首页 > 文章中心 > 基尔霍夫定律的验证

基尔霍夫定律的验证

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇基尔霍夫定律的验证范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

基尔霍夫定律的验证范文第1篇

学生在运用EWB软件进行操作时,一边可以熟练在实际应用中的操作技巧,分析具体电路解决问题,还可以一边牢记关于电子电工技术的理论知识。就基尔霍夫定律来讲,基尔霍夫定律是电子电工技术学中的基本定律,囊括了电压定律和电流定律,对于学生学习电子电工技术理论十分重要,是以后将所学应用到实践中的理论基础。因此,通过操作EWB软件,可以帮助学生加深关于基尔霍夫定律的理论知识。首先在计算机桌面上选择EWB软件的快捷方式,进入虚拟实验室电子工作平台。点击创建电路按钮,学生可根据实际情况自由创建电路。然后,学生打开电路中的电路开关,通过电压表和电流表对该电路的电流和电压进行读取。随后学生可以任意更改电路中电子元件的数值,分别对每次更换电子元件后的电压表、电流表数值进行读取。最后学生们学生以试验后的多组电压、电流数据为基础,经过EWB软件的计算功能来验证,帮助学生进一步理解基尔霍夫定律,加深对理论知识的记忆,既培养了动手操作能力,有培养了学生的学习能力。

2EWB软件在逻辑电路中的应用技巧

在逻辑电路中,可以后多种形式来表现逻辑函数,而这几种形式是可以相互转化的,通过相互转化对逻辑电路进行综合分析。传统的分析电路方式,在对逻辑电路的分析过程中,逻辑函数的相互转化耗费的时间长,计算复杂,不利于实际电路问题的分析和解决。EWB软件根据这一点设计出逻辑转换仪,这种特殊的仪表软件,可以轻松的将几种不同形式的逻辑函数进行转化,达到分析电路设计电路的最终目的。一下对逻辑转换仪的应用技巧进行简要分析。首先进入EWB软件主界面,选择使用逻辑转换工具,即逻辑转换仪,利用鼠标进行选取,是逻辑转换仪进入工作状态。其次,根据具体电路、电流以及电压情况对逻辑转换仪进行参数设置。参数设置完毕之后继续根据要求设置逻辑转换仪输出数值设置,在一切数值设置完毕后,准备进行下一项工作。之后根据不同电路形式,选择不同的逻辑表达式按钮,得到相应的逻辑电路。再通过单击逻辑表达式按钮,得到最简的二进制逻辑表达式。最后,在得出不同的逻辑函数最简表达式之后,保证电路和逻辑转换仪连接完好,通过输入不同的信号对集中最简逻辑表达式进行转换,通过观察输出数值,对逻辑电路中的几种不同逻辑函数进行验证,判断转换后结果是否一致。

3EWB中一些常见功能使用技巧

EWB软件的设计使学生在教学中可以达到边学边做的效果,利用仿真电子平台和虚拟实验室达到实践效果。要想熟练的掌握EWB的各种应用技巧,应该熟练EWB软件中各种常见常见功能,从而达到在使用中熟练操作EWB各个应用技巧的目的。

3.1各类虚拟仪表的使用技巧

EWB软件中对于虚拟仪表的设计,最大限度的符合了实际仪表的标准,使软件操控者使用键盘和鼠标就能对各类仪表进行操作,设计电路、分析电路问题。在EWB电子实验平台中,共有其中虚拟仪表,分别是:数字万用表、信号发生器、示波器、虚拟电流表、虚拟电压表。由于在设计上最大限度的遵从了真是仪表的使用方法,因此在操作EWB软件中,各类仪表的操作技巧也与真是仪表的操作技巧相同,需要注意的是在操作评测过程中注意观察各种仪表的数值适用范围,在数值范围内进行合理的操作。

3.2EWB软件中巧用快捷键

EWB软件是一种计算机软件,在操控中大部分过程需要进行鼠标。同时EWB软件在设计中加入了快捷键功能,是软件操控者在使用软件过程中达到鼠标与键盘相结合的效果。在使用快捷键时操纵者减少了对鼠标的使用,充分的将左手与右手相结合,提高了软件的操作的效率。需要注意的是,操作快捷键大都比较相似,操作者需要牢记每种快捷控制的内容,减少错误的出现。

4结束语

基尔霍夫定律的验证范文第2篇

摘要:针对电路基础课程理论性强、抽象难懂和实践性强等特点,本文将Multisim10 引入电路基础教学过程,详细分析了Multisim10在电路基础教学中的应用,取得了良好的教学效果,大大激发了学生的学习兴趣,提升了学生的职业能力和职业素质,是提高电路基础教学质量的有效方法。

关键词 :电路基础Multisim10 电路仿真

1 概述

电路基础课程是高职电气自动化技术、机电一体化技术及电子信息技术等专业的一门专业基础必修课,是一系列后续课程的前导课程。学好本课程对于其他课程有着极其重要的作用。但本课程特点是定理、概念众多,理论内容抽象难懂,分析计算量大,要求学生有较高的抽象思维能力和逻辑思维能力。而当前由于扩招和单招的实施,使得高职学生整体生源质量大幅下滑,再加上高职学生普遍理论基础薄弱,学习积极性差,接受新知识的能力弱,这些无疑使得电路基础课程的教学更加雪上加霜。如何让高职学生掌握电路基础相关知识并加以应用,是摆在每一个讲授电路基础老师面前的一个新课题。

Multisim10 是美国国家仪器公司推出的一款原理电路设计、电路功能测试的虚拟仿真软件。Multisim10 具有操作界面直观、仿真能力强大、虚拟测试仪器种类丰富以及数据分析手段完善等特点。故利用Multisim10 仿真软件构建虚拟实验室,克服理论内容枯燥难懂、实验内容单一无趣等缺点,让学生在教中学,在学中做,做到“教学做一体”,使学生不再感到电路基础课程的抽象难学。

2 Multisim10 在电路基础教学中应用

2.1 加深相关基本定理定律内容的理解在讲授相关基本定理定律如基尔霍夫定律、叠加定理等时,为加深对理论内容的理解,一般会进行验证性实验。而验证性实验受实际实验台条件的限制,不利于高职学生的创造性发挥。现以基尔霍夫定律的验证实验为例,将Multisim10 软件引入后,老师和学生一起分工合作,根据定理内容,制定设计任务,学生自己根据设计任务动手设计实验方案,在仿真环境下构建虚拟电路模型。图1 为基尔霍夫定律验证实验仿真电路,每条支路上的电流值和每个元件上的电压值都一目了然。这时引导学生来分析电路图,先分析电流,如果按照流入电流为正,流出电流为负,电流的代数和为零;然后再分析左右回路各元器件的电压代数和也为零,所以可以得出结论:在任意时刻,流入流出某一个节点的电流代数和等于零;在电路中任意闭合回路内各段电压的代数和恒等于零。为了证实结论的可靠性,可以让学生修改电阻和电压源的数值,让学生自行分析。

如果学生已基本掌握相关定理定律的内容,老师可以在原验证性实验的基础上对实验进行一定延伸,设置若干故障点,例如设置短路、开路;阻值增大或减小等等,让学生通过仿真测量的数据去分析计算,从而找出故障点的位置和原因。这样做既可以让学生对所学知识有进一步的理解,更加发挥了学生的主观能动性、积极性和创造性;又不用担心对实训设备造成损坏。

2.2 辅助理论教学在某些抽象难懂的知识点的讲解过程中,以往的板书加多媒体课件的教学效果较差,学生无法直观地看到电路的物理过程。例如,在讲授一阶RC动态电路的过渡过程这部分内容时,需要分析输入信号为方波时电容C 两端电压的变化过程,以往只能用板书加PPT 课件来描述其物理过程,等到做实验时才能用示波器观察其电压波形。这无疑不能很好地满足教学需要。使用Multisim10,就可以当即取得相应波形图,并且通过图形使学生可以非常直观地看到它的变化规律及各个关键点的函数值。如图2 所示。

2.3 拓展实训内容“功率因数的提高———单相交流日光灯电路实验”是电路基础课程实验中一个典型实验项目,它既具有基础性又具有现实的广泛应用性,对学生理

解基本理论和培养实践操作能力都是极为重要的。但是交流电路实验要求电压较高,存在一定安全隐患,同时在进行实训操作时也容易造成器材损坏。因此,通过Multisim10软件来完成相应交流电路的仿真分析就成为一个相对较好的实验方法。

图3 为Multisim10 仿真环境下提高功率因数的实验电路。图中用一个电感线圈与一个电阻并联的电路模型等效代替实际的日光灯模型。通过图4 可知,日光灯是一个感性负载,此时电路功率因数较低,在未进行功率补偿的情况下,功率因数为0.6 左右。当在日光灯两端并联一个可调电容后,改变电容C 的值,电路的功率因数也随之发生变化。但需要强调的是,这种变化并不是线性变化。当电容C 增大到3μf 时,功率因数达到最大值0.99,但随着电容C 的继续增大,功率因数非增反减,当电容C 增至9μf时,功率因数减小至0.4 左右。这是因为一旦电容C 过大,发生过补偿,无功功率增加,所以在实际应用中要根据具体情况分析,选择一个大小合适的电容。

2.4 仿真作业习题传统教学方法下,每学习完一章节内容后,为了解学生对所学知识的掌握程度,会留下典型的习题。学生大都是被动地完成作业或是上交老师,或等老师课堂讲解。而现在完全可以要求学生以Multisim10仿真的形式完成相关习题。这样做一方面有利于学生对所学知识的巩固,也提高了学生的学习兴趣;另一方面有利于学生从工程实际角度来分析问题,同时也利于学生动手能力的提升。

3 结束语

实践证明,将Multisim10 引入电路基础教学取得了良好的教学效果。学生利用Multisim10,把自己变为教学过程的主体,在教中学,学中做,将理论知识通过仿真实验生动形象地展现在面前,缩短了理论到实践的过程;同时启发和扩宽了学生的思路,还锻炼了学生解决实践问题的动手能力,对提升学生的职业能力和职业素质起到了积极的作用。

参考文献:

[1]雷跃,谭永红.基于Multisim10 的电子电路可靠性研究[J].计算机仿真,2009,26(8):300-302.

基尔霍夫定律的验证范文第3篇

关键词:职业教育 电工实验 教学 思考

【中图分类号】G【文献标识码】B【文章编号】1008-1216(2015)06C-0071-01

职业高中电子电工专业的实验教学是该专业的核心任务之一,是面向学生职业需要的基本技能训练,也是提升学生职业素养的重要途径。传统的电工实验教学中,教师与学生之间更多的是一种演示与观看、教学与模拟的关系,这实际上不利于学生实践能力的培养,更谈不上创新能力了。近年来,教师的教学观念发生了转变,尤其是在校企对接的形势之下,教师更多地将注意力转移到学生的自我实践上来。但如果仔细分析,便会发现这样的转移更多还是一种现象,因为没有深入到学生的实验机制上去从而对学生的实验素养及职业技能的促进作用还没有得到充分发挥。针对这一现状,笔者进行了再思考。

一、实验兴趣,应当面向专业课程的需要

学生对实验毫无疑问是感兴趣的,尤其是对于电子电工专业的学生而言,由于实验内容能够刺激学生的听觉、视觉通道,一些自动控制类的实验还能够满足学生的好奇心,因而学生在本课程的实验课上总能够表现出强烈的兴趣。但也正如文章开头所说的那样,兴趣也分表面兴趣和深层次的兴趣。表面兴趣是直接指向学生的日常需要的,能够缓解学习压力、能够对感官带来直接刺激的兴趣只是表面兴趣。而作为电工专业课程学习的需要,教师要努力将学生的兴趣引导到对本课程的理解上来。

比如说基本电工仪表的学习与使用,其对学生的兴趣激发作用就不太明显,但其又是电工实验的最基本的操作。这个时候引导学生理解测量仪器的原理,或者尝试让学生自己去制造一个测量仪器,就成为激发学生对实验深层次兴趣的有效手段。以最为基本的万用表的使用为例,之所以称其为“万用”,是因为其能测量电路中的电流、电压与电阻,那么为什么能够实现这一目的呢?关键在于其内部构造!在理解了内部电路的基础上,如果给你(学生)足够的零件,你能否组装出一个万用表呢?笔者在实际教学中是让学生组成小组,然后为每个小组提供一个损坏了的万用表,要求学生检测出故障并尽量修复。这是一个具有任务驱动性质的实验过程,学生的思维不会落在浅层次的测量上,而是会通过多种手段去发现并解决问题。任务驱动状态下的学生投入程度是相当高的,即使没有太多的热闹气氛,学生的兴趣也已经深深地植根在解决问题的过程当中,笔者以为这是真正的面向课程需要的兴趣。

二、实验过程,应当面向专业课程的内涵

职业高中电工实验很多很复杂,除了基本的电工仪表使用之外,像基尔霍夫定律的验证及故障判断、叠加定理验证及故障判断、戴维南定理的验证等,都是比较复杂的实验。教学经验表明,即使有兴趣驱动,学生要想完成这些实验也是有困难的,而要想让学生能够高效完成实验,笔者认为,关键还在于将学生对实验的认识引向课程内涵。

电子电工这门课程对实验的要求很高,要求学生有较强的领悟能力与动手能力,而这也正是本课程的内涵之一。当学生站到了实验台上, 我们应关注的就是他们是否能够精准地判断电子元件的规格与性能,能否精确地选择焊接点等。基于课程内涵的需要,实验应当是开放式的,也就是说不要简单地让学生进行“暗箱操作”――实验的主体在实验箱体之内,只留外面的几个元件让学生去操作。以上文提到的基尔霍夫定律的验证与故障判断为例,实验可以设计成开放型的,让学生在教师提供的多种规格的元件中自己选择,实验的步骤由学生自己去设计,实验的数据由学生自主去判断。这样可能会让全班的实验缺少了一些整齐划一的感觉,但实际上却是尊重了学生的实际需要。更重要的是,如果仔细研究我们会发现,这种实验状态下的学生心理,与教师主导实验步骤下的心理完全是不一样的,强烈的自主性会让他们高度重视自己的实验过程。笔者不止一次看到有的小组的学生在未能按时完成实验之后有强烈的懊恼神情,这说明他们对实验是有参与欲的。也只有在这样的实验心理之下,学生的实验才能更大程度上接近电子电工实验的内涵。

三、实验评价,应当面向专业课程的发展

今天面向电工专业的实验评价,应当结合课程发展的需要而进行。什么是课程发展的需要?在笔者看来,就是社会发展对电子电工专业提出的需要,而这意味,本课程的教师要将目光从教材转移到社会企业当中。由于众所周知的原因,教材的内容编写必然落后于电子电工专业的发展,企业需要的不是合乎教材要求的人才,而是符合企事业单位发展需要的人才。因此,评价学生在电工实验中的表现,一定要结合实际来进行。笔者注意在实训中结合学生的实际水平,注意在校企联合中研究企业的需要,从而为实验课堂上向学生提供准确的评价奠定基础。

有一点可以肯定,那就是学生在实验中接受到什么样的评价,其实验能力就会有什么程度的提升。电子电工的发展极快,教师评价的眼光需要不断更新。只有面向课程专业发展的方向并提供评价,学生的实验素养才有可能得到质的提升。

参考文献:

[1]陈津,电子电工实验教学应加强学生应用能力的培养[J].科技创新导报,2010,(13).

基尔霍夫定律的验证范文第4篇

完善实践教学体系

为了加强电气工程专业的建设,不断提高教学质量和教学水平,系领导积极向学院申请经费,购置实验设备,满足实验教学需要。经统筹考虑,学院拨款50万元,购买新的实验设备,以满足电力电子技术、电气控制与PLC应用、自动控制理论、计算机控制技术等专业理论课的实验教学需要。2010年5月,在教务处和国资处领导的大力支持下,经过招标,购置了THSMS-B型可编程控制器实验装置(含配套电脑)10台、THMPE-2型电力电子技术实验装置(含配套LDS21010型数字存储示波器)10台、THKKL-5型控制理论/计算机控制技术实验箱(含配套电脑)10台。上述设备较好地满足了对应课程的实验教学需要,极大地改善了电气工程专业的实验教学条件。为迎接省级示范性实践教学中心的合格评估,加大本专业所开设的实验项目中三性实验所占的比重,达到省级示范性实践教学中心三性实验占比达到75的要求,我们对已有的实验项目进行综合性改造,使电力电子技术和电气控制与PLC应用2门课程的实验项目不断朝综合性和设计性方向改进。为此,需要为THSMS-B型可编程控制器实验装置添置一些四层电梯和十字路通灯等控制对象模型,为THMPE-2型电力电子技术实验装置添置若干实验挂箱、配件、电机导轨和相应的电机模型。此外,为进一步完善电气工程专业的实践教学体系,提出组建传感器技术和运动控制系统两个新的实验室[3]。这一要求得到了院系两级领导的积极支持,目前资金已经全部到位,设备也即将完成调试安装。这两个实验室的建成,提高了三性实验的占比,将确保达到省级示范性实践教学中心合格评估的要求;为电气工程专业的学生开展课程设计和毕业设计提供可靠的实习基地。

加强实验教学队伍建设

电气工程专业是一个新开设专业,原有教师队伍中能够胜任该专业教学任务的人相对较少。因此,为了加强师资力量,更好地完成专业的理论和实践教学任务,我们每年都有计划地从外部引进应届毕业的电气工程专业方向的研究生,来充实教研室和实验室的师资队伍。5年来,累计引进理论课教师4人(次),实验教师3人(次),打造了一支能够较好地满足本专业实验教学要求的师资队伍。积极支持教师进修和深造,不断提高专业知识水平。5年来,累计有教师5人考取脱产或在职研究生,进入著名高校深造。另有10(人)次前往其他高校进行中短期进修,有针对性地提高了业务水平。此外,实验室还邀请实验设备生产厂家的技术人员来校,进行实验教学技能培训,使教师熟悉实验设备的性能,能独立操作设备完成实验,5年来累计完成培训22人(次)。利用假期,组织教师到实验设备厂家参观访问,了解实验设备的最新发展情况,更新实验教学内容[4]。

推动实验项目的综合性改造

鼓励开展实验科研工作,对现有实验项目进行综合性改造,开发新的综合性实验,提高三性实验占比,使学生接受更具有挑战性的实验任务,主动参加实验,变“要我学”为“我要学”,提高学生上实验课的积极性,推动了实验教学效果的改善[5]。例如,电路分析实验课,原来只有基本元件的伏安特性的测绘、基尔霍夫定律的验证、叠加定理的验证、诺顿定理/戴维南定理的验证、电压源与电流源的等效变换和受控源VCCS,CCVS的研究等6个实验项目。其中只有基本元件的伏安特性的测绘、电压源与电流源的等效变换和受控源VCCS,CCVS的研究等3个实验是综合性实验,其余都是验证性实验项目。通过积极努力,我们开发出了RC一阶电路响应测试和RC二阶电路动态响应研究2个新的综合性实验。这2个实验都要用到示波器,都需要自己去总结归纳实验现象和规律,实验的难度相对更大,也更有挑战性,学生普遍反映很有兴趣。而对叠加定理的验证和诺顿定理/戴维南定理的验证2个实验,我们在保留原来的验证部分内容的基础上,还增加了要求学生应用定理分析解决实际问题的内容,完成了实验项目的综合性改造。学生反映实验项目内容充实,很有挑战性,获益匪浅。经过上述实验项目的改造和拓展,电路分析实验课程可以开出8个实验项目,其中7个是综合性和设计性实验,只有基尔霍夫定律的验证1个验证性实验,三性实验占比达到87.5,完全达到了省级示范性实践教学中心的评估要求。鼓励将实验科研的成果固化为论文,5年来累计发表实验教学论文26篇,有力地推动了电气工程专业实验教学水平的提升,为达到省级示范性实践教学中心合格评估的要求打下了坚实的基础。

积极编写实验讲义

为巩固和保留实验教学成果,提高实验教学水平,鼓励教师积极编写实验讲义。通过实验讲义,学生可以有针对性地提前预习,减少了抄写实验报告的时间,增加了用于实验操作的有效时间,大大提高了学生实验课的效率和实验的成功率。尊重教学基本规律,充分认识实验讲义的编写有一个从低到高,不断改进的过程;要求实验讲义一年一改版,保障了讲义的水平逐年提升[6]。为提高编写讲义的积极性,对参与实验讲义编写的教师给予一定的物质奖励,对高质量实验讲义予以优先出版。目前已有7门实验课程编写了15种实验讲义,其中5门课程的实验讲义已经更新到第二版,2门课程的实验讲义更新到第三版,即将正式出版2本实验教材,有效地满足了实验课程对讲义的需求,推动了实验教学水平的不断提升。

改进教学教法

鼓励并提倡老师对分层次、启发式、研讨式等实验教学法大胆尝试,寻找适合于自己和学生的实验教学方法,力争达到最佳的实验教学效果[7]。提倡同学多向老师提问,把老师当做一个平等的讨论伙伴,互相交流思想,促进学生逻辑思维的形成。教师更多地做一个旁观者和监督者,而不是参与者,把实验课的主动权还给学生,还给学生一个自由探索的学习氛围,真正培养学生的独立探索能力。

强化规范,改进教学质量

为规范实验教学,制定了详细的实验教学规范,每位教师人手一册;规范详细阐述了教师和学生应该遵循的原则。对教师要求遵循备课,板书,讲解,操作示范,巡回指导,原始数据单签字,批改实验报告等一系列标准流程;对学生要求课前预习,课中认真听讲,小心操作,仔细观察,课后搞好实验室卫生,并认真撰写实验报告。系部还安排人员每天巡查实验课堂,确保了实验教学规范的切实有效执行。详尽的规范确保了实验教学质量不断稳步攀升。

基尔霍夫定律的验证范文第5篇

关键词Proteus仿真软件;电工技术;中职

1引言

电工技术基础课程是中职院校中电气、机电类专业尤为重要的专业基础课程,该课程可为后续深入学习电子技术等课程打下坚实基础。由于电工技术基础课程具有较强的理论性和实践性,但中职学生通常素质较差,因此,该课程教学效果欠佳,不仅教师教得费劲,学生也不能良好地吸收知识,严重影响了后续课程的学习效果。中职院校教师需深入探究该课程,以提高教学质量[1]。为了使学生能更好地掌握电工技术基础课程的知识,增强教学效果,本文主要探讨Proteus仿真软件的课堂教学效果,以促使学生能更直观地进行仿真训练,从而有效理解难懂的理论教学,并融会贯通,以增强电工技术基础课程教学效果。

2中职院校学生、就业现状分析学生现状

电工技术基础课程涉及的知识面较广且难度较高,教学内容通常抽象、难懂,要求学生具有较高的逻辑思维以及抽象思维能力,因此,学生学习该课程较为困难,不易掌握,如何让中职学生更轻松地理解这门课程就成为现在教学的难题。传统的教学方法通常是以“教师主讲,学生听”的方式进行,让学生被动接受晦涩难懂的知识,学生在不能理解该课程时,仅学习皮毛,如定义、名称之类,不能将该课程在实践中运用自如。就业现状由于社会快速向信息化、科技化发展,因此大量需求各方面的高技能人才,这要求学生不仅具备扎实的理论基础,还需具备较强的创新、动手能力。电工技术基础同样是一门实践性较强的课程,学生在学习该课程时,不仅可以提高动手能力,也能培养创新能力,是一门尤为重要的基础课程。

3Proteus仿真软件在中职电工技术基础教学中的应用价值

目前常用的电路仿真软件较多,如早期的EWB系列、Multisim系列以及Proteus系列等。EWB系列具有占用系统资源较小、简单方便的优点,在此基础上进行升级后就是Multisim系列。EWB系列、Multisim系列在目前的电路、电工技术课程教学中的应用较广,但也存在一些缺点,如仿真功能弱、互动性差等。Proteus系列在教学中通常用以实现微控制器系统软件及硬件仿真,虽然功能更强大,但初学者较难上手,不过在初学者加强对Proteus的练习后,自然可以得到解决。Proteus系列具有实现电子电路交互式仿真的巨大优点,且交互性更强,电路的运行也可更直观、形象地展示于学生面前[2]。在教学时,教师可带领学生进入Proteus实验室,每位学生平均分配一台电脑。教师可在课堂上对学生使用Proteus仿真软件的连接、调试等进行指导,并激发学生利用该软件学习电工技术基础课程的兴趣,加深对课程的理解。

4Proteus仿真软件概述

Proteus仿真软件是一个将实物仿真与电路分析相结合的平台,具有强大的仿真、分析功能,将多种功能集于一身。该软件具有较多的性能特点,主要有:1)具备>27000个仿真元器件;2)不仅具备多样激励源,还支持信号以文件形式输入其中;3)具备多种虚拟仪器,且软件的面板操作更加逼真;4)具备更加生动的仿真显示;5)具备高级图形仿真功能;6)具备单片机协同仿真功能。

5Proteus仿真软件在中职电工技术基础教学中的应用

在对学生进行电工技术基础教学过程中会用到较多基础元器件知识,如电阻器、电容器、电感器等,也会用到较多基础理论知识,如直流电路、单相交流电路、三相交流电路等。仅靠教师进行枯燥乏味的讲解,学生很难对这些知识进行深刻理解,但通过使用Proteus仿真软件则可较好地解决这些问题[3]。下面将举部分实例来说明在中职电工技术基础教学中应用Proteus仿真软件的情况。在基尔霍夫定律教学中的应用上课时先指导学生学会对Proteus仿真软件的基本操作,然后让学生根据教材上的电路图开始操作:将基尔霍夫定律的验证电路绘制于Proteus仿真软件的原理图编辑窗口上,并显示出各支路中的电流值,通过在Proteus仿真软件电路图中三个支路上的电流,使每个元器件上的电压能一目了然地呈现于学生面前,再指导学生对电路图进行分析。首先计算电流,可根据电流流入为正、流出为负来计算,也可以电流流入为负、流出为正计算,得出电流的代数和为0;然后对右回路各元器件的电压代数进行计算,计算结果显示其和依然为0。因此,通过运用Proteus仿真软件可得出结论:流入流出一个节点的电流代数和在任意时刻均等于0,将回路内各段电压闭合的代数和也恒等于0。为巩固该结果的可信度,可让学生再次使用Proteus仿真软件对电阻、电压源的数值进行改变,并再次观察,得出同样的结果。当学生基本理解定理后,可在电路图上人为设置障碍,如阻值增大、短路、开路等,并让学生采用Proteus仿真软件对其数据进行分析、计算,自行找出故障原因,以对该课程进一步理解。电容的充放电及电感的电磁效应电路仿真1)电容的充放电电路仿真。与课本上的电容充放电仿真电路图像对照,运行Proteus仿真软件,闭合课本图中的SW2,保持断开SW1,可看到正在对电容充电的电池,AM1上出现逐渐减小的电流读数,而VM1上则出现逐渐增大的电压读数,同时可于C1上查看到正负端电荷累积。将SW2断开,并闭合SW1,可观察到电容的放电情况,发现AM2上流过的电流以及被点亮的灯泡,且AM2的读数在逐步减小,灯泡也逐渐变暗,直至放完电荷,灯泡完全熄灭。通过在Proteus仿真软件中观察这一充放电过程,可更灵活、深刻地理解该知识点。2)电感的电磁效应电路仿真。与课本上的电感的电磁效应仿真电路图相对应,并运行Proteus仿真软件,可发现电流变的读数快速增加,增加至某一值后点亮灯泡,同时电流表的读数继续增加。随后读数的增加幅度逐渐变缓,直至稳定下来,灯泡则被持续点亮。如电感值为1000H时,则可长时间达到稳定值,且稳定值与灯泡的电池内阻、电阻均存在一定关联。Proteus仿真软件可帮助学生更好地理解电感器的特性。作业巩固当学生对课堂上所学的电工技术基础知识有初步理解后,则可给予他们作业习题对其基础知识进行巩固。但既往学生完成习题后,不能自行检查对错,仅能在交给教师后由教师来检查。有Proteus仿真软件后,学生可将题目在Proteus仿真软件中进行检测,自行检查,这种方法比让教师来检查更能巩固知识,并进一步提高动手能力。教学效果评价教师可在学生进行仿真操作时观察其熟练度以及对知识点的理解度,根据学生在课堂上的表现进行量化评分。同时,教师可根据学生对Proteus仿真软件的运用熟练程度进行评价。Proteus仿真软件使抽象的概念、理论知识变得形象、具体,学生也更易接受,理解难点。当学生能够顺利理解难点后,会更愿意去主动学习,把学习过程当作有趣的游戏,从而显著提高教学质量。另外,学生通过Proteus仿真软件获得更加扎实的理论基础与动手能力,也进一步提高了自身创新能力,成长为符合社会发展需求的技术型人才。

6结语

Proteus仿真软件能对电工技术基础的理论环节进行仿真,将难以理解的知识通过实践变得更易吸收,同时也缩短了从理论到实践的过程,有效提高了教学质量以及学生的学习兴趣,使学生能从学习实践中体验到学习的乐趣,增强学习自信心。另外,在电工技术基础教学中应用Proteus仿真软件时需注意以下几点。1)教师需在进行演示教学前就画好相关电路,并进行完整演示,使学生在课堂中能看到教师熟练讲解、操作,并以教师为榜样进行实践操作,避免让学生看到不完美的操作效果,打击其学习积极性。2)在Proteus仿真软件的电路仿真实验中,需注意指导学生首先学会如何在软件中快速查找实验电路图所需元器件,以加快学生绘制实验电路图的速度,节省学习时间,并快速连接虚拟仪器,进入仿真实验,体会由仿真实验带给学生的成就感、自信心,从而进一步激发学习积极性。综上所述,在中职电工技术基础教学中应用Proteus仿真软件,具有较大的教学意义,其教学效果较传统教学方法更好,并能克服传统教学带来的课堂枯燥无味、难于理解的弊端,让学生亲自实践,激发其学习兴趣,开拓思路,提高学习分析能力及动手能力。

参考文献

[1]黄山,吴飞青.Proteus软件在《电工电子学》实验中的应用[J].电子制作,2012(8):99-100.

[2]武玉升.Proteus仿真软件在《电工基础》项目化教学改革中的应用[J].电子世界,2015(18):161-162.