首页 > 文章中心 > 电源控制器

电源控制器

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电源控制器范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

电源控制器

电源控制器范文第1篇

关键词:SMPS;控制器;TDA168460-2/TDA16847;PFC

1概述

英飞凌(Infineon)公司推出的TDA16846和TDA16847开关电源控制器自投放市场以来,在TV、VCR、SAT接收机及PC监视器等SMPS中获得了广泛应用。目前对这两种控制器进行了改进,并将改进和创新后的器件称为2型或第二代产品,型号分别为TDA16846-2和TDA16847-2。

TDA16846-2/TDA16847-2是支持低功率待机和功率因数校正PFC的SMPS控制器,可用于固定频率PFC或同步模式反激式变换器中,该产品既可以驱动功率MOSFET,也可以驱动双极型功率器件。TDA16846-2/TDA16847-2在轻载下具有低功耗性能,其开关频率可以随负载减轻而逐步降低。

2TDA16846-2/47-2的结构特点

TDA16846-2和TDA16847-2采用14脚P-DIP-14-3封装,其引脚排列如图1所示。图2是这两种芯片的内部结构图。

这两种器件的不同点是TDA16846-2的8脚不接,而TDA16847-2的8脚为暂态高功率电路的电源功率管理输出(该脚通过一只电容和一个RC电路与地相连)。两种器件的引脚功能如表1所列。

表1引脚功能

引脚符号功能

1OTC内置截止时间电路,该脚与地之间连接RC电路,决定振铃抑制时间和待机频率

2PCS初级电流模拟(检测)

3RZ1调整和过零信号输入

4SRC连接软启动和控制电压调节电容器

5OC1光耦合器输入

6FC2不连接(TDA16846-2)/该脚电压大于1,2V,SMPS截止)

7SYN同步输入

8N.C./PMO不连接(TDA16846-2)/暂态高功率电路功率管理输出(TDA16847-2)

9REF参考电压和电流

10FC1故障比较器1输入(该脚电压大于1V,SMPS截止)

11PVC初级电压检测

12GND地

13OUTMOSFET栅极驱动输出

14VCC电源电压

TDA16846-2/TDA16847-2除具有软启动、低功耗、低启动电流及欠压/过压保护、电流限制/短路保护及静电放电ESD保护功能外,还具有如下主要特点:

带有PFC,并采用电荷泵电路;

频率随负载减轻可连续降低,在待机模式下,频率可调至20kHz;

可在固定频率或同步模式下操作;

带有临时高功率电路(THPC),具有电源管理功能(仅TDA16847-2)。

TDA16846-2/TDA16847-2的5脚(OCI)输入电压范围扩大到0V,该脚与地之间不再需要连接电阻;7脚(SYN)改进了启动特性,阻止了变压器饱和;11脚(PVC)通过加入尖峰信号消隐,提高了抗噪扰能力;13脚(OUT)减小了截止态输出电压电平;14脚(VCC)通过尖峰消隐,改善了抗噪性能。

与先前的TDA16846/TDA16847比较,TDA16846-2和TDA16847-2除进一步强化了低功率待机功能外,还在抗噪性能方面具有明显改善。

TDA16846-2/TDA16847-2支持低功率待机功能,在彩电等应用系统中具有重要意义。美国“能源之星”等标准要求电视机的待机功耗不大于3W,根据中国节能产品认证中心CPCE抽样调查,国产彩电待机功耗低于3W的只占被测彩电总量的13.4%,而9W以上的却占34.8%。目前待机功耗低于3W的国产彩电系列品种虽有较大增加,但距全部实现低于3W的目标尚有一定距离。使用TDA16846-2/TDA16847-2设计的彩电SMPS可以满足低待机功耗的要求,而且可以降低成本。

图2

3应用电路及工作原理

用TDA16846-2作控制器的SMPS电路如图3所示。为执行PFC,该电路在桥式整流器与150μF的滤波电容C07之间插入了由电感L08、二极管D08和电容C08组成的电荷泵电路,这样配合功率开关(T01),就可在桥式整流器输入端产生接近正弦波的AC电流,且与AC线路电压接近同相位,从而使线路功率因数(PF)远远大于0.90,电流总谐波失真(THD)低于20%。

3.1启动特性

SMPS加电之后,由于滤波电容C07正极上有直流干线电压,所以与IC12脚连接的电阻R22将有电流通过。该电流从IC1的2脚流入,经2脚与14脚内部连接的二极管参见图2对14脚外部电容C26充电。一旦C26上的充电电压达到15±0.5V的导通电平以上时,芯片开始工作。器件14脚上Vcc导通电流典型值为5mA,通过C26放电使14脚上的电压下降,在尚未降至欠压关断门限时,变压器的辅助绕组(7T)将通过IC14脚外部二极管D26对芯片提供所需的电流。当IC在固定频率下工作时,为防止在启动期间出现多重脉冲,可在IC1的3脚脉冲电压超过2.5V门限之前,使IC1工作于自由振荡(freerunning)模式。

3.2初级电流模拟/电流限制

电路中IC1的2脚外部电阻R22和电容C22用于产生一个与功率晶体管T01电流成正比的电压。在T01截止时,脚2上电压为1.5V,这样当C22通过R22被充电时,T01将处于导通状态。此时脚2上的电压V2可表示为:

V2=1.5V+LPIP/(R22C22)

式中,LP为变压器初级绕组电感,IP为通过功率晶体管的电流。

V2一般施加到IC2脚内的导通时间比较器的同相输入端,并与反相输入端上的控制电压比较。如果V2超过控制电压,驱动器阻断,以起到电流限制作用。控制电压最大值是IC1内的5V参考电压。功率晶体管的最大电流IP(max)为:

IP(max)=[(5V-1.5V)R22C22]/LP

控制电压可由IC1内的误差放大器、光耦合器或IC1脚11上的电压(V11)来决定。

图3

3.3折回(FoldBack)点校正

IC1脚11(PVC)上的电压V11可从连接到DC总线与地之间的电阻分压器(R23与R24)上获得。如果经整流的总线电压升高,功率晶体管的最大电流IP(max)将减小。实际上,最大电流IP(max)是独立的,与DC总线电压无关。可表示为:

Ip(max)=[(4V-V11/3)R22C22]/Lp

3.4截止时间电路OTC

IC1脚1(OTC)外部与地之间连接的R30和C30用于组成RC并联网络。当IC1驱动器关断时,内部电流源首先用0.5mA的电流对脚1外部电容C30充电。一旦脚3(RZI)上电压达到2.5V,充电电流将达到1mA,直到C30上的电压被充电到3.5V为止。C30的充电时间约为τ=(C30×1.5V)/1mA。

当C30上的电压达到3.5V以后,内部电流源将被切断,C30通过R30放电。当IC1脚1上的电压施加到内部截止时间比较器时,比较器的另一个输入就是控制电压。当截止时间比较器输出高电平且脚3上的电压低于25mV时,内部导通时间触发器置位,以保证功率晶体管在最小的电压时接通。如果没有过零信号则进入IC1脚3,那么,在脚1上的电压低于1.5V之前,功率晶体管将经过一段延时之后接通。只要脚1上电压高于被限制的控制电压,导通时间触发器就会截止,以抑制脚3上不适当的过零信号。而一旦控制电压低于2V,关断时间将达到恒定的最大值(≈0.56R30C30)。表2列出了控制电压与输出功率及截止时间的关系。

表2控制电压与输出功率、截止时间关系

控制电压输出功率截止时间

1.5~2V低不变(达最大值)

2~3.5V中减小

3.5~5V高自由振荡

实际上,变换器开关频率是输出功率的函数。

TDA16846-2的负载从属频率曲线如图4所示。

3.5误差放大器/软启动

IC1的(RZI)3脚是误差放大器和过零信号输入,(SRC)4脚是控制电压输入。误差放大器的同相输入端是5V参考电压。IC1脚3上的输入信号可从变压器辅助绕组经R38和R29组成的电阻分压器获得。如果脚3上的输入脉冲高于5V门限时,脚4上的控制电压将被拉低。因此,脚4与地之间连接的电容C25可用于决定控制电压的控制速度和软启动持续时间。

3.6固定频率与同步化操作

在图3所示的应用电路中,由于IC1的7脚与9脚(5V参考电压输出)是连接在一起的,故IC1工作在自由振荡调节模式。

若要求IC1在固定频率下操作时,脚7与地之间必须连接并联RC网络(Rosc与Cosc),此时,其开关频率fsw将由Rosc与Cosc设定:

fsw≈1.2/Rosc·Cosc。

因此,当Rosc=20kΩ、Cosc=470pF时,fsw=88kHz。

电源控制器范文第2篇

今天数据中心系统的挑战是,尽可能提高系统所有层面的效率,包括负载点、电路板、机架甚至安装层面,以变得更加环保。例如,将工作流发送给尽可能少的服务器、关闭目前不需要的服务器等,从而可降低系统的总体功耗。能做到这一点并达到系统性能目标(计算速度、数据传输速率等)的惟一方式是,采用一个全面的数字电源管理系统,以实时监视所有层面的功耗数据。

过去,设计师用一堆混杂的IC胡乱拼凑数字电源管理解决方案,这些IC包括监察器、排序器、DAC和ADC。这类解决方案除了固有的复杂性以外,还不易扩展,需要为未来的系统升级进行大量前期规划。LTC3883/LTC3883-1DC/DC控制器整合了所有数字电源管理功能,消除了上述复杂性,因此可构成一个易用、坚固和灵活的负载点(POL)电源管理解决方案。

LTC3883/LTC3883-1可以自主工作或通过业界标准的I2C串行总线,与系统主处理器通信,以获取命令、实施控制并报告遥测数据。这使得可以直接从LTC3883/LTC3883-1监视关键的工作信息,例如,实时电压、电流和温度,这些信息可用来动态优化系统性能和可靠性。通过访问这些信息,能预测电源系统故障,并采取预防性或调解措施。

重要的稳压器参数(例如,输出电压和电流限制、裕度控制电压、过压和欠压监察限制、启动特性和时序、以及故障响应)都可以通过该串行总线直接设定,而无须采用电阻器、排序器、监视IC等外部组件。

由于有了数字电源系统管理,所以能快速、高效地开发复杂的多轨系统。LTpowerPlayTM软件使设计工作得到了进一步简化,并能通过PC监视电路板和调节参数。这就使设计师能进行调试和在线测试(ICT),而无须重新给电路板布线或更换组件。

特色概述

LTC3883/LTC3883-1是一款单输出同步降压型DC/DC控制器,集成了电源FET栅极驱动器和一个模拟电流模式控制环路,该环路能以6个相位的PolyPhase模式工作。频率可以在250kHz~1MHz范围内设定,如果有外部振荡器可用,那么内部锁相环能使LTC3883/LTC3883-1与相同范围内的任何频率同步。

LTC3883/LTC3883-1具有优化的栅极驱动器死区时间,以最大限度地降低开关损耗和体二极管传导,从而在所有工作条件下保持高效率。该器件支持4.5~24V的宽VIN范围和0.5~5.5V的VOUT范围。精确的基准、12位DAC和温度补偿模拟电流模式控制环路产生±0.5%的DC输出电压准确度,集成的高压侧输入电流检测放大器允许准确的输入电流检测和电感器DCR自动校准。

16位数据采集系统提供输入和输出电压及电流、占空比和温度的数字回读。用户可以回读重要参数的峰值。关键控制器参数可以通过PMBus设定。故障记录包括非易失性存储器中的中断标记和黑匣子记录器,该存储器储存发生故障之前瞬间的工作状态。

LTC3883的特点是内置了一个LDO稳压器,以提高集成度,而LTC3883-1用外部5V偏置电压供电以提高效率。这两款器件都采用耐热增强型32引线5mm×5mmQFN封装,工作节温范围或者为-40~+105℃(E级)或者为-40~+125℃(I级)。

模拟控制环路

LTC3883/LTC3883-1的众多功能都是数字可编程的,包括输出电压、电流限制设定点和排序。不过,控制环路仍然是纯模拟的,这样就不会有数字控制环路那样的量化效应,从而提供最佳环路稳定性和瞬态响应。

图4比较的是具有模拟反馈控制环路的控制器IC和具有数字反馈控制环路的控制器IC之上升曲线。模拟环路是平滑上升的,而数字环路有一个一个的步进,由于量化效应,这可能导致稳定性问题、更慢的瞬态响应、在有些应用中需要更大的输出电容以及在PWM控制信号上有更大的输出纹波和抖动。

电流模式控制环路产生最佳环路稳定性、逐周期电流限制以及快速和准确的电压及负载瞬态响应。简单的环路补偿不受工作状态和转换器配置的影响。该器件还支持连续、断续和突发模式(BurstMode)电感器电流控制。

电感器DCR的自动校准

利用电感器的DC电阻而不是检测电阻器检测DC/DC转换器的输出电流有几大优势,包括更低的功率损耗、电路复杂性和成本。不过,如果规定的标称电感器DCR和实际的电感器DCR之间有任何差别,都会在所测得的输出电流以及峰值电流限制中导致成比例的误差。

运用凌力尔特正在申请专利的算法,LTC3883/LTC3883-1可以测量并补偿电感器DCR与其标称值之间的容差。只要在该转换器处于稳定状态且有足够大的负载电流以准确测量输入和输出电流时,通过PMBus命令完成一个简单的180ms校准程序即可。

LTC3883/LTC3883-1可准确测量电感器温度,以在整个工作温度范围内保持准确的电流回读。LTC3883动态地建立从外部温度传感器到电感器磁芯的温度上升模型,以了解电感器的自热影响。这项正在申请专利的算法简化了外部温度传感器的放置要求,实现了极其稳定的状态,并补偿了从电感器磁芯到主散热器的瞬态温度误差。

多IC系统

大型多轨电源板通常由隔离式中间总线转换器组成,该转换器将来自背板的-48V电压转换成更低的中间总线电压(IBV),典型值为12V,该中间总线电压被分配到PC板的各处。单独的负载点(POL)DC/DC转换器将IBV降至所需的轨电压,通常为0.5~5V,同时输出电流的范围为0.5~120A。这类电路板排列很密集,数字电源系统管理电路不能占用太多PC板面积。

高性能PMBus控制器(如LTC3883/LTC3883-1)和伴随IC(如LTC2978)一起工作,可以高效率且无缝地满足今天复杂电路板严格的数字电源管理要求。这些要求包括排序、电压准确度、过流和过压限制、裕度控制、监察以及故障控制。对任何数量的电源而言,这些器件的任意组合都能使排序设计变得非常容易。运用基于时间的算法,用户能以简单的可编程延迟,以任意顺序对轨的接通和断开排序。运用单线SHARE_CLK总线以及一个或多个双向通用IO(/GPIO)引脚,可以跨多个芯片排序。

电源控制器范文第3篇

摘要:

针对蓄电池单独作为汽车电源不能满足纯电动汽车短时间功率的需求问题,可采用超级电容与双向DC/DC串联再与蓄电池并联的复合电源来满足汽车功率的需求。利用模糊控制工具箱设计对于复合电源功率分配的模糊控制器,搭建整车复合电源控制策略模块,应用Cruise软件快速完成整车模型的搭建,将控制策略添加到整车模型中。仿真结果表明,纯电动汽车复合电源控制策略能够有效地分配蓄电池和超级电容的功率,从而使超级电容充分发挥“削峰填谷”的作用。

关键词:

纯电动汽车;复合电源;模糊控制;联合仿真

0引言

动力汽车要求其车载电源具有充放电功率大、充放电效率高、使用寿命长、容量衰减小等特点[1-2]。而蓄电池单独作为汽车的电源时存在充电时间长、比功率太低,不能满足汽车短时间功率需求问题,严重影响汽车的加速、爬坡、制动性能及能量回收效率,不能完全满足汽车对车载电源的要求[3-5]。超级电容充放电迅速,可瞬间大电流充放电,充放电能力比蓄电池要高100多倍,动态特性很好,循环寿命在10万次左右[6-7]。一种新的汽车电源是将超级电容与蓄电池结合起来使用,由蓄电池提供整车运行期间电机需求的平均电功率,而超级电容则提供电机需求的峰值功率,这样可以充分发挥蓄电池比能量大和超级电容比功率高的优点[8]。针对超级电容和蓄电池构成的复合电源系统,实现能量的合理分配是关键。模糊控制利用人的经验、知识和推理技术及控制系统提供的状态条件信息,不依赖物理过程的精确数学模型,具有较好的鲁棒性,控制性能高,简化了复杂的控制问题[9-12]。Cruise是研究汽车动力性、燃油经济性、排放性及制动性能的高级模拟分析软件,灵活的模块化理念使得Cruise可对任意结构形式的汽车传动系统进行建模和仿真[13]。本文采用Cruise/Simulink联合仿真的形式,在基于传统电动车模型的基础上,添加超级电容模型和双向DC/DC模型,利用Cruise搭建整车模型,在Matlab/Simulink中设计了针对复合电源的模糊控制策略,将控制参数进行模糊化处理,并通过MatlabDLL方式进行联合仿真,实现复合电源功率的合理分配,并对模糊控制策略和整车性能进行研究分析。

1复合电源的结构

复合电源主要由蓄电池、超级电容和双向DC/DC组成。复合电源的拓扑结构有很多,例如:蓄电池和超级电容直接并联,蓄电池与双向DC/DC串联,再与超级电容并联[14-15]。本文选择的是超级电容与双向DC/DC串联,再与蓄电池并联共同向负载电机提供电能的方式。复合电源的工作模式为:当汽车正常行驶,需求功率低时,由蓄电池单独向电机供电;当汽车需求功率较高时,蓄电池和超级电容共同给电机供电,并且由蓄电池提供平均功率,超级电容提供峰值功率。当汽车制动时,超级电容优先回收制动能量,在超级电容不能再回收时由蓄电池回收能量。控制策略通过控制双向DC/DC的升降压来控制超级电容的充放电。复合电源组成结构如图1所示。功率总线的功率信息,蓄电池和超级电容SOC(Stateofcharge)等状态信息为模糊控制器控制的输入,经过控制器对功率进行分配。由于汽车在整个运行过程中会经历多种工况,而且交通状况复杂,汽车状态切换频繁,且各种工况下的电机功率、蓄电池、超级电容的状态都各不相同,需要制定合理的功率分配控制策略,使得在保证整车动力性的前提下,利用超级电容高比功率,能够瞬时大电流充放电的特性,为蓄电池“削峰填谷”,减小大电流对蓄电池的冲击,延长蓄电池的使用寿命,提高充放电效率,并且最大限度地回收制动能量,提高整车的效率和经济性[16-18]。

2模糊控制策略模型

利用Matlab中提供的模糊控制工具箱设计了对于复合电源功率分配的三输入、单输出的模糊控制器,输入为汽车的需求功率Preq,蓄电池荷电状态BSOC,超级电容荷电状态SSOC。输出为蓄电池功率分配因子(Kcap)。汽车的驱动电机有电动和发电两种工作模式,在这两种工作模式下系统需求功率大小和波动范围有较大差别,控制的侧重点也不同[19]。因此,在正常行驶与制动两种工作模式下应分别制定复合电源控制策略,即需要两个模糊控制器,它们的模糊控制规则不同,但是两个模糊控制器都是三输入单输出且输入变量和输出变量相同。因此,在Preq>0和Preq<0时各设计一个控制器,分别为模糊控制器A和模糊控制器B。当Preq>0时,设输入量Preq的论域为[04],模糊集为{S、MS、M、MB、B},分别表示{小、较小、中、较大、大}。动力电池BSOC的论域为[0.20.9],模糊集{S、M、B},分别表示{小、中、大},超级电容SSOC的论域为[0.11],模糊集{S、M、B},分别表示{小、中、大}。输出量为动力电池功率分配因子Kcap,其论域为[01],模糊集{S、MS、M、MB、B},分别表示{小、较小、中、较大、大}。各输入结果如图2所示。当Preq<0时,设输入量Preq的论域为[-10],模糊集为{B、M、S},分别表示{大、中、小}。蓄电池和超级电容的SOC论域、模糊集、隶属度函数和Preq>0时是一样的。输出量为蓄电池功率分配因子Kcap,其论域为[01],模糊集{S、M、B},分别表示{小、中、大},输入输出量的隶属函数如图3所示。根据前面设计的模糊控制器,在Matlab/Simulink环境下建立复合电源模糊控制策略模型如图4所示,模糊控制器根据输入变量的变化调节输出比例因子Kcap,从而得出蓄电池所分配的功率,因为汽车的需求功率由蓄电池和超级电容共同提供,所以汽车需求功率减去蓄电池所分配功率得到超级电容分配功率。

3整车模型的搭建

将建好的控制策略添加到Cruise中主要有MatlabDLL和MatlabAPI两种方法。联合仿真的结果都可以直接从Cruise获得。但是用MatlabDLL方法仿真的时间比采用MatlabAPI方式短很多。因此,本论文中采用的是MatlabDLL方式。在控制策略模型建好之后,需要进行模型编译,编译完成后生成controler.dll文件,在Cruise模型中放入MatlabDLL接口模块,进行接口模块的参数设置,完成以上设置后,在Cruisedatabus中完成相应的数据通信,即可实现Cruise与MatlabDLL方式联合仿真[19-20]。在进行信号通信时实际上是一个数据交换过程,Cruise通过数据接口将动力蓄电池和超级电容SOC值、电机转速、负载信号、超级电容电压值等信息传递给Simulink中的模糊控制策略模型,之后Simulink模型将超级电容电流、转换开关信号反馈给Cruise模块中的电气终端、电机及驾驶员,以建立Cruise和Simulink之间的数据通信。AVLCruise软件中含有简捷通用的模型部件、易懂的管理系统、可以与Matlab、C、Fortran接口完成复杂控制算法的设计和离线仿真,也可与DSPACE等硬件接口,展开实时仿真,真实模拟车辆传动系统,完成对复杂动力传动系统的仿真分析,整车仿真模型如图5所示。在进行整车建模时,从模块库中直接拖拽部件模块来搭建整车模型。修改部件属性来快速完成整车模型的参数设定并进行部件间的机械连接、电气联接和信号联接。

4仿真结果与分析

采用中国城市道路工况作为本文的循环工况。中国城市道路工况是中国汽车技术研究中心根据我国各大城市的行驶特征研究出的更加适合我国的城市工况。中国城市道路工况如图6所示,工况总运行时间是1304s。工况中最大速度达60km•h-1,其中怠速时间占工况总时间的28.8%,除去怠速部分之后平均车速则为22.6km•h-1。从图6可直观的看到我国交通系统中存在车辆怠速时间长、总体的均车速低、车辆的速度变化频繁等特点。图7是在中国典型城市道路工况下车辆行驶的当前车速度与期望速度变化曲线。从图中可以看出两条曲线基本保持一致,速度没有出现大的波动,这说明车辆的跟随性和平顺性都比较好。图8是在中国典型城市道路工况下,蓄电池和超级电容所需提供的功率曲线图。从图中可以看出在车辆运行过程中由超级电容和蓄电池共同供电,电池提供的功率比较平稳,在6kW左右。在制动时由超级电容吸收峰值功率,最大峰值功率达到10kW。超级电容充分发挥“削峰填谷”的作用,从而验证制定的模糊控制策略的有效性。

5结论

在纯电动汽车的基础上,借助Cruise软件搭建了带有复合电源模块的整车模型。详细介绍了通过联合仿真的方法将Simulink里搭建的策略模块加入到整车模型中的步骤。其他用户可以根据类似方法开发自定义策略和车型。提出超级电容与双向DC/DC并联再与电池串联的复合电源结构。用模糊控制工具箱设计对于复合电源功率分配的模糊控制器,搭建整车复合电源控制策略模块,使得超级电容充分发挥了提供瞬时功率的作用,避免了蓄电池过充和过放,提高了复合电源系统的循环使用寿命。此设计方案和仿真结果对于纯电动汽车复合电源系统的研究具有一定的参考价值。

参考文献:

[1]何正伟,付主木.纯电动汽车复合电源能量管理模糊控制策略[J].计算机测量与控制,2013,21(12):3256-3259.

[2]王琪,孙玉坤.一种混合动力汽车复合电源能量管理系统控制策略与优化设计方法研究[J].中国电机工程学报,2014,34(增刊):195-203.

[3]王庆年,于永涛,曾小华,等.基于CRUISE软件的混合动力汽车正向仿真平台的开发[J].吉林大学学报(理学版),2009,39(6):1413-1419.

[4]刘振军,赵海峰,秦大同.基于CRUISE的动力传动系统建模与仿真分析[J].重庆大学学报(自然科学版),2005,28(11):8-11.

[5]岳凤来,张俊红,周能辉.基于CRUISE的纯电动轿车性能仿真与试验研究[J].汽车工程,2014,36(6):669-672.

[6]张亚军,杨盼盼.纯电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报,2010,32(15):90-98.

[8]吴亮廷.基于AVL-Cruise的车辆动力装置与传动系统匹配研究[J].华北科技学院学报,2014,11(10):79-85.

[9]周美兰,田小晨,吴磊磊.纯电动汽车复合电源系统的建模与仿真[J].黑龙江大学自然科学学报,2016,33(2):261-266.

[13]赵水平,陈燎,迟京,等.基于Cruise-Simulink联合仿真的FCEV能量管理策略研究[J].重庆交通大学学报(自然科学版),2011,30(5):1068-1072.

[17]王儒,李训明,魏伟,等.基于ADVISOR的纯电动汽车复合电源系统[J].山东理工大学学报,2014,28(1):73-78.

[20]石庆生,张承慧,崔纳新.新型双能源纯电动汽车能量管理问题的优化控制[J].电工技术学报,2008,23(8):137-142.

电源控制器范文第4篇

【关键词】多类型电器;通电停电;远方控制;操作执行

1.远控实例

在工农业、机关厂矿和家用电器中,有若干需要进行远程操作控制的仪器设施,如下实例:

(1)电力系统常用的五防电脑钥匙,内含蓄电池,现状是不操作时长期带电浮充,由此容易老化损坏。对该状况我们做了技术改进,将其设计为每当操作使用后立即一次性充电,电能充满后,自动断开电源,转为冷机等待,去除热浮充。当调度中心下达操作命令,执行人员则在远方通过座机或手机向相关变电站五防钥匙发出信号,启动断开的充电电源,补充待机期间泄露的电能。而当操作人员到达变电站时,已有完整足够的电量供其验码、开锁使用。

(2)现机关、厂房、商务等,都普遍装配使用了照明、电脑、空调等设施。若同样采用远程控制器,利用座机或手机向办公地点发出指令,则仪器启动,断开电源,实现远程随机控制,达到安全节能目的。

(3)家用电器,犹如司机、供应、业务推销等流动人员,不能确定回家时间,饭菜很难准备。如使用远程控制设施,则可在任何工作结束时,采用座机或手机发出指令,使家里电源接通,开始蒸煮煲汤。

这些实例都集中了一点,采用座机或手机在远方随机对电力设施进行通、断电控制,使之开展工作或节约能源等。那么该仪器的结构如何?功能又是怎样实现的呢?对此我们将进行相关设计介绍。

2.电路设计

分析诸多远控实例的共同点,是采用手机或座机向办公室或家庭的电话机,发出操作指令。电话机接到指令会产生振铃脉冲,经接收处理,确认达到阀值电压时,送出两类控制信号,一类启动用电器工作,另一类则跳闸节能。据此,我们实施了相关电路的设计制作。

2.1 采样判断电路

经测量,电话机在无振铃信号时,分接线端头电压为43V,有呼叫信号到来时,电压上升至50V,高达7V的差距,为信号采集奠定了良好基础。

图1中端头①、②从电话接线盒中引接而来,信号经电阻R1降压,叠加在电阻R2与R3的分压值上,传送给运算放大器IC1的同相输入端3脚。IC1的反相输入端2脚接有4.5V稳压二极管D1,起基准判断作用。无铃声时,盒中43V电压经R1降压,V3低于V2,IC1保持截止状态。有呼叫信号到来时,①、②端头引入50V电压,经R1降压,仍保持有≥5V的电压值,使V3大于V2,IC1启动翻转,6脚输出高电平。

2.2 积分充电电路

集成运放翻转后,6脚输出较为稳定的5伏电压值,传送给电阻R7,并对电容C1充电,电位器W1做充电速率调整。

复合管BG1、BG2和R9完成功放和比较判断双功能,门槛电压设计为4V,即UR61-2=Uc1﹤4V复合管截止,UR61-2≥4V复合管导通。

UR61-2=Uc1的变化情况有两种:

第一,电话拨通,坚持响完,一般铃声在10余次,时间在15秒以上,此时电容C1充电,数值如积分式,电压Uc1从0~5V积累变化:

电压积分曲线如图2所示。

图1 远程控制器电路原理

图2 充电积分曲线

图2中曲线1是在第一次拨通电话,IC1输出高电平,电容电压Uc1作充电积累,从a点的0值开始,经过15秒左右,Uc1达到全电压5V的60%,如图中b点。此时铃声结束,因无人接听,其他人在短时间内不太会重拨,IC1返回截止。IC1截止后,6脚输出低电平,Uc1转为经电阻R7、R6放电,图示曲线1中从b点向d点下降,至回到0值电压。整个过程控制电路不启动。

第二,使用者则知道,在第一次响铃结束后,立即重拨(为避免拨号撞车和他人重拨,经电位器W1调整,重拨次数可增加,但原理相同)。如图3中曲线2,在几秒钟重拨的间隔时间内,电容电压Uc1亦会短时放电,降低约10%的幅值,即回到c点约2.5V处。因重拨,IC1又重新输出高电平,电容器将会在余留的c点基础上向5V满电压继续积分充电。在此过程中,电压值会达到:

UR61-2=Uc1≥4V

超过门槛电压,复合管BG1、BG2导通,使后续电路启动工作。

2.3 自保持电路

在图2中,如上所述,当复合管BG1、BG2导通,启动1A和30A小、中型继电器J1与J2。J1常开接点J1-1闭合,与串联电阻R8一起引入直流工作电压。作用是在使用人挂机后,IC1截止,UBG1-2=Uc1会在放电至失去复合管启动能力的情况下,实现自保持功能,使BG1、BG2继续导通,J1与J2保持启动。

2.4 交流工作电路

在图2右侧可见,220V交流电从③、④端头引入,经开关K1控制,分为三路工作。

2.4.1 直流工作电源

当开关K1合上,引入的220V交流电源,一端经变压器B降压,D2、D3全波整流,电容C2滤波,WY1三端稳压,供做采样、判断、控制电路的工作电源。发光二极管Fg1与电阻R10串联,点亮指示工作电压源正常。

2.4.2 用电器通电控制

从图2中可见,30A继电器J2的常开接点J2-1、开关K2相并联,控制用电器DQ1的交流电源。这是在电脑、空调、家用电器有人在场,需要直接或长期用电时,可合上K2,直接向用电器DQ1供电。但当无人在场,不用电或用电不定期时,则先断开K2,远方电力控制功能自动投入,即当话机或手机指令,经判别为有效信号时,电路翻转,使继电器常开结点J2-1接通,向用电器供给交流电源。这对五防钥匙充电和流动性工作人员电炊做饭等控制相当有用。

2.4.3 用电器节能控制

在图2中,我们将交流电的另一条支路中的K3开关和继电器常闭接点J2-2做并联设计,由此实现对用电器是否投入电话远控跳闸节能的选择。不投入,合上K3,工业或家用电器则可长期带电;但要考虑远控时,则断开K3,这时,无远控指令来到,J2不启动,常闭接点J2-2闭合,用电器照常工作。但当办公或家用的电脑、空调、电热毯等,开启后,往往出现使用人员离开却忘记关断电源的情况,这样,不仅浪费电能,增加开支,更潜伏安全隐患,不少火灾事故便是这样引起的。所以,我们认为采用远程控制为好。在本仪器中,只需简单断开K3开关,则在任何情况下,都可以采用电话远方指令,经采样、判断、控制启动,继电器J2常闭接点J2-2断开,电源关断,起到远程安全节能控制的作用。

联系前后可见,在继电器J2的公共接点分别转换投切下,常开和常闭接点在用电器导通送电、断开节能控制中都可以发挥作用,这是对元器件功能的充分利用。

3.结语

综上所述,我们采用基准设置、运放判别、积分采样、阀值比较和继电器接点的巧妙组合等,设计制作出的多用途电力电子控制仪,能响应通讯工具在远方随机的指令,实现用电器启动运行和跳闸节能的双重目的,电路优化简洁,性价比高,颇值推广应用。

参考文献

电源控制器范文第5篇

关键词:单神经元 三电平整流器 电流控制器

中图分类号:TM461 文献标识码:A 文章编号:1007-9416(2016)11-0009-02

1 引言

单神经元是神经网络的基本结构,具有结构简单、计算量小等特点,作为控制器时,系统的动态性能只依赖于误差信号,不受或少受对象模型参数的影响,从而可以提高系统的性能和鲁棒性。单神经元控制器结合了PID控制的优点,可以在线调整PID参数,具有自适应、自学习能力,并且能满足对快速性及实时性的要求,因而在各种控制系统中得到了广泛的应用。

2 基于单神经元电流控制器的三电平整流器

2.1 基于单神经元的电流控制结构

用单神经元构成的单神经元自适应控制器用于三电平整流器的电流控制,系统的电流控制环节结构图如图1所示。

2.2 电流控制器

在三电平整流器控制系统中,电流、的控制采用单神经元电流控制器,其结构如图2所示。电流控制主要由三部分构成:单神经元控制器、电流检测、坐标变换。图2中为轴电流的单神经元电流控制器结构,控制器输入为轴电流给定值与实际反馈之差,输出为轴控制电压分量。

2.3 基于二次型性能指标的学习算法

在最优控制理论中,采用二次型性能指标来计算控制律可以得到所期望的优化效果。在神经元的学习算法中,同样可借用最优控制中,二次型性能指标的思想,在加权系数的调整中引入二次型性能指标,通过使输出误差和控制增量加权平方和为最小来调整加权系数,从而间接实现对输出误差和控制增量加权的约束控制。

根据单神经元自适应控制器的状态变换将系统误差分解为三个状态变量,即控制器的三个输入:

(1)

控制器输出为:

(2)

其中。是权值向量的欧几里德范数,除以范数即是在权值向量空间中,将权值向量进行单位化处理,以保证控制策略的收敛性。

定义性能指标为:

(3)

上式中,P、Q分别为输出误差和控制增量的加权系数,和为k时刻的参考输入和输出。

权系数按下式调整

(4)

上式中,,,,分别为对应权值的学习率,K为总学习率。

2.4 仿真实验

基于SIMULINK建立的单神经元控制器的仿真模型,结合所建立的PWM仿真模型和整流器仿真模型进行仿真研究,单神经元控制器的仿真模型图3所示。

电网参数:Em=311V,f=50Hz;交流侧参数:Ls=6mH,Rs=0.5Ω;直流侧参数:Cd=2200μF,L0=3mH;直流侧给定电压Vdcg=600V;开关频率fs=2KHz。整流器启动时为等效负载,输出功率为18KW,无功电流,整流器工作在单位功率因数情况下。0.3秒系统稳定后,直流侧并联18KW等效负载。直流侧电压及交流侧电流、电压波形图4所示。

由仿真结果可见,当负载突变时,采用单神经元电流控制器的三电平整流器直流侧电压在0.13秒后恢复到稳态值,电压值恢复比较迅速。电网电流波形为正弦,并且保持与电源电压的同相位,整流器依然工作在单位功率因数情况下。

3 结语

本文通过仿真实验,研究了负载突变情况下整流器的性能。采用单神经元电流控制器的三电平整流器,响应速度快,几乎无超调,并且在负载突变的情况下,可以较快的恢复到稳定状态。

参考文献