首页 > 文章中心 > 线路设计法

线路设计法

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇线路设计法范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

线路设计法

线路设计法范文第1篇

1纵梁受力分析

与分析横梁方法类似,如图2所示,取最不利位置,两组道岔处区域,纵梁平行于线路作用在挖孔桩上,假设两列列车同时过桥,纵梁以上荷载有:两列车所产生的中-活载(乘以相应的折减系数)、横梁恒载、小纵梁恒载、3-5-3型吊轨恒载、枕木以及钢轨恒载。拟选取H428×407×20×35型钢纵梁,纵梁与桩之间采用连续梁结构进行模拟。经计算,输出结果为:纵梁变形形状,最大位移1mm,纵梁梁最大弯曲应力57033.6kN/m2=57.0MPa,纵梁最大剪切应力52447kN/m2=52.4MPa,均满足规范。纵梁采用H428×407×20×35型钢。

2线路防护及顶进施工步骤

2.1线路防护施工步骤

新建下穿铁路框架桥位于车站咽喉区,框架桥采用宽翼缘大刚度的H型钢纵横抬梁加固铁路线路。线路防护施工可大体分以下几个步骤[4-6]:第一步:抽换枕木(砼枕换木枕),木枕尺寸为280cm×16cm×24cm,道岔影响范围内岔枕尺寸应根据实际调整,确保符合轨道施工要求。第二步:对各股线分别设“3-5-3”P43吊轨,道岔区设“3-3”P43吊轨;并在轨底枕木下设置小纵梁,并将一股线路下小纵梁通过横向连接成整体。第三步:施工线间及线路两侧挖孔桩及端部钻孔桩及盖梁。第四步:安装H428×407×20×35型纵梁。第五步:横穿H428×407×20×35横梁及H498×432×45×70横梁。

2.2顶进施工步骤

第一步:箱体浇筑完毕,中继间顶进至箱体前端距第一排桩边缘1.0m处,将横梁稳定支撑于箱体上。第二步:箱体顶进至第一排桩边缘最小距离0.3m处,横梁稳定支承于箱体后,拆除箱体范围内第一排排桩及H428×407×20×35型纵梁,继续顶进。第三步:箱体陆续顶进离第二至八排桩边缘最小距离0.3m处,横梁稳定支承于箱体后,拆除箱体范围内第二至八排桩及H428×407×20×35型纵梁,继续顶进至设计位置。第四步:箱体两侧路桥过渡段回填级配碎石并注浆,确保铁路刚度平稳过度,最后拆除箱体范围外纵横梁及线路加固设施,恢复线路。

3结语

线路设计法范文第2篇

在对电器的设计中,要等到客户对电器的线路的控制要求下达以后,再根据要求,结合当前的资金限制,以及现有的操作条件,选择合适的,同时具备经济性、合理性、安全性等多个方面的设备配置。在控制线路的设计操作中,首先应该对主电路进行优化设计。因为主电路是控制线路的设计基础,它是整个设计线路的总领,在运行过程中,起到绝对的领到地位,和支配地位。因此,主电路设计的优劣状况将会直接影响到电器的正常运行和控制线路的设计和控制器编程工作的复杂、难易程度。所以,我们首先要做的就是通过对主电路的设计和优化把设备的设计问题进行转化,在这个过程中,我们要注意一些基本的问题。当我们了解电气的控制线路的设计之后,就需要根据现行的控制任务进行认真的,具体的,谨慎的分析,具体问题具体分析,实事求是的解决问题,提出可行的操作方案。比如,在对发动机的电气的控制线路的设计时,首先要了解的就是,所需要的电动机的控制是点动控制、连续控制还是正反转控制等。只有全面的对电器的设备需求有所了解后,才能正确的处理问题,实现主电路的优化。在对电气的主电路的优化设计中,我们可以借用,或者说参考已经熟悉的电路设计。这样,既可以提高工作的效率,也能在一定程度上,帮助我们更完善的设计其它线路的优化。还有一个非常重要点,就是要注意及时利用工作原理来进行分析。当在操作过程中,遇到挫折或是瓶颈时,我们应该查看电气控制图。比如,我们在上文中提及到的电气原理图,以及电气接线图。这些图画的功能,可以帮助更好的了解问题,排查麻烦。也就是当你不知道怎么办时,首先应该想到的是查看工作原理图,然后再考虑把它转化为控制电路图。这样,有助于我们更好地对电气控制线路的优化设计。

2控制电路的优化

我们知道,一件电器的运行,需要各个零件的集体配合。正如我们所熟知的木桶效应一样,如果在设计中,存在一些短板,那么,电气线路的整体优化效果就会不如人意。因此,在对电气的主电路进行优化设计之后,我们也应该对其它部分进行整合与优化。比如,对控制电路的优化。当电气线路的主电路设计出来后,我们应该认真的,具体的对其探讨和分析,把对电器的控制转化为对接触器和继电器的控制,也就是提出更为适合的控制要求,然后进行控制电路设计和优化。对电气的控制电路的控制要求,是我们进行控制电路设计的基础和重要依据。只有认真分析主电路的设计,并且结合实际,完备的选择合适的控制方法和控制手段,才能得到具体的控制线路。当然,就像对主电路的优化设计一样,我们同样可以用已知的或熟悉的控制电路来对电器设备进行控制。因为在很多种情况下,我们会发现,虽然设备的运行不同,但实际上,其中的控制电路是完全一样的。因此,我们可以借鉴已知的电路来帮助我们更好更快的解决当前的问题。这样,可以简化我们的设计工作,节约操作用时,提高工作效率。

3控制方法的优化

俗话说,只有对症下药,才能彻底解除病症。在对电气的控制电路的优化中也同样如此。选择对一个正确的控制方法,对于我们的工作来说,简直就是事半功倍。因此,我们要谨慎的选择控制方法。当然,在这个过程中,是一定要符合要求进行选择的。比如,如果选择的控制方法和控制手段不合适则会使控制电路的设计工作复杂或难以进行。举个例子,在对一件电器的设计中,选择手动控制,还是自动控制,就需要结合当前的情况,来进行选择。如果是设计走廊的声控灯那么,灯亮以后的熄灭,就需要线路的自动控制来进行。如何选择手动控制,就会加大人们的操作,那么显然,这样的设计,就是不合理的。再比如,一件电器的手动控制和时间控制,同样也需要根据实际来正确选择。在煲饭的电压锅中,人们所需要的,就是食物烹饪结束之后,能够自行关闭电源,这样,既可以便捷的通知我们食物的烹饪状况,又可以节约电能。由此可知,电气的控制方法的选择,对于电气控制线路的优化的重要性。

4接触器控制系统的优化

在电气的控制线路的优化中,接触器控制系统的优化,也具有非常重要的作用。继电器接触器控制系统中,主要是通过触点之间的接触运作,进而控制电气设备而运行的。也就是通过常开触点以及常闭触点二者组合而成的。通过一些物理知识,我们可以了解到一些对接触器的控制系统的优化。比如,当几个条件中,只要具备一个其中任何一个条件,所控制的电器线圈就能通电,这时可以使几个常开触点采用并联的方法来实现。而当几个条件同时具备,使电器线圈通电,可以使这几个常开触点串联,进而能够正常运行。复合按钮的使用,也可以促进控制线路的优化。也就是说,当控制要求中,有一次动作要求连续进行几个动作指令才能完全进行时,就可以采用复合按钮。比如,在日常的家居电器中,很对按钮都可以采用复合按钮。最常见的就是电源的开启与关闭功能,时间预约与时间增减等等一系列情况。

5结语

线路设计法范文第3篇

关键词:输电线路;塔位桩;直线桩;MySQL

中图分类号:TM726 文献标识码:A

0.引言

随着测量技术的快速发展,输电线路工程测量外业获取手段的逐渐增加,数据量不断加大,不同数据的交互处理及自动化处理渐渐成为输电线路工程测量外业工作者亟待解决的问题。因此,建立输电线路工程测量系统具有十分重要的意义,不仅提高测量外业数据处理利用率,也提高了外业数据的使用率。针对上述问题,研究开发了适用于输电线路的工程测量系统,使用MySQL数据库对外业测量数据进行管理,并自动生成输电线路工程测量所需的各项成果(线路测量手簿、干线数据成果表、杆塔数据成果表等),提高外业工作者数据处理效率,并具有一定的推广应用意义。

1.软件功能设计

1.1 数据格式

在输电线路工程测量中,所涉及数据主要包括:干线数据、非干线数据、塔基数据、塔位数据。其中干线数据、非干线数据和塔基数据的外业采集手段主要包括GPS-RTK、全站仪(Leica),这两类数据是本软件所涉及的基础数据。塔位数据指的是塔位与干线数据关联表。

1.2 程序实现及应用

软件根据输电线路勘测技术规范,基于Visual Studio 2010和MySQL数据库设计并完成了一套适合输电线路工程测量的数据处理系统,最终打包生成独立可运行的exe应用程序如图1所示。本软件实现了数据导入、数据编辑、GPS干线数据处理、GPS非干线数据处理、全站仪数据处理、塔位数据处理、各类成果报表输出(线路测量手簿、干线数据成果表、杆塔数据成果表等)及其他应用,如图2所示。

2.主要数据处理方法

在软件编写过程中,所涉及的数据处理包括GPS干线数据处理、GPS非干线数据处理、全站仪数据处理、塔位数据匹配等问题。其中最主要的问题包括GPS干线数据处理所涉及的直线精度和转角度数计算,全站仪数据处理所涉及的平距、偏距和高程计算。下面介绍上述几类问题的处理方法。

2.1 GPS干线数据处理

GPS干线数据处理过程中,主要涉及直线精度与转角读数问题。

(1)直线精度

直线精度是指放样点到干线的距离,在线路前进方向左侧为正,右侧为负。如图2所示。A、B、C、D、E点的直线精度均为0,F点的直线精度计算方法为:

此外,还需判断直线精度的符号,本软件采用的是斜率进行判断。

当kAB>=0,XF>XF1,直线精度值为负号;

当kAB>=0,XF

当kAB

当kABXF1,直线精度值为负号。

(2)转角读数

转角读数是指相邻直线桩间夹角,线路前进方向左侧为左转,右侧为右转。如图3所示,B点为左转,C点为右转,D点为左转。以B点为例:

∠ABC=αBC-αAB±180° (5)

式中:αBC、αAB分别为BC和AB的坐标方位角;∠ABC为转角读数。

2.2 全站仪数据处理

在输电线路测量过程中,局部区域需要批量采集时,通常使用全站仪进行采集。全站仪数据处理主要包括平距、偏距、高程计算。

(1)平距

D=S・SIN(Z)-1.46592048E-7・(S・SIN(Z))(S・COS(Z)) (6)

式中:S为距离;Z为竖直角;D为平距。

(2)偏距

偏距是指测点到最近两点直线桩距离,计算方法与直线精度的方法类似。

(3)高程

H=S・SIN(Z)+6.820057869E-8・(S・SIN(Z))2+I-J

(7)

式中:S为距离;Z为竖直角;H为高程。

结语

通过建立输电线路工程测量系统,计算结果满足输电线路勘测规范要求,并自踊生成各类报表,能够大大缩减内业处理时间,提高效率。除此之外,本软件是基于MySQL进行开发的,适用数据库对数据进行管理,能够确保原始数据的安全性而不至于轻易丢失。软件界面友好,使用者很快就能熟悉软件的操作。软件可升级性能好,方便后续自动更改、升级,具有广阔的应用前景。

参考文献

[1]雷伟刚.基于编码的GPS RTK架空送电线路平断面测量系统设计[J].测绘通报,2010(1):45-48.

[2]陈中林,龚建辉.测绘项目生产管理系统的设计与实现[J].四川测绘,2007(6):252-255.

[3]高首都,王宇,王建立,等.输电线路测量辅助处理软件编制[J].北京测绘,2012(6):89-91.

[4]徐辉,胡吉伦,周勇,等.输电线路测量外业数据一体化管理程序设计[J].地理空间信息,2014(6):113-115+4.

线路设计法范文第4篇

关键词:电气控制线路;逻辑设计法;真值表;与;或;非

中图分类号:TM921 文献标识码:A

逻辑设计法是利用逻辑代数这一数学工具来进行电路设计,即根据生产机械的拖动要求及工艺要求,将执行元件需要的工作信号以及主令电器的接通与断开状态看成逻辑变量,并根据控制要求将它们之间的逻辑关系用逻辑关系式来表达,然后再运用逻辑函数基本公式和运算规律进行简化,使之成为需要的最简“与”、“或”关系式,根据最简式画出相应的电路结构图,最后再作进一步的检查和完善,即能获得需要的控制线路。

逻辑代数也可以用于线路简化和读图分析。该方法可使各控制元件的关系一目了然,不会读错和遗漏。

1 逻辑代数和逻辑电路

事物的发展变化都有一定因果关系。例如,电灯的亮、灭决定于电源是否接通,如果接通了,电灯就会亮,否则就灭。电源接通与否是因,灯亮不亮是果。这种因果关系,一般称为逻辑关系。

(1)逻辑变量

在二值逻辑中,变量不是1就是0,没有第三种可能。这里的1和0不是表示数值的大小,而是代表两种不同的逻辑状态。可以和电压的高低、继电器接点的通断相对应。

(2)逻辑运算的实现电路

在逻辑代数中,基本逻辑运算有“AND――与”、“OR――或”、“NOT――非”三种,常用的逻辑运算还有“NAND――与非”、“NOR――或非”、“EXOR――异或”等。

逻辑运算继电器触点的实现电路:

(3)真值表

用逻辑变量的真正取值反映逻辑关系的表格成为真值表。

用继电器接点实现逻辑代数的基本事项。

①逻辑1和继电器的常开触头闭合相对应。

②逻辑0和继电器的常开触头断开相对应。

③逻辑“非”的实现可以使用常闭接点。

(4)由三种基本运算得出的逻辑代数公理(基本运算规则)

0+0=0 0・0=0 0+1=1 0・1=0

1+0=1 1・0=0 1+1=1 1・1=1

2 应用实例

(1)要求:按下SB1,指示灯HL1点亮;按下SB2,指示灯HL1和HL2点亮;按下SB1和SB2后指示灯HL2点亮。

(2)使用器件:按钮开关2个,电磁式中间继电器2个,指示灯2个。

(3)设计步骤

①列出控制元件与执行元件的动作状态真值表(表4)

②写出逻辑表达式(与或表达式)

③化简(使用公式法、卡诺图法或电路图法)

(a)公式法:

(b)卡诺图法,如图1所示:HL2=KA2

(c)电路图法:(按下面顺序进行化简,如图2所示)

④画电路图,如图3所示。

⑤实现电路,验证电路的正确性。

结语

逻辑分析设计方法能够确定实现一个开关量自动控制线路的逻辑功能所必需的、最少的中间记忆元件(中间继电器)的数目,然后有选择地设置中间记忆元件,以达到使逻辑电路最简单的目的。逻辑设计法比较科学,设计的线路比较简化、合理。但是,当设计的控制线路比较复杂时,这种方法显得十分繁琐,工作量也大,而且容易出错,所以一般适用于简单的系统设计。但是,将一个较大的、功能较为复杂的控制系统分为若干个互相联系的控制单元,用逻辑设计的方法先完成每个单元控制线路的设计,然后再用经验设计法把这些单元组合起来,各取所长,也是一种简捷的设计方法,可以获得理想经济的方案,所用元件数量少,各元件能充分发挥作用,当给定条件变化时,容易找出电路相应变化的内在规律,在设计复杂控制线路时更能显示出它的优点

线路设计法范文第5篇

关键词 石油测井;高温电子线路;设计方法

中图分类号 TM 文献标识码 A 文章编号 1673-9671-(2012)031-0102-01

如何保障电子系统在高温环境下正常的运作,是本文研究的主要的问题。因为,在石油测井时,仪器通常都是在井下几千米以上的深井中工作,这种环境通常伴有:剧烈震动、压力大以及温度高等特点。电子线路将很难在这种环境下保持正常的运作。

1 温度对电路的影响

温度对电子线路的影响最主要还是对电子元件的影响。随着温度的变化,使得电子元件的一些特征和性能产生变化,从而影响到电路。

1)温度半导体元件的影响。设计高温电路,则必须先解决元件的问题。半导体是现代集成电路元件的主要材料,它一种热敏材料,随着温度升高,它的许多参数也将会随之变化,特别是本征承载流子的密度还与温度成正比,从而使得PN结的反向电流增加的很明显,进而导致功率损耗增加,噪声增大以及阻抗降低,最后,随着温度逐渐的升高,电子元件的内部结构受到破坏,致使电子元件的性能受损。有实验表明:随着半导体结温每10℃的增加,元件无故障时间将缩短一倍。所以,降低对半导体结温的要求,是设计高温电路的重点。

2)耐高温的电子元件。所有电子元件都有其的高温额制限度,由于元件工作自身也会产生温度,所以工作时元件的温度一般都会高于工作环境的温度。设计时,元件工作最高的温度不能超过其本身的温度允许值。所以,在设计时:①元件的选择上,应尽量额选择温度最高允许值大的的元件。在选择半导体元件时,应该注意不宜选用结温较低的锗件,而应该选用结温较高的硅件;②尽可能的减少电路系统功率的消耗,降低元件散热性的要求;③在设计上尽可能的增加热导和减少热阻,促使降低低功率消耗和最高允许结温的要求。元件的热阻是有两个部分组成的。其分别是,件外热阻:电子元件外壳到周围环境的热阻;件内热阻:电子芯片内部到外壳之间的热阻。确定件外热阻的因素有多种。一般是由:器件引线框材料和结构,半导体芯片的尺寸,压焊丝材料,芯片粘结材料,表面积的大小和直径以及器件外壳的材料所决定的。而件内热阻主要和组装件的组装密度、元件、结构材料、功率分布等等有关。

2 设计高温电路

高温电路的设计目前有三种方法可以实现。其分别是:传统、混合电路、HTASIC方法。

1)传统设计。传统的设计方法一般只是在设计和制造时将高温特性考虑进去的依照普通环境进行的系统设计方法。这种设计方法既要使用一些热设计去调整元件的功率,还得选用耐高温元件,但要在150℃以上的高温环境下正常工作还是很难实现的。别的高温元件也大概如此。不过可以用降温的方法来降低电路的温度,促使仪器内温度保持长时间在150℃以下,完成所需的测量。

传统的设计方法,对于短期的应用时可行的,甚至一些很复杂的电路也能用到。然而在长期的高温下应用,可靠性不高。因为,电路的无源与有源部分之间的互联部分在长期的应用下很容易老化。

2)混合电路设计的方法。我们将同时在一块基体上应用现成集成芯片和薄厚膜技术的方法称之为混合电路设计的方法。它是一种介于HTASIC和传统之间的方法。相对于传统技术,混合电路的功耗要低;而且,在高温工作环境下的各种效果都要比传统电路要好。

3)HTASIC设计方法。相对于传统电路和混合电路,集成电路技术在高温条件下应用的效果肯定是最好的。在一些典型的高温环境系的特性它都有很好的表现。能适应的最高工作环境高达250℃。

应用集成电路的好处:①随着能够集成在芯片上的功能的增多,处于外部的电子元件的数量也将逐渐减少;②集成电路相对分离电路其内部元件的尺寸要小的多,所以,大大的降低了功耗,也避免了芯片内部过热;③由于芯片内所有功耗元件都可以通过物理延伸或调整到避免本地过热点产生,就使得集成元件在高温环境下有了更高的保证。

3 低功耗的设计

高温电路的设计,在于提高电路系统高温环境下正常工作的时间。上述在采用耐高温元件、优化电路结构的同时,还应该考虑降低系统的功耗,减少热量的释放。

减低集成电路芯片功耗的设计最主要的研究内容是:如何有效的降低芯片功耗和如何通过软件硬件的优化在保持本来性能的前提下,使得总体功耗在一个较低值上。集成电路芯片所产生的功耗,最主要的是来源于电路逻辑状态所产生的动态功耗。所以,降低功耗最直接有效的方法是降低供电电压。只是这样经常会增加电路输出延迟。另外一种方法就是降低频率,有选择的降低频率可以再降低功耗的同时,保证系统的性能不受影响。而降低负载容抗的的方法,是实际中降低功耗最有意义的方法。

所以,在电路实际中降低功率消耗,可以从硬、软件的设计采取

措施。

1)硬件设计。①元件上,尽可能的采用功耗小,可胜任高温工作要求的高温低供电集成芯片;②在电路性能得到保证的前提下,进可能的提高电源转化效率和降低电源工作电压;③在保证电路性能的情况下尽量的减少元件数量,简化电路;④如果仪器是智能型的,则可以充分的利用中央处理器的运算、处理功能代替硬件电路。

2)软件设计。①尽可能的硬件软件化来实现功能。这样有利于降低成本,降低功耗,偏于维护和升级,还能提高工作的可靠性;②电源管理功能最好使用微处理器自身所带的;③采用可用的各种手段减少耗电;④结合实际应用,尽量利用软件手段减少耗能。例如:石油井下测量采样时,可以于事先预算好最好的采样方针,在不影响测量效果的前提下,尽量减少功耗;⑤在应用的过程中应该注意:要仔细检查各元件,特别是集成电子芯片的工作状态。考察其是否能够正常运作以及其各种性能是否健全。如果不能,应当及时给予处理。

4 小结

经过对耐高温电子元件的选择、电子线路结构的优化和降低电路系统功耗的设计,基于PCB的高温电路时可以实现的。实践也证明该电子系统能够在250℃以下的高温环境下正常运作。

参考文献

[1]Akira Matsuzawa. Low-voltage and low-power circuit design for mixed analog/digital systems in portable equipment. IEEE Journal of Solid-State Circuit.1994,29(4).

[2]Moyer, B. Low-power design for embedded processors. Pronceedings of the IEEE Circuits and Systems Magazine,2001,1(1).

[3]童诗白.模拟电子技术基础(第三版)[M].北京:高等教育出版社,2003.