前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇废气治理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
[关键词]有机废气 处理技术 发展趋势
中图分类号:F135 文献标识码:A 文章编号:1009-914X(2017)05-0125-01
引言
大气污染是我国亟待解决的环境问题,其中工业废气是污染的重要来源。有机废气是工业废气最难处理的部分,这种气体能够对人们的身体健康产生严重的损害,也给国民经济造成严重损失。
1、有机废气处理技术的重要性
我国经济的持续发展,为化工企业的崛起提供了外部环境,但是,随着我国工业化进程的不断加快,却忽略了对环保的投入,工业废气的排放量不断增加,对环境造成的污染也日益严重。当大量的废气排放到空气中,不仅会对空气质量产生严重影响,同时也会对人体健康造成严重的危害。为了重现绿水蓝天,就需要不断加强工业废气的处理,而对工业废气处理的技术研究也就摆在人们面前。有机废气是工业废气中污染性较强、处理难度较大的一种,而且有机废气进入到人体呼吸道之后,对人体的呼吸、血液、肝脏等都会产生严重的影响,因此有机废气的处理也受到了越来越多的重视。
2、有机废气治理技术现状
目前而言,治理有机废气比较普遍的方法有吸附法、吸收法、氧化法等。这些方法虽然目前使用广泛,不可回避一个问题是效率不高,经济性低,因此在有限的环境治理投入下,带来的环境改善效果也很有限。
2.1 活性炭吸附法
吸附是指液体或气体附着集中于固体表面的作用,一般的活性碳都能发生这种作用。根据选取的吸附材料以及吸附机理的不同,吸附法又可分成化学吸附和物理吸附。化学吸附利用的是疏水键去除有机污染物的,例如用酚醛树脂吸附剂去除邻苯二甲酸二甲酯类物质。但是化学吸附剂,更多的是运用在去除水相污染物当中,用来去除有机废气的情况比较少见,究其原因是吸附剂与气体接触时间不够长,无法进行有效的反应,导致吸附效果达不到预期。这就使得人们在实际生产中选择物理吸附材料处理有机废气,比如活性炭、沸石等。选择这种孔状结构,比表面积大,物理吸附能力强的吸附剂符合去除有机气体的要求。实验数据表明,纤维吸附材料与蜂窝状、颗粒状吸附材料相比,具备更快的传质速率,因此,常常选择纤维吸附材料,以提高去污效率。
2.2 吸收法
吸收法一般情况是指的是液体吸收法,其基本的原理是废气和吸收剂接触很充分,吸收剂对于有害物质进行吸收,再经过接吸收过程,从吸收剂中除去废气并提取吸收剂,这样就使得吸收剂能够被循环利用。目前废气处理设备中喷淋装置是使用吸收的原理进行制作的。物理吸收剂是利用的物质具备相似相容的物质特性,比如常见的吸收剂水,可以用于去除那些易溶于水的气体,像丙酮、甲醇、醚,但是对于水溶性差的物质水无法起到作用。这就需要使用化学吸附的方法,其主要的原理是吸附剂上面的基团与有机废气发生,就当前国内外对吸收法的应用,可以获得以下经验总结。一是国内外研究者研究了不同溶剂吸收法对各种有机废气污染成分的处理效果,吸收剂主要包括有机溶剂、表面活性剂和水,还包括新型环保型吸收剂环糊精;因此废气种类不同,采用的吸附剂的种类也就不同。
2.3 催化氧化燃烧法
对于处理那些有毒、有害、没有回收价值的气体,如VOCs,氧化法是最佳的处理手段。该方法的基本原理是VOCs同氧气发生氧化反应生成水和二氧化碳,氧化反应就好比燃烧过程一样,最后得到的成分是对空气无害的水和二氧化碳。通常采用以下两种方法促使氧化反应的顺利进行:一种是加热升温,即热氧化法,使得废气达到氧化反应必需的最低温度;另一种是催化氧化,催化氧化是指不改变反应的温度和压强,向反应环境中添加金属催化剂,例如Pt、Pd、Ni等,废气中的有机污染物同氧化剂发生的氧化反应,催化剂的存在可以大大降低催化燃烧所需要的温度。如何获得高效的催化剂是催化氧化法的关键。近些年来,人们一直致力与整体催化剂的研究,同颗粒状催化剂比较,其在传质、传热、压降性能等诸多方面表现出优点。
3、有C废气治理技术发展趋势分析
在上述分析过程中,对有机废气几类传统处理技术有了初步的了解。为此,加大有机废气处理技术研发工作非常关键。下面针对有机废气处理技术未来发展前景进行论述。
3.1 生物处理技术
针对有机废气采取的生物技术,指的是基于特定状态下,以有机废气的有机成分为依据,把有机物有效地分解成为水以及二氧化碳,同时遵循“有机氨氨气硝酸”、“硫化物硫化氢硫酸”的两大转化过程。通过生物技术装置,有机废弃物的处理效率超过90%,恶臭物处理效率则更高。和传统处理技术相比,此项技术在设备上显得比较简单,并且很少发生再次污染的情况,所以生物处理技术具备很好的未来发展前景。
3.2 放电等离子体技术
在新的有机废气处理技术中,利用高压放电技术进行废气处理,是具有良好发展前景的技术。高压放电技术可以产生大量的高能电子和活性离子,构成平衡等离子体,这样就会使得C-C和C-H等化学键发生断裂,进而实现与废气中F,H和CI等原子的置换,得到大量无害的二氧化碳和水。另外,在等离子体中引入金属氧化物,可以形成一个催化体系,使得副产物的产量极大的降低,这时可以增强对污染物的剔除率。与传统的处理技术相比,高压放电技术操作更加简便.而且具有很好的节能效果,适用于对低浓度有机废气的处理。
3.3 PSA技术及光催化氧化技术
PSA技术在有机废气处理过程中其应用得到了初步的肯定。此项技术主要是以有机废气组成和吸附材料在吸附方面的差异性为依据,同时结合周期压力的改变,进而使有机废气被净化和分离。PSA技术具备的优势包括成本低廉、能耗小以及具备较高的自动化能力。在有机废气的分离及其回收过程中,合理地采纳此项技术前景良好,值得考虑。此外,光照状态下部分半导体材料可能有自由基活性的物质存在,利用光催化氧化技术,在常温常压条件下,能够使有机废气发生无毒反应,此过程是不会受到溶剂分子的影响的,其主要优势是反应速度快以及易于回收,因此光催化氧化技术在部分有机废气处理上也值得考虑应用。
3.4 综合处理技术
综合处理技术就是对多种有机废气处理进行综合运用,使每种处理技术的优点都可以获得最大程度的发挥,从而达到更好的废气处理效果。如今,在工业废气处理中应用的处理技术主要有如吸附催化技术、吸收一解吸一变压一吸附组合工艺等等。通过吸附催化技术可以对废气中的有害物质进行吸附,并且降低有机废气中污染物的浓度;利用复合吸收技术可以增强对废气中甲苯、乙酸丁醋的吸收效率,使得废气中的污染物含量达到国家标准的要求。
4、结束语
总之,减少环境污染最有效的途径就是从源头入手,降低有机气体的排放,这就需要高效、节能、经济的有机废气处理手段,因此在传统的处理技术上,研发新的处理技术就显得格外重要了。相信随着科学技术的不断发展,创新性的有机废气处理技术也会被应用到工业生产中去,降低甚至消除大气中有机气体的排放指日可待。
参考文献
[1] 胡焰宁.有机废气处理技术及前景展望[J].资源节约与环保,2014(01).
摘要:实验采用生物洗涤处理含苯酚废气,结果表明;长期运行的去除效率平均在97%,消除负荷30g/(m3
>> 生物质苯酚液化影响因素的研究 合成革废气的治理技术研究 有机废气治理技术的研究进展 齿轮箱厂喷漆废气治理工程研究 工业废气治理技术效率及其影响因素研究 铅酸蓄电池生产过程中含铅废气污染物治理技术现状 铝加工过程中含氟废气处理措施研究 生物法治理“三高”炼油污水恶臭气体技术研究 RTO技术治理挥发性有机废气工程应用研究 石油化工企业废气污染治理与控制技术措施研究 生物净化有机废气技术研究进展 生物膜法处理有机废气的研究 复合材料固定微生物处理废气的研究进展 高效复合菌对氯代苯酚类化合物的微生物修复研究 洗涤 利用磷化工含氟废气制备氢氟酸 含硫废碱液生物脱硫影响因素研究 含微量Nd镁基生物材料的研究现状 浅析有机废气治理技术 浅析有机废气的治理 常见问题解答 当前所在位置:中国 > 政治 > 生物洗涤法治理含苯酚废气研究 生物洗涤法治理含苯酚废气研究 杂志之家、写作服务和杂志订阅支持对公帐户付款!安全又可靠! document.write("作者:未知 如您是作者,请告知我们")
申明:本网站内容仅用于学术交流,如有侵犯您的权益,请及时告知我们,本站将立即删除有关内容。 摘要:实验采用生物洗涤处理含苯酚废气,结果表明;长期运行的去除效率平均在97%,消除负荷30g/(m3・h)左右。当苯酚负荷超过50g/(m3・h)时,液相苯酚会出现累积,从而影响到系统的稳定运行,含酚气体的高负荷降解需进一步开展研究。关键词:生物洗涤;苯酚;有机废气中图分类号:X512
文献标识码;A
文章编号:1001―6929(2004)04―0051―03
有机废气治理技术
目前,有机废气治理技术主要有:吸附回收、催化燃烧、冷凝回收、低温等离子体破坏等。不同的技术所适用的有机废气浓度范围及投资、运行费用各有不同,软包装企业应合理选择使用,才能达到理想的治理效果。
针对软包装印刷和复合加工过程中产生的有机废气浓度和排风量特点,吸附回收被认为是最佳的治理技术,同时环保部科技标准司也推荐使用吸附回收技术来治理有机废气。该技术不仅可以较彻底地净化有机废气,而且还可以在不使用深冷凝、高压等方式下,高效率地回收有机溶剂,回收的有些有机溶剂可以直接用于生产。
吸附回收技术主要有蒸汽和热空气(或氮气)两种脱附方法,对这两种脱附方法进行对比试验发现(表1是对比试验条件)。当脱附出口有机废气浓度降到1000mg/m3以下时,蒸汽法和热空气法用时分别为13min和8min,脱附完成所用时间分别为103min和91min,最终脱附末端出口有机废气浓度分别为14mg/m3和17mg/m3。
在试验条件相接近的情况下,热空气法最终脱附末端出口有机废气浓度下降得要比蒸汽法更快,脱附过程完成更迅速,而蒸汽法最终脱附末端出口有机废气浓度要比热空气法更低,说明脱附更为彻底。而且,不同的脱附方法针对的设备配置也不同,一般在其他条件均相同的情况下,采用蒸汽法进行脱附的设备规模要比热空气法更小,设备投资也相对更低,所以,软包装企业应根据自身经济实力和有机废气排放特点,合理选择使用不同的脱附方法。
有机废气治理优化方案
针对软包装行业目前有机废气治理中遇到的投资造价高、治理效果差、运行费用高等难题,行业人士也在不断研究对策与优化应对方案。下面,分别针对软包装印刷和复合工序中有机废气的治理方法进行优化,在考虑治理效果的同时,充分考虑了节能生产、有机溶剂循环利用。
1.印刷工序
印刷过程中排放的有机废气主要特征是成分多、浓度低、风量大,因此只有使用低投资、高效率的有机溶剂回收装置,才能实现软包装企业的低成本运营。
以往,软包装企业大多采用传统的活性炭纤维或者活性炭颗粒进行吸附回收,虽然能保证较高的净化效率,但仍存在一定的局限性,在处理过程中,有机废气风量较大,再加上吸附剂的气流阻力大,会导致风机电耗升高;当有机废气浓度较低时,回收率会变得非常低。从经济效益的角度分析也不是很理想,设备投资较高,从而导致企业运营成本升高。再者就是印刷过程中排出的有机废气种类较多,回收物为混合溶剂,一般要经过溶剂精制分离等工序才能达到回收利用的要求,而精制分离过程也是需要较大投资的,但如果把混合溶剂当作废溶剂直接卖给收购厂家,也存在违规处理危险废弃物的法律风险。
针对以上问题,可采用以蜂窝型活性炭为吸附剂的氮气脱附直接回收工艺(工艺流程如图1)来实现印刷工序的清洁生产。这种工艺结合了有机溶剂回收及氮气脱附技术,能够使用小型化设备治理有机废气,并且也简化了治理过程的工艺流程,降低了投资成本和运行费用,同时还降低了设备的操作难度。当空塔内气流速度为1m/s时,蜂窝型活性炭的压力降至约700Pa/m,颗粒状活性炭的压力则会降至约4000Pa/m。可见,通过蜂窝型活性炭的气流阻力较小,因此很适合作为印刷工序中有机废气治理的吸附材料,不管从经济效益还是从治理成果角度来考虑,都能达到理想效果。
2.复合工序
软包装复合工序中排放的有机废气特征是类型单一、浓度中低、风量适中。针对该类排放特点,要想达到较高的溶剂回收率和有机废气达标排放,软包装企业应正确选用合理的脱附方法。若采用热空气法脱附,需要规模较大的设备,前期投资较高。另外,采用热空气法的回收切换时间较长,易造成乙酸乙酯水解,使得回收的有机溶剂中醇含量偏高,并存在臭味,如果这样的有机溶剂再用于生产,肯定会直接影响产品品质。
而采取蒸汽法脱附,由于回收切换时间短,可有效避免乙酸乙酯的水解,但会带来另外一个问题,即冷凝回收过程中会产生大量废水,导致回收的有机溶剂中含水率升高,而软包装复合过程中对有机溶剂的含水率有一定的要求,含水率过高同样会影响产品质量。
一、有机废气的一级处理
1、深度冷凝
精细化工的各类反应主要在有机溶剂中进行,主要的溶剂有芳烃类、醇类、酯类、氯代烃类等,所以排放的尾气中会含有所用的各类溶剂,可以采用深度冷凝的方式进行溶剂回收。现分别以二氯甲烷、甲醇、甲苯为例,对冷凝回收进行计算和说明。
例如,甲醇在42℃时的蒸汽压38.804kPa, -12℃时的蒸汽压1.7364kPa,将含甲醇的饱和气体由42℃冷却到-12℃,可回收甲醇448.1g/m3尾气;甲苯在42℃时的蒸汽压8.631kPa, -12℃时的蒸汽压0.411kPa,将含甲苯的饱和气体由42℃冷却到-12℃,可回收甲苯285.6g/m3尾气。由此可见,对含有有机溶剂的尾气进行深度冷凝是必要的。
2、碱洗
经常遇到工厂尾气是酸性气体并且含有焦油的情况,可采用稀碱水洗涤。优先选用填料吸收塔,板式塔的压降较大,一般不用。根据风机的风量确定塔的直径,适当增加塔的高度,选用合适的液体分布器,确保洗涤效果。可以采用衬里材料进行防腐。
二、活性炭(Activated carbon简称AC)吸附
经过深冷处理后的尾气中有机气体浓度仍然很高,例如-12℃时尾气中甲醇的浓度可达17300ppm(V/V),甲苯的浓度可达4060ppm(V/V),可选用活性炭吸附回收设备,常采用颗粒活性炭或活性炭纤维吸附设备。
1、颗粒活性炭介绍
活性炭是含碳物质经过碳化和活化制成的多空性产物,活性炭吸附表面主要由大孔、中孔、小孔组成,具有发达的空隙结构和巨大的比表面积。VOCs气体分子在吸附过程中穿过大孔和中孔,在小孔内吸附。小孔的吸附率占总量的90%以上。
颗粒活性炭(Granular activated carbon)分为煤质和木质两大类,目前市场上提供的活性炭以煤质为主。颗粒活性炭生产加工过程如下:将原料煤粉碎到一定细度,加入适量的黏合剂并混合均匀,采用催化活化时则添加适量催化剂,挤压成炭条,经陈化、炭化、活化、洗涤、干燥、筛分得粒度为2~5mm活性炭颗粒产品。
2、活性炭纤维(Activated Carbon Fiber,简称ACF)
常用的活性炭纤维是以黏胶基或聚丙烯腈基为基材,经过炭化、活化处理制成。另外也有以再生纤维素、酚醛(酚醛清漆)树脂及沥青系纤维等为基材制成。活性炭纤维的纤维直径为5~20μm,比表面积平均在1000~1500m2/g左右,平均孔径在1.0~4.0nm,微孔均匀分布于纤维表面。与活性炭相比,活性炭纤维具有微孔孔径小而均匀,结构简单,对于吸附小分子物质吸附速率快,吸附速度高,容易解吸附等优点。与被吸附物的接触面积大,且可以均匀接触与吸附,使吸附材料得以充分利用。活性炭纤维具有纤维毡、布和纸等各种纤细的表面形态,孔隙直接开口在纤维表面,其吸附质到达吸附位的扩散路径短。对于有些大分子或颗粒物质,如二恶英、粉尘等,体积已经接近乃至大于活性炭纤维微孔体积,则难以被吸附,相比较颗粒活性炭更具有优势。
3、活性炭设备的选用
当尾气中VOCs 浓度较低或浓度均匀时,应优先选用活性炭纤维设备;对于精细化工的间歇生产,在尾气中VOCs 浓度较高,且浓度波动很大的情况下,选用颗粒活性炭设备更加合适;或者是采用颗粒活性炭与活性炭纤维两级串联组合设备,效果更好,用颗粒活性炭进行一级吸附,再用活性炭纤维进行二级吸附。
4、颗粒活性炭使用的安全问题
要预防颗粒活性炭在吸附及解吸过程中着火。着火的主要原因是活性炭对溶剂的吸附热或者是溶剂的氧化反应热在活性炭层中蓄积,异常升温而导致自然着火。活性炭是多孔性结构,导热性差,容易引起局部蓄热。在正常条件下操作,吸附所产生的热量与吸附放热应处于平衡状态。但当吸附的溶剂发生氧化、分解时,该平衡便遭到破坏,从而进一步加速了氧化、分解反应,最终导致温度的异常升高。特别是回收丙酮、甲基乙基甲酮、环已酮等酮类溶剂时,着火危险性更大一些。 因而,应严格控制吸附、解吸温度及交替周期,不能使吸附周期过长。
三、生物降解
生物处理技术是利用微生物代谢活动降解VOCs,将其转化为无害的小分子物质的工艺。常见的生物降解装置包括生物洗涤池、生物滤池和生物滴滤塔,这三种设备的生物降解原理基本相同并以生物滴滤塔最为常见。生物滴滤塔具有较大的空隙率和较小的床层压降,通过喷淋循环液可以有效控制塔内微生物的生长环境,如pH、营养物浓度等,从而避免反应产物在床层内的积累。影响生物滴滤塔良好运行的主要因素如下:
1、VOCs气体的种类
水溶性VOCs比较容易降解,各种气体的降解难易程度为醇类、酯类、醛类、苯类,醇类最容易降解。在苯、甲苯、乙苯、二甲苯四种物质中,最难降解的是邻二甲苯,并且苯环上含有其他的取代基也使可降解性变差。
2、微生物的影响
微生物是影响生物降解的最重要因素,目前已经分离出多种以恶臭有机物作为单一碳源而生长的优势菌种,如含硫恶臭有机物降解菌,含氮化合物降解菌以及含氯化合物降解菌等,培养驯化适应不同种类有机气体的微生物是生物降解的关键。
3、填料的影响
固定化载体不但对VOCs具有吸附作用,而且能够作为微生物的生长提供一个局部生态微环境、保留微生物生长所需要的营养等。合适的填料应该具有较大的比表面积、合适的空隙率及良好的机械性能,所用填料主要有:陶粒、陶瓷拉西环、聚氨酯泡沫、珍珠岩、活性炭等。
4、运行环境的影响
通常的pH范围在7~8左右,温度在25~35℃之间。
四、低温等离子装置
等离子体就是被电离了的气体,是电子、离子、原子、分子、自由基等粒子的集合体。通常要在3000℃以上,以上各种粒子处于热力学平衡状态,称为热力学平衡等离子体。当电子具有极高的温度,而离子、原子等重粒子温度低至0~200℃时成为非平衡等离子体,即低温等离子体。采用低温等离子体分解VOCs时,等离子体中的高能电子起决定性的作用。分解过程主要按两种方式进行,一是极高温度的高能电子直接与其他分子发生非弹性碰撞,将能量转化为基态分子的内能,使其激发、离解电离,最终生成无害的CO2和H2O;二是高能电子激励气体中N2、O2、H2O,生成具有较高能量的自由基粒子,破坏C-H、C=C或C-C化学键,将有异味的分子分解成无害小分子。
根据发生低温等离子体设备放电模式的不同划分为电晕放电、辉光放电、介质阻挡放电,其中以介质阻挡放电产生的低温等离子体浓度最高,VOCs分解及异味去除效果最好。
五、燃烧法
1、催化燃烧
2、直接燃烧与蓄热燃烧(RTO)
有机尾气在燃烧室内的直接燃烧,由于VOCs的含量较低,燃烧反应热不足以将燃烧气体加热到如此高的温度,需要消耗大量的燃料。一般在燃烧的气体出口中设置废热锅炉回收尾气中的热量。
蓄热式热氧化器(Regenerative Thermal Oxidizer,简称RTO)也称蓄热燃烧氧化器,是使用陶瓷或其他较高热容量惰性材料从燃烧排出的高温气体中将热量吸收并储存起来,达到一定温度后进行切换操作,将热量传递给流入燃烧器的冷气体并使之加热到接近燃烧温度,VOCs的热量回收率可达98%以上,远远高于废热锅炉或其他换热设备所能回收的热量。
RTO设备一般分为三室式和旋转式两种。
三室式RTO设备由一个氧化室和A、B、C三个蓄热室,组成通过切换提升阀门,工业尾气依次由ABC进入燃烧室,在经过蓄热室的过程中被加热到较高的温度,在燃烧室燃烧后依次由BCA流出,燃烧室温度一般在750~800℃,排放尾气温度小于80℃。此外还有辅助风系统,在进行切换时置换掉残留在蓄热室的气体。旋转式蓄热焚烧设备设置氧化燃烧室、若干个由陶瓷蓄热材料组成的有相同数量的进气室出气室、两个密封室和一个旋转阀组成。
六、其他处理工艺
1、利用紫外线光波作为能源,在纳米TiO2催化剂作用下,利用空气中的氧气作为氧化剂,对有机废气进行催化降解,生成低分子物质。
2、臭氧催化氧化工艺
此两种工艺仅应用在有机气体浓度很低,为了去除异味的情况,普及率不高,其处理能力和效果尚有待考察论证。
七、化工尾气处理注意事项
关键词:蓄热式;挥发性有机废气;气相色谱法;医药化工
中图分类号:X51文献标识码:A文章编号:16749944(2014)10017404
1挥发性有机废气概述
挥发性有机化合物(Volatile Organic Compounds,简称VOCs)一般指沸点低于250℃的化学物质,是最为常见的大气污染物,其主要来源于化工、制药、石油、皮革、喷涂等行业排放的有机溶剂废气,包含脂肪烃、卤代烃、硫烃、芳香烃、有机酸等。这些有机废气不但对环境质量、人体健康、动植物生产等造成极大的直接危害,且在光氧化反应下,易形成二次有机物气溶胶(Secondary Organic Aerosol,简称SOA),导致光化学烟雾、酸雨、霾和气候变化等一系列环境问题的产生,这些挥发性有机废气在空气中悬浮汇聚亦是导致PM2.5和PM10数值不断上升的原因之一,因而如何削减这些挥发性污染物至关重要。Derwent等[1]一直致力于二次SOA的研究,他们通过二次有机气溶胶生成潜势(Seconda -ry Organic Aerosol Potential,简称SOAP)研究,对多达上百种挥发性有机化合物进行SOAP计算。
目前蓄热式氧化焚烧技术处理医药化工有机废气治理效果较好,且有推广的前景,但单一的末端处理终归无法从根本上解决废气污染问题,必须从源头控制、装备提升、工艺优化、多种末端治理技术协同治理、加强监管方面进行全面控制,才能有效地解决好挥发性有机废气污染问题。
参考文献:
[1]Derwent R G, Jenkin M E, et al. Secondary organic aerosol formation from a large number of reactive man-made organic compounds [J]. Science of the Total Environment, 2010, 408: 3374~3381.
[2]Cerbe G. Grundlage der Gastechnik, Garl Hanser Verlag, 1982: 361.
[3]陈平,陈俊.挥发性有机化合物的污染控制[J].石油化工环境保护,2006,29(3) :20~23.
[4]Brauer H. Handbuch der umweltschutzes und der Umweltschutztechnik, Band 3, 436.
[5]Hoehlein B, Stimming U et al.Chemie-Ing, -Technik, 1995,67(10):1306-1309.
[6]汪涵,郭桂悦,周玉莹,等.挥发性有机废气治理技术的现状与进展[J].化工进展,2009,28(10):1833~1840.
[7]Momtaz SW, Truppi JT, Seiwert JJ. Sizing up RTO and RCO heat transfer media[J]. Pollution Engineering, 1997, 27(12): 34~38.