首页 > 文章中心 > 变频技术

变频技术

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇变频技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

变频技术

变频技术范文第1篇

关键词:变频器控制技术;现场总线;传统I/O;分析

传统的变频器控制技术是以I/O方式为基础,在控制器以及变频器的I/O端口上以功能需求来进行控制线的相应连接。传统的I/O控制方法功能较为单一,布线也较为繁琐,并且可靠性和通信效率也不高,在工业拖动现场时也存在较多的障碍,不利于工业拖动的现场。而现场总线的变频器控制技术则在技术上实现创新,现场总线是一项新技术,其顺应了工业控制系统以及信息技术智能化、分散化。在变频器控制以现场总线为基础的系统中,一条总线电缆便可完成变频器及控制器的全部通信,与上层网络相结合,实现了更加高效、智能以及全面的监控,也实现了更加高速的监控。信息系统集成在企业级别中的实施也更加便捷。

一、传统I/O技术于变频器控制的弊端

在变频器控制中本机控制是最为简单的,也称作面板控制。在进行变速、启动、点动、以及复位、停止的控制时,面板控制是通过变频器的键盘来进行的,键盘在控制面板上。虽然方法较为简单,也需要变频器控制面板有专人负责控制,面板控制效率较低,功能也较为简单,外部功能开关也可以用PLC控制器来进行控制,相关逻辑也得以实现,对变频器I/O端子进行输出,对变频器进行控制。并进行PLC编程用以不同功能的实行,其功能包括输入其他各种和外部故障的信号以及多级变速控制。

变频器的控制方法以I/O端口作为基础,在进行功能的扩展时,则只能采取较为简单的扩展,也难以改善传统I/O变频器控制方法所存在的缺点。工业拖动现场随着时代在发展,传统I/O技术已不能适应现代的施工要求。而现场总线技术作为新技术,在信息传输中只需要一条总线电缆,便可以实现传输所有信息,现场总线技术在维修成本、布线成本以及调试成本上也极大的降低了,并且全数字化,通信速度快和结构开放互连,现场总线控制技术的效率也较高。

二、以现场总线为基础的变频器控制系统

(一)以设备层为基础的变频器控制系统

3层网络结构体系是Rockwell对现场总线提出的标准之一,其组成包括了信息层、设备层以及控制和自动化层。其中,设备层是以现场总线技术工业标准为基础来进行网络开放,起到高层设备和底层工业装置的连接作用,高层设备则包括了计算器以及PLC控制器等,底层工业装置则包括了传感器、开关、以及拖动装置,还包括了阀门等。设备层采用的供电方式是总线供电,网络的电缆结构采用主干线结构和支线结构,并对本质安全技术进行提供,通信采用用户模式和生产者模式,在网络通信效率上较为优异,提供了两种报文类型,包括显示报文和I/O报文。

变频器控制以设备层为基础,其系统结构包括了,装有组态软件的一台RSlinx,并将其接入到设备层的总线之上,监控软件RSView32以及PLC编程软件RSlogix500的计算机,RSNetworx,与设备层相连的接口使用1770-KFD,而设备层与6台AB1336Plusll变频器则使用设备层通信模块1203-GK5来连接,网络主设备使用MicroLogix1500PLC控制器,对于网络设备信息的获取则使用扫描模块1769-SDN来进行,监测设备和控制设备。

连接现场设备和PLC,是以扫描模块1769-SDN作为接口,用作设备数据格式转换以及设备数据采样。在运行包含SDN的PLC处理器中,SDN对设备进行了依次扫描,采样参数,并对数据格式进行了转换,转换成PLC能够接受的数据格式,进而使PLC处理器能够进行读取,经PLC处理器进行处理,对其输出数据也进行了转换,转换成不同种类的设备能接受的格式。

变频器数据通信以及PCL数据通信的实现可以通过映射的方式来进行,Word 0至9 共10个字包括在接口定义格式之中,其中使用通信模块将Word 0和Word 直接输送至变频器,将其固化为变频器频率状态(或设定值)以及逻辑状态(或命令)。在进行映射的输出时,Word 0包含了系统的停止、故障复位和启动控制位以及系统的正反向、频率源和减速等控制位,设定工作频率则由Word1进行存放。在进行映射输出时,Word 0则反馈给PLC变频器状态信息,包括了变频器运行、使能和出错状态信息以及变频器达速、加减速状态信息,实际工作频率则由Word 1 进行存放。而Word 2至Word 9共8个字的通信内容设定则是以用户需求来进行,变频器中的DataIn/Out A至DataIn/Out D则与通信模块中的Datalink A至Datalink D相对应,常用的变频器监控参数设定至DataIn/Out之上,包括了故障代码、实际输出和加减速时间,以及电流电压和多个预置频率等。分别占用其中(Word 2至Word 9)一个字映射至扫描器。Word 1与Word 0相结合,使PLC实现监控变频器的大部分功能。

(二) Rockwell 3层网络系统平台

ControlNet作为中间层于3层网络结构中,具有高速确定性,也是开放型网络,其能够满足的要求较多,包括了连接PLC处理器,计算机和I/O用要求以及其他智能设备、操作员界面应用的要求,并且满足要求的高信息吞吐量和实时。经使用用户模式和生产者模式,控制网络具备对等网络功能和I/O网络功能,并且提供其高速性能。EtherNet通过工业以太网的使用,集成信息管理和控制系统,利用以太网监控生产场信息,包括了用于监控的工业PC工作站和PLC生产现场信息,还包括了可在计算机系统进行存取的ControlNet生产现场信息和DeviceNet生产现场信息,进而实现工厂级的统计质量控制、计划管理和生产流程的进行,以及实现物料跟踪、监视控制和远程设备维护的进行。

基于DeviceNet平台建立的Rockwell 3层网络对系统的集成更加的全面, ControlnNet与DeviceNet的连接可通过ControlLogix来实现,并且可接入至其网络适配器。DeviceNet节点扫描模块使用1756-DNB,ControlnNet节点扫描模块使用1756-CNB。两者中的ControlLogix、PL以及计算机与最高层EtherNet的连接则可使用以太网模块或者使用网卡来进行。经扫描器,在该层运行的计算机工作站可实现整个网络节点的扫描和管理,对设备层生产现场信息以及控制层生产现场信息进行存取,实现全方位信息调度以及集成的企业级运行,并在连接InterNet相连接时更为便捷。

(三)监控平台

对于监控变频器网络的任务的实现,可使用以RSView32软件为基础的计算机监控,或者使用PanelView人机界面来实现。RSView32可以与控制器实现通信功能,其中控制器的系列包括了与MicroLogix、PLC-5以及SLC500。还能与ControlLogix实现通信,并且网络层次也可以使用两种,包括ControlNet和DeviceNet。平台移植于连接两种计算机之间也更为便捷,网络可根据种类进行驱动器种类的选择。系统的多机同步控制、全部监控以及单机控制的集成是由总监控台来实现,而单独对每一台变频器进行控制可由各分控台来实现。

参考文献

变频技术范文第2篇

变频器的主要电路通常是“交一直一交”的模式,从外部输入的电源是1140V/50Hz,经过三相桥式无控制电流完成之后变成直流的信息。在整流的电路中,输入电流的形态是没有规则的长方形电波,电流按照特定的级数来进行分配,分别为基波和谐波,谐波分为多种,其中高次谐波将对输入供电路线产生影响。在逆变输出电流时,输出的电流会受到PWM承载电波信号的脉冲波形的影响,针对GTR大功率的逆行变化原件,其PWM在电流中承载的电波频率为2KHz~3KHz。而IGBT大功率逆流变化原件的PWM最大的承载频率可以达到15KHz。统一到输出电流时,其电流的信号可以被分解成仅包含正弦波的基础波形和其他雷系的谐波,其中高次谐波其电流对承载的电波形成直接的干扰。除此之外,高次谐波其电流还会通过电缆的途径向各个空间传递辐射,同时也会让其他的电气设备受到干扰。

2抑制谐波干扰的方法

我们都知道,谐波的传播的方法有两种,分别是传导和辐射。对于传导的干扰问题,重点是要把传导在电路中的高端频率的电流进行过滤;对于辐射干扰的解决,主要是对辐射的源头和受到干扰的路线完全的隔断。以下是经常用到的5种方法。1)让变频装置的供电源头与其他供电电源的设备进行隔离,或者将变频器与其他的输入两侧安装隔离其控制变压,同时让谐波的电流断开。2)可以选择在变频器的输入两侧与输出的两侧进行串联,安装合适的电抗器,也可以选择安装谐波变压器。其安装的滤波器的构成一定要是LC型的滤波器,这样可以让滤波器尽可能的吸收谐波,同时也可以增强电源和电流的地块能力,从而可以让谐波在干扰中可以达到较好的抑制。3)电动机和逆变器中间存在的电缆要穿过钢管的设备,或者穿过运用铠装置的电缆,相对比与其他较弱的信号,要使用不同的电缆进行分开,分别设置敷设,更好的避免谐波的干扰。4)对于设备的信号线,要采用较好的屏蔽线,在不知屏蔽线时变频器的主干回路控制的路线要相互错开保持一定的距离,其距离一般要少于20cm,可以有效的阻断敷设的干扰。5)变频器在使用时,要选用专业的接地线,并且要用粗短线来接地。针对其周边的电气设施所使用的接地线,一定要注意和变频器的配线隔开,同时也可以使用短线。通过这样的方式,就可以使电流谐波对周边的电气进行辐射时有效的抑制。

3抑制谐波措施的应用

羊场湾煤矿的机泵依靠自耦降压的方式来进行启动,为了让变频控制系统能更好的服务,对其进行改造后,让其在调频减速的功能有所提高,并且在节约省电的方面起到良好的作用。但是在变频输出部位和电动机之间存在的输出线频繁的出现发热现象,造成电动机的外壳随着温度的升高不断的发热,并且会经常性的出现保护装置跳闸,经检测,其原因是变频器在输出电压和电流在输出携带的信号中含有PWM高次谐波造成感染。谐波电流在输出时携带的电流和电动机在绕线中形成其功率的严重缺损。解决的办法:通过把变频器的输入线和输出线进行分离,分别在输出输入时走不同的电缆沟,采用大号的电缆,来取代以前的电缆。把输出部分和电动机相隔的电缆的长度尽可能的缩短。通过采取这些措施,其发热问题得到较好的解决,对出现的各种变频器受到高次谐波干扰的问题大部分得到解决。但对谐波的组成以及其自身的幅度都有严格要求的设施来说,想彻底的抑制高次谐波的干扰,在实行上难度很大。2005年12月,羊场湾煤矿的二煤轨道绞车有SQ-3的型号,改为PJT-3的型号。绞车在安装运行的过程中,南二S528机巷传感器显示其运作正常,分区一地面的检查中心频繁的出现“冒大数”的现象,并得出瓦斯超出限定值达到2.5%。根据数据的显示,对瓦斯超限的现象信以为真,但当经过调查发现,原来是绞车的变频系统在运作时产生的谐波干扰而导致。对于干扰的出现,如果不进行计算的处理,将会给煤矿井下的安全造成严重的困扰,同时对管理也会造成一些影响,同时也会让瓦斯在实地进行监控的意义不复存在。KJ66型监控系统其瓦斯的感应器所向外传输的频率为200~1000Hz,其相应的瓦斯含有的浓度达到0~4.0%。高次谐波其污染的源头来着对电源和其他传播路径辐射到瓦斯感应器的传输路线中,让瓦斯传感器的传输路线中携带着两个甚至两个以上的频率信息。当两个或两个以上的频率信号在在线路中传播时,在他们中间会存在着几百甚至几千赫兹的低频差拍。低频差拍在积满能量时会对瓦斯传感器的殊荣路线形成干扰,让传感器在传输的频率会随着幅度的增加而是瓦斯的超出限制部分出现虚假的数值。经过对实地的考察,当绞车在工作时,其变动的电流以及其挖掘迎头电源线对其线路的干扰频率会在6.8KHz~20KHz左右。绞车其在提升中产生的负荷大,在全速运行的时候,其传感器在传输信号的路线干扰达到780Hz,造成相对于的瓦斯在2.9%CH4的假值。通过对以上的分析,可以采用下列措施,消除谐波干扰:变频绞车在运行时选用单独干式变压器进行供电,从而解决电网在污染方面的问题;变频绞车的供电路线要选用隐蔽专用的电流,解决频率辐射减弱的问题;将监控路线的敷设由原本的轨道式上山改为人力上山,防止传输的过程中受到干扰;建立特有的监控室,将监控站的电源分布导入一台隔离变压器,防止电网对分站的影响;将频率传感器更换为电流型的传感器,这样可以减少干扰频率的传播。

4结束语

变频技术范文第3篇

关键词:变频调速技术 节水 节能 城乡供水 农业灌溉 自动控制装置

1 立项背景及技术创新点

水资源及能源紧缺是制约我国经济发展的重要因素,节水节能是我国社会经济持续发展的基本国策.美国从20世纪90年代将变频节水节能技术应用于平移式、轴转动式喷灌机及管道灌溉等系统,经测试其节能率为39%~56%,节水率为15%~30%,既稳定了管网压力,提高了灌溉质量,又节水节能,便于自动化管理,但其价格昂贵.当时,在我国城乡供水及水泵抽灌系统中,水泵一旦开始工作,电机便以额定转速运行,并以额定出水量供水,当用水量减少或在用水低谷时,管网压力过高,水龙头(或喷头)和输水管道往往被损坏,使水白白流掉,电能白白耗掉;有些系统通过阀门控制出水量,来减少供水管网压力升高,这样也造成电能与水资源的浪费.

“九五”期间,我国在工业上将交流变频调速技术列为新技术推广项目,但当时水利行业在灌溉方面未应用.为改善上述资源浪费状况,生产出价格低廉,农业能够接受的变频节水节能控制装置,水利部西北水利科学研究所承担了水利部“948”计划项目“变频节水节能技术”,本项目的关键技术为交流变频调速技术.1998年12月,我们引进了德国的8210和8220系列变频器标准规范、技术指标、性能参数检测方法和部分样机.交流变频技术大致可分为直—交变频与交—交变频两种,我们引进的为直—交变频技术,即通常所见的变频器大多采用的变频技术.我们的技术路线是引进关键技术,并对其消化吸收,在此基础上,开发外围技术,研制并生产变频节水节能产品,并重点进行推广应用.

该项技术引进后,我们对进口样机的性能参数进行了全面测量和记录,在消化吸收的基础上研制开发出了四个系列的变频调速节水节能装置,这些变频节水节能产品除了变频调速器和PLC外,其他已全部国产化.本文介绍CX-B系列变频恒压供水自动控制装置和CX-D系列变频恒压节水灌溉自动控制装置.

本项目的技术创新点:(1)把交流变频调速技术应用于城乡供水及农业灌溉中,达到节水节能效果;(2)根据项目需要,自己研制出水位显示控制器,提高自动化程度;(3)根据实际需要,研制出多段压力设置转换电路,适应农业多种灌溉方式;(4)将变频调速技术、可编程序控制技术、水位显示控制技术、压力传感技术等进行了集成.

2 变频调速的基本原理

交流异步电动机的转子转速n可以用下式表示

式中 f——定子供电电源的频率;

p——电动机的极对数;

s——异步电动机的转差率.

由式(1)可见,当平滑地改变异步电动机的供电频率f时,即可改变电动机转子的转速n..

根据水泵的相似原理

式中的Q、H、P、n分别为水泵的流量、扬程、轴功率和转速.

由式(2)、式(3)、式(4)可知,基于转速控制比基于流量控制可以大幅度降低轴功率.

3 CX-B系列变频恒压供水自动控制装置

3.1 基本构成

整个恒压供水系统由CX-B系列变频恒压供水自动控制装置与水泵电机组合而成(见图1).该装置由变频器(内含PID调节器)、可编程时控开关、可编程控制器(PLC)、水位显示控制器、远传压力表、水位传感器及相关电气控制部件构成,是一种具有变频调速和全自动闭环控制功能的机电一体化智能设备(见图2),它可同时对一台或多台三相380V,50Hz的水泵电机进行自动控制.

图1 变频恒压供水系统组成

图2变频恒压供水自动控制装置结构原理框图

3.2 工作原理

CX-B系列变频恒压供水自动控制装置以变频方式工作时,水泵电机以软启动方式启动后开始运转,由远传压力表检测供水管网实际压力,管网实际压力与设定压力经过比较后输出偏差信号,由偏差信号控制调整变频器输出的电源频率,改变水泵转速,使管网压力不断向设定压力趋近.这个闭环控制系统通过不断检测、不断调整的反复过程实现管网压力恒定,从而使水泵根据需水量自动调节供水量,达到节能节水的目的.

PLC的主要控制作用:(1)控制多台水泵(包括备用泵)循环软启动,周期性地以变频方式工作;(2)控制备用泵的自动启动.当第一台水泵电机以变频方式运行,并达到额定功率(即变频器输出电源频率达到50H),而供水管网压力未达到设定压力时,第二台水泵电机会自动启动,并以工频方式运行,这时若管网压力仍不能达到设定压力时,第三台水泵电机会自动启动,第一台水泵仍以变频方式运行,达到保持管网恒压的目的,投入运行的水泵数量由装置根据管网压力自动控制.

水位显示控制器设有上、中、下3个水位控制限,当池水位从上限降到中限位置时,控制器输出补水泵启动信号,使补水泵向池内补水,补至上限时,控制器输出补水泵停机信号,停止补水;当池水位降到下限时,控制器输出取水泵停机信号,使取水泵停止取水,待水位上升到中限后,控制器使取水泵自动启动,恢复取水.

3.3 控制功能

CX-B系列变频恒压供水自动控制装置具有以下控制功能:(1)设有手动/自动切换电路,当切换至自动位置时,系统可根据出口压力变化,自动调节变频泵的转速和自动启动、停止备用泵,以维持出口压力恒定,当变频控制电路出现故障时,可切换至手动位置,使水泵直接在工频下运行,保证正常供水;(2)能够在1d内设置1~9个供水时间段,一周内各天的供水时间可以不同;(3)用PLC控制水泵(包括备用泵)全循环软启动,周期性地自动交换使用,以期水泵寿命基本一致;(4)地下蓄水池缺水后取水泵自动停机保护,补水泵自动开机补水,蓄满水后补水泵自动停机,蓄水池水位以数字显示;(5)故障显示及报警,具有缺相、短路、过热、过载、过压、欠压、漏电、瞬时断电保护等电气保护功能.

4 CX-D系列变频恒压节水灌溉自动控制装置

4.1 基本构成

整个恒压供水系统由CX-D系列变频恒压节水灌溉自动控制装置与水泵电机组合而成(见图1).一些节水灌溉基地设计有喷灌、微喷灌、滴灌等多种灌溉方式,不同的灌溉方式所需的工作压力不同.为使同一供水管网能为不同灌溉方式提供不同的工作压力,在CX-B系列变频恒压控制装置的基础上增加了多段压力设置转换电路,它可同时对一台或多台三相水泵电机进行自动控制(见图3).

图3变频恒压节水灌溉自动控制装置结构原理框图

4.2 工作原理

CX-D系列变频恒压节水灌溉自动控制装置除多段压力设置转换电路外,其他部分的工作原理与CX-B系列变频恒压供水自动控制装置相同.多段压力设置转换电路中设计了对应于喷灌、微喷灌、滴灌及管道灌溉4个压力档位,在进行灌溉时,PLC按灌溉方式输出对应的控制信号,压力设置转换电路自动转换到相应压力档位,该装置就在这一设定压力下以恒压供水,实现节水灌溉.

4.3 控制功能

除具有CX-B系列变频恒压供水自动控制装置的功能外,还具有压力转换功能.

5 加强变频节水节能技术的应用和推广

引进先进技术主要的目的在于推广应用,把变频调速技术应用于水利行业及农业,实现了节能节水.几年来,通过向社会积极宣传变频节水节能技术的优越性,这一技术已逐步被水利行业及农业所接受.

在城乡供水方面,我们已经推广应用变频恒压供水自控装置12套,根据对其中四套装置运行数据的统计计算可知,可节约电能25%~50%,节水3%~10%.各台装置的节能率和节水率差异较大,其主要原因是各装置的运行环境差异较大,用水高峰与低谷流量差值大的装置节能率高,用水高峰与低谷流量差值小的装置节能率低;供水管路完好率高的系统使用该装置后,节水效果不显著,供水管路完好率低的系统使用该装置后,节水效果显著(由于恒压供水,减少了管网高压所产生的漏水).实践证明,使用变频恒压供水自控装置,不但能够节水节能,而且提高了供水质量,保证了供水管网的安全运行.

在农业灌溉方面,2001年6月为“99全国节水示范工程秦都项目区(咸阳市秦都区双照镇龙泉南村)节灌系统”设计并安装了变频恒压节水灌溉自动控制装置一套,使一条供水管网能够在不同时间段提供两种工作压力,既满足了微喷灌和滴灌的要求,又使灌溉管理大大简化.据2001年7~12月资料统计,节电17%,节水19%.2001年12月同陕西省农垦农工商总公司签订了合作合同,为该公司华阴农场节水灌溉增效示范项目设计安装6套变频恒压节水灌溉自动控制装置.该示范项目实施完成后,变频恒压节水灌溉自控装置与灌溉自动控制系统联网,将形成目前我国较高标准的节水灌溉自动控制网络,控制滴灌面积76hm2.

变频技术范文第4篇

Abstract: The paper deseribes the classifications, performance, choices for product, and peripheral devices design need to be notices of inverter.

关键词: 变频器;种类;特点;选择

Key words: inverter;classifications;feature;choices

中图分类号:TM3 文献标识码:A 文章编号:1006-4311(2012)29-0040-03

0 引言

变频调速技术近年来在我国得到了突飞猛进的发展,由于变频调速技术在调速范围、调速平滑性、静差度、动态响应、功率因数、智能控制、节约电能等方面具有的优异性能,是目前交流电动机调速所采用的主要方式。它以体积小、重量轻、可靠性高、通用性强、适用范围广、操作简便、保护功能完善等优点,广泛应用于钢铁、化工、冶金、电力、石化、食品、医药、造纸、机械等领域。

1 变频器的应用分类

变频器应用非常广泛,根据具体应用情况可分为以下几种类型:

①节能、改善环境。风机、泵类、搅拌机、挤压机、精纺机、注塑机、中央空调系统、洗衣机、抽油烟机等系统的调速;

②提高设备效率。机械加工设备中高速电动机的高速运行控制;

③自动化控制、减轻劳动强度。搬运机械、加工设备、生产流水线、多台电动机联动等系统进行正反转控制、多段速度调节;

④提高产量、提高控制精度。机床、搬动机械、塑料机械、球磨机、研磨机、印刷机械等系统进行调速控制;

⑤减少设备维修、延长设备寿命。机床设备的主轴、纺纱机等系统进行无级调速;

⑥提高质量。切纸机、造纸机、拉丝机、纤维机械等轻工设备进行最佳速度控制、恒张力矢量控制;

⑦特殊要求的场合。恒压供水、供气、音乐喷泉等系统进行恒转矩、多段速自动控制。

2 变频器的选型

变频器的正确选用对于机械设备的正常运行至关重要。选择变频器时,首先要根据生产机械的类型、负载转矩的特性、调速范围、静差度、起动转矩、使用环境及系统的特殊要求,然后决定选用哪种控制方式和防护结构的变频器。当然所选用的变频器一定要是最合适的。也就是说所选用的变频器一定要能能够满足生产机械的实际工艺要求,并且具有最高的性价比。

2.1 生产机械的负载分类 由于生产机械的类型很多,根据生产机械的负载转矩特性将其分为以下种类型:

2.1.1 恒转矩负载 在这类负载中,负载转矩T■=C,与转速n 无关。而负载功率随着负载转速的升高而增加。如机床设备中的进给机构、传送带、搅拌机、挤压机等机构和起重机、电梯、提升机等负载都属于恒转矩负载。

在变频器驱动恒转矩负载性质的生产机械时,低速时要有足够大的输出转矩,并且要有足够大的过载能力。如果电动机在低速下长期运行,还必须要考虑电动机的散热问题,以防电动机温升过高。

2.1.2 恒功率负载 恒转矩负载的特点就是当转速变化时,负载从电动机吸收的功率为恒定值。即:

P■=T■Ω=T■■=■T■n=C

就是说,负载转矩与转速成反比。如金属切削机床中的主轴、造纸机、薄膜生产线中的卷取机、开卷机等都属于恒功率负载。

负载的恒功率性质是在一定的速度范围内而言,如果速度非常慢,在机械强度的限制下,T■无法一直增大,在低速下负载性质变为恒转矩负载。负载的恒功率区和恒转矩区在很大程度上影响着拖动系统方案的确定。直流电动机的弱磁调速就属于恒功率调速。

2.1.3 通风机类负载 这一类负载的特点是负载的转矩大小与转速的二次方成正比。功率与转速的三次方成正比。即:T■=kn■

各种风机、水泵、油泵都属于通风机类负载。

通风机负载通过变频器调速来调机的风量、流量,从而可以大幅度的节能。由于通风机类负载在高速时需要很大的功率,所以不应使这类负载超工频运行。

2.2 根据负载特性选取适当控制方式的变频器 变频器具有以下四种控制方式:

2.2.1 v/f控制方式 它的变频器可以同时控制变频器输出的电压和频率。在当v/f的值不变时,得到所需的转矩特性。用这种方式的变频器控制电路结构不复杂、成本也不高,多用于对精度要求较低的通用变频器。

2.2.2 转差率控制方式 这种控制方式要比v/f控制更先进,优点更多,它需要通过一个电动机上的速度传感器测出电动机的转速,构成闭环系统,速度调节器的输出为转差频率,电动机的实际转速与所需转差率之和决定了变频器的输出频率。用这种控制方式对电动机的电流进行控制,与前一种控制方式相比,在加减速特性和限制过电流的能力等方面都有明显的改善。

2.2.3 矢量控制方式 矢量控制是一种高性能的控制方式。其操作原理是,将异步电动机的定子电流分为产生磁场的电流分量(励磁电流)和与其垂直的产生转矩的电流分量(转矩电流),并加以控制。它的名称的由来是因为它一定要同时控制异步电动机定子电流的幅值和相位,即定子电流的矢量,所以叫矢量控制方式。

变频技术范文第5篇

关键词:异步电机 变频 调速 专利分布 专利分析

中图分类号:M343 文献标识码:A 文章编号:1674-098X(2015)07(b)-0049-02

进入20世纪70年代,随着电力电子技术、微电子技术及大规模集成电路的发展,使得采用电力电子变流器的交流拖动系统得以实现,特别是大规模集成电路、专用集成电路和计算机控制的出现,使高性能交流调速系统应运而生,交直流拖动按调速功能分工的格局终于被打破了[1]。交流调速性能完全达到了与直流调速性能相媲美的程度,而交流电机的优势则转化成为了其调速系统的优势。于是,交流调速拖动取代直流调速拖动的呼声日益高涨,交流调速控制系统已成为当前电力拖动调速控制的主要发展方向。目前,变频调速技术受到交流调速技术和微机控制技术发展的影响,其研究和应用将朝着高性能交流变频调速和特大容量、极高转速的交流变频调速方向发展[2]。

该文针对异步电机变频技术进行检索,以CNABS和DWPI专利数据库中的检索结果为分析基础,从专利文献的视角对异步电机变频调速技术的发展进行了全面的统计,总结了异步电机变频相关技术的国内和国外专利的申请趋势、申请人分布,探讨异步电机变频技术研究现状与发展趋势,为相关技术研究人员的研发方向和专利战略提供参考信息,也为相关企业科技管理人员对技术发展政策的制定提供参考。

1 异步电机变频技术专利布局分析

该文分别在中国专利文摘数据库CNABS和英文摘要数据库DWPI中对异步电机变频调速技术进行检索,其中CNABS数据库收录了1985年以来中国所有的专利文摘信息,DWPI数据库收录了1948年至今47个国家和组织的专利文献,并人工改写了摘要等信息。

在这两个数据库中采用异步电机变频技术领域通用的关键词表述,将检索结果进行人工浏览降噪,获得国外发明专利申请345件,中国发明专利申请761件。

1.1 发明专利申请年度分析

图1示出了异步电机变频调速技术国外专利申请趋势,大致可以分为三个时期,各时期划分别以申请量增长率的变化为标准。

第一时期为技术萌芽期(1979年之前)。20世纪70年代以前,实用的静止变频器没有问世,交流电机主要用于拖动场合,较少用于调速。高性能的交流调速技术还停留在理论上的期望阶段。从图1中可以看出,在1979年之前,异步电机变频调速技术的发明专利申请量很少。1979至1991年,异步电机变频技术相关发明专利申请量快速增长,在1983年的时候达到顶峰。1983年之后,国外的申请量总体有所下滑,但是仍然比1979年以前的申请量有较大的增长。在冷战的国际背景下,到1991年,申请量达到最低值。1991年后,异步电机变频调速技术专利申请再次逐渐增多。这一时期的发明专利技术主要集中在采用直接转矩的方式进行异步电机变频调速。主要原因为1985年德国学者Depenbrock提出了异步电动机的直接转矩控制理论。从2001年起,关于异步电机变频调速技术的专利的申请量处于稳定期。在这一时期,相关专利主要集中在基于矢量控制理论在变频调速技术中的运用以及无位置传感器的控制系统的相关研究方面。

图2示出了关于异步电机变频调速技术中国专利申请趋势,与国外专利申请相比较,中国专利申请大致也可以分为三个阶段,第一阶段为萌芽期(1985-2001年),第二阶段为发展期(2002-2007年),第三阶段为快速增长期(2008-2013年)。1985-2001年,中国专利关于异步电机变频调速领域的专利申请数量很少。而在这一时期,国外在异步电机变频调速技术领域已经经过了两次发展期,分别为基于电力电子技术和集成电路技术而发展起来的变频调速技术,和以直接转矩控制为基础的变频调速技术。2002-2007年,中国的专利申请总体呈现上升趋势,且每年的申请量趋于平缓的上升趋势。在该阶段,中国申请的申请人主要分布在高校和个人申请,其中,个人申请占有很大部分。经过对这些个人的百度分析,发现他们大多是从国外留学回来的教师。从整个申请量和申请人分布上来看,一方面当时中国的专利申请意识还不强,另一方面反映了在这一阶段中国对异步电机变频技术的研究还很缓慢,生产应用也不足,因此企业申请量还很少。2008年开始,中国有关异步电机变频调速技术的专利申请大量增多,这六年的申请量是前二十年申请总量的近两倍。

1.2 重要申请人分布情况分析

本节从国内外专利申请重要申请人方面对异步电机变频调速技术相关专利做进一步分析,主要考虑申请人历年的申请总量,按照申请总量进行排名,取前10名申请人进行分析。

图3示出了国外专利申请量排名前10名的申请人,分别是:(1)东芝照明技术株式会社(日本);(2)株式会社日立信息通信工程 (日本);(3)富士电机株式会社(日本);(4)三菱电机株式会社(日本);(5)西门子公司(德国);(6)ABB公司(美国);(7)株式会社明电舍(日本);(8)通用电气公司(美国);(9)罗伯特・博世有限公司(德国);(10)AS MOLD POWER CYBER(苏联)。排在前10名的申请人主要集中在美日德三个国家。而前四名均被日本公司占据。

图4为中国专利申请量排名前10名的申请人,分别是:(1)浙江大学;(2)卢骥;(3)清华大学;(4)永济新时速电机电器有限责任公司;(5)襄樊宇清电动汽车有限公司;(6)沈阳工业大学;(7)襄樊特种电机有限公司;(8)华南理工大学;(9)湘潭电机股份有限公司;(10)汪┥。

在中国关于异步电机变频调速技术的申请主要为高校申请和企业申请。根据前面的分析可以知道,在异步电机变频调速技术领域,国外的研究主要集中在1979-2001年。而中国在这个领域的发展明显滞后于国外,主要是在2007年之后开始快速发展。总体而言,中国对于异步电机变频调速技术领域的研究滞后于其他国家,尤其是日本、美国、德国这些变频调速技术领域的强国。

2 结语

该文通过对国内外异步电机变频调速领域的发明专利申请的分析,分别从申请的总体情况、申请量年度分析、申请人分布情况以及关键技术方面进行了分析。通过对异步电机变频调速技术的国内外专利申请量的分析可以看出,中国在异步电机变频调速技术领域研究迟缓,错过了两次发展热潮,相关专利申请很少。随着近年来人们专利意识的提高,以及市场对变频器需要的增多,有关异步电机变频调速技术的中国专利申请量快速增长。近年来,国内外对于变频器的要求主要在于其节能性、产品质量的提高、设备合理化等方面。从技术角度看,变频调速技术在平滑起动、力矩和定位控制、减噪等方面还需要提高,有学者提出了通用变频器的研究,相关专利申请较少,相关企业可加大对这些领域的研究。通过对专利申请内容的分析可知,中国专利申请的整体技术有待提高,国内申请人专利撰写的能力需要将强。同时,企业应加强对专利的布局,提高对异步电机变频调速相关技术领域出现的新技术和新方法的敏感性,积极研究核心技术,防止国外相关领域的专利申请对我国企业的发展产生制约。同时,企业可加强与高校或研究机构的合作,利用高校或研究机构在理论研究上的优势和企业自身产业制造的能力,将专利技术转化到产业制造上。

参考文献

[1]李春文,张爱芳,曹玲芝,等.交流异步电机变频调速系统研究综述[J].科技资讯,2009(33):47.