.成本问题。在一个无线传感器网络里面,需要使用数量庞大的微型传感器,这样的话成本会制约其发展。
3.系统能量供应问题。目前主要的解决方案有:使用高能电池;降低传感功率;此外还有传感器网络的自我能量收集技术和电池无线充电技术。其中后两者备受关注。