首页 > 文章中心 > 集成电路封装

集成电路封装

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇集成电路封装范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

集成电路封装范文第1篇

关键词:建筑通风 空调安装 施工质量

对于建筑工程的通风技术和空调安装技术的应用,在施工前期一定要做好相应的施工准备,在施工中严格注意施工工序和施工方法。同时,在施工的后期,完成验收和检验等工作时,一定要认真仔细,避免出现其他差错。

1、建筑通风与空调安装施工的前期准备工作

在建筑通风和空调安装前期,应将施工前的准备工作做好。例如,对建筑设计的图纸和图纸的审核等工作,以及准备好施工的材料和施工作业的设备等。还应提前进行技术交底工作,使施工人员保证在施工操作中能够用正确和科学的施工技术操作。同时,对施工进行检测和审核等环节时,应保证施工的正常进度,减少施工中的质量问题和安全问题的发生率。具体应注意几点要求:

首先,建筑通风与空调安装工程施工时,应保证施工的系统图与施工的平面图是一致的,并且符合有关标准要求,避免出现误差。其次,应注意对施工的设备检查工作,尤其是对于预埋件等位置有没有按照规定的设计要求进行安全设置。此外,还要注意在施工中的预留孔洞以及位置有没有按照规定的标准和尺寸进行设计,其标高的距离以及离墙距离有没有和设计图纸相对应。对于隔墙的坐标一定要保证精确的位置,从而使通风以及通风平面的设计和布置合理。

在施工的前期阶段,对于施工图纸应加强分析和审核。依据规定的标准对图纸要求进行检查,然后按照图纸要求进行施工。在施工中,应严格遵循图纸规划的标准和数值,在图纸的设计没有失误以及没有差错的情况下,再按照施工图纸施工,并确定施工的方案。

2、建筑通风和空调安装工程施工质量的控制要点分析

在建筑通风和空调安装工程时,要提高施工技术并保证施工的质量。加强对施工人员的施工质量管理,严格督导按照施工方案进行施工。首先,应保证施工中的风管系统的安装具有较好的质量。应按照设计规定的图纸要求,确定好预埋风管的位置,尤其是风管托架吊杆的位置应保证精确无误。然后根据不同的负荷要求,来选择不同的膨胀螺栓进行固定好,一般应将其设置在保温层外部,且要保证保温层不受到损伤。这时,一般可以采用隔热材料,利用托架横担以及风管底部做一垫隔。此外,若避免两者出现接触,可以将吊杆以及风管两侧各自离开保温层相同的距离。对于垫片,一定要保证厚度适当。安装好风管之后,应检查一下水平度,一般偏差不应超过3mm,且总偏差应在20m以下。然后,再进行防火阀温度熔断器的安装工作,应加强对阀门的检查,确定没有质量问题之后,再进行安装。要保证每个房间在安装风口的数量应保持一致,避免出现误差的情况下,可以采用拉线拉平的方式,使得风口标高一致,间距比较稳定和匀称。

其次,应加强对通风和空调设备的安装质量。在进行安装风机支架时,一定要采用统一减震器进行安装,避免应用不统一、不正规的没有减震作用的减震器。在选择减震器时,要注意选择功能良好、规格相同,并具有相同高度的减震器。同时,在减震器的布置上,应按照施工要求和施工的设计图纸进行,避免不规则设置。要保证减震器的受力均匀。减震器在安装的前期,应对其安装地点做一重点检查,主要检查安装地点的平整度和水泥砂浆的磨平度,如果有不平整的情况出现,应保证误差应小于2mm。同时在安装高效过滤器的过程中,要保证外框箭头以及气流方向相一致,且控制好误差的范围小于1mm。

此外,要加强注意对空调水系统中的管道安装质量。要注意选择电动调节阀时,不宜采用低进高出的方式,避免出现阀芯松动的情况,从而无法让水流出水。应按照阀体上箭头指示,进行相应的操作,使得调节系统能够正常运行。在风机盘管安装以及对于冷水、热水支管的安装时,可以适用软连接或者利用半硬连接的方式。这种方式能够避免管道的断裂或者出现漏水现象。对于坡度的调解,应排向排水口,使得水流往标识方向畅通。还要注意到,凝结水管不可与卫生间下水道相连接。

在建筑通风与空调安装施工时,其控制的质量要点还有防腐以及绝热施工方面。应做好防腐工作和防锈施工。一般要采用油漆方式进行涂刷施工,不过在调和油漆过程中,一定要注意油漆的稠度要适中,使用两次涂刷。应在第一次涂刷完毕后油漆干后,再进行二次涂刷工作,避免出现油漆脱落等情况发生。还要做好绝热工作,运用科学的保温材料进行绝热,选择合适的胶结剂,使风管以及管道粘接。

3、对建筑通风与空调安装工程施工的质量检查

在建筑工程的通风与空调安装完毕之后,就要进行系统的检查和调试工作。施工人员以及安装人员应充分做好相关准备工作,并随时上报。调试人员要根据上报的内容和资料进行调试,一般在调试前做好检查工作和测试工作。

首先,对于检查工作要在施工完毕后进行现场检查,保证现场干净无杂物,主要环境,对有关设备进行必要的清洁工作。再对设备以及管道进行检查,对外观和设备检查有无损坏。并检查阀门安装是否正确,以及方向有无相反,也要对电气箱盘的接线进行详细的检查。然后,在对施工设备进行检查,对空调器以及通风管道检查工作,保证清洁无杂物,不允许设备内有异物或者污渍等情况。还要对设备添加一定量的油,保证设备的正常运行。

对于工程的测试过程中,要将风量调节正常,并保证防火阀的工作运行良好,使排烟阀运行无碍。然后,再对送风口以及回风口做测试,保证叶片运行正常,以及阀门也正常。对管道的密封检查,必须引起重视。要对管道进行检查前,应先对气压做出测试工作,使得系统具有较好的严密性。要保证电气控制系统的运行正常,同时在自动调节情况下没有出现其他的异常情况。现场施工基本结束后, 还应做好后期质量控制, 对所有制冷机, 风机盘管, 送、回风口等设施在竣工前作全面的清理,保证表现整洁,各风机盘管,送、回风口的名称、编号、规格等标记齐全、清晰。检查施工单位风管漏风检测试验、冷冻水管道压力试验, 制冷系统气密性试验等试验项目的测试以及测试报告的填写是否符合要求, 督促施工单位对所有隐蔽工程检查的隐检单, 各种技术资料、合格证书, 质量保证书、各类设备、材料的测试报告等资料整理汇报, 并装订成册; 督促施工单位根据工程施工情况编制完整的工程竣工图, 整理汇总, 装订成册, 作为工程验收的依据和业主今后维修的原始资料。

4、结语

建筑通风和空调安装工程施工是一项重要的施工,在具体的施工中,一定要加强施工技术的操作和要求,保证施工质量。本文从几个方面对安装工程做了详细的分析,主要从质量控制的要点方面触犯,做一简要论述,在实践中还有待于进一步的研究和分析。

参考文献

[1]刘冰.建筑空调安装施工技术分析[J].中国新技术新产品2010(19)

集成电路封装范文第2篇

设计业突飞猛进 制造封装稳步增长

从统计数据看,上半年国内集成电路全行业共实现销售收入307.87亿元,与2008年上半年的236.54亿元相比,增长30.2%,其增幅与2008年上半年的57.5%相比有明显回落。

在产量方面,1-6月份国内集成电路总产量累计为110.19亿块,比2008上半年的94.19亿块增长17%,也大大低于去年同期54.7%的增长水平。

从2008年上半年国内集成电路产业各行业的发展情况看,IC设计业的发展最为引人注目,珠海炬力、中星微电子、同方微电子等一批新兴设计公司正在快速成长,其销售收入正成倍增长。与此同时,中国华大、杭州士兰、华虹集成电路等国内老牌设计公司也保持了稳定增长的发展势头。在此带动下,上半年国内集成电路设计业规模继续快速扩大。1-6月份设计行业共实现销售收入51.47亿元,与2008上半年的32.7亿元相比,同比增幅达到57.4%。

与集成电路设计行业的快速发展不同,上半年国内芯片制造行业的发展明显趋缓。1-6月份芯片制造行业共实现销售收入105.14亿元,其35.4%的同比增幅与2008年同期高达182.4%的增幅相比有较大的回落。这一方面是受全球半导体市场不景气导致国际Foundry订单减少、价格下跌的影响;另一方面也是由于过去几年国内芯片制造行业产能扩充在2008年得到集中释放,新的产能扩张计划尚未展开的原因。

在封装测试业方面,近几年国内封装测试企业一直保持了平稳增长的势头,即便是在今年上半年国际市场疲软的环境下依旧保持了这一势头。1-6月份国内封装测试行业共实现销售收入151.26亿元,同比增长19.9%,与去年同期基本持平。

由于各行业发展速度的不同,三大行业在整体集成电路产业中所占份额继续随之改变,其总的趋势依旧是封装测试业所占的比重逐步减小,设计和芯片制造所占比重逐步增大。2008年上半年,设计业在集成电路产业中所占的比重达到16.7%,比2008年上半年10.1%的份额扩大了6.6个百分点,芯片制造业所占比重也由2008年上半年的31.2%扩大到34.2%,而封装测试业所占比重则由2008年上半年的58.7%下降到49.1%。

华东带动作用减弱

华北华南增长平稳

从华北、华东以及华南这三大国内集成电路产业集中分布区域的生产情况看,以上海、江苏和浙江为核心的华东地区,其新增芯片生产线产能已经逐渐释放,芯片制造业对该地区集成电路产业整体的带动作用开始减弱,2008年上半年该地区集成电路产业销售规模的同比增长率由2008年同期的75.5%回落到29%,销售收入为225.49亿元,其在全国集成电路产业中所占份额为73.2%。

作为目前国内集成电路产业相对集中的区域之一,华北地区集成电路产业增势平稳,2008上半年该地区集成电路产业共实现销售收入67.07亿元,同比增长28.6%,在全国集成电路产业总销售规模中所占份额为21.8%。

集成电路封装范文第3篇

关键词:微电子技术专业;集成电路;实验室建设;

作者:陈伟元

0引言

以集成电路为主的微电子产业是现代信息产业的基础和核心[1],它对经济建设、社会发展和国家安全具有至关重要的战略地位和不可替代的核心关键作用,其重要性在迅速提高,产业规模在逐步扩大。目前,我国集成电路产业的发展,已经形成了以设计业、芯片制造业及封装测试业为主的微电子产业链,并相对独立发展的产业结构特点。微电子产业的快速发展带动了社会对各层次微电子技术人才的大量需求。为顺应微电子产业的快速发展,为地方经济建设服务,各地高职院校纷纷开设了微电子技术专业,并大力加强微电子技术专业的建设[2-4]。但微电子技术是一门应用性非常强的学科[5],不仅需要较好的理论基础,更需要有较强的生产工艺实际操作能力,这都需要较好的实验环境和实验条件来支撑。微电子实验实训设备要求高,资金投入大,很多高职院校(包括本科院校)没有足够资金购买昂贵的实训设备,学生只能通过老师解说、观看录像等了解相关工艺过程[6-7],没有机会亲自动手[8],造成我国微电子制造业人才总量严重不足,且人才质量基础较差、人才层次结构不合理[9]。

基于工作岗位和人才培养目标的分析,苏州市职业大学结合省实训基地和省光伏发电工程技术开发中心的建设,优化建设方案,用非常有限的资金投入,建立微电子技术专业实验室,为培养符合企业需求的高技能、高素质人才进行了有益探索。

1微电子技术专业培养目标分析

目前,中国集成电路产业已初步形成以长三角、环渤海,珠三角三大核心区域聚集发展的产业空间格局。以2010年为例[10]:我国集成电路产业销售收入1440.2亿元,三大区域集成电路产业销售收入占全国整体产业规模的近95%。其中,环渤海地区占国内集成电路产业整体规模的18.8%,珠三角地区占全国集成电路产业的8.4%,涵盖上海、江苏和浙江的长江三角洲地区已初步形成了包括研究开发、设计、芯片制造、封装测试及支撑业在内的较为完整的集成电路产业链,占全国集成电路产业的67.9%。目前国内55%的集成电路制造企业、80%的封装测试企业以及近50%的集成电路设计企业集中在长三角地区。

可见,长三角地区是中国重要的微电子产业基地,而苏州、无锡等苏南地区在集成电路制造、封装测试领域又具有明显的区位优势。现代工业的发展,集成电路后端(版图)设计服务的需求会持续增加。

高等职业技术教育微电子技术专业的就业核心岗位的确定,既要反映出当地微电子产业的市场需要,又要考虑到适合高职学生能做、并乐于做的岗位。如现场操作为主的“半导体技术工人”岗位,不适合作为本校微电子专业的核心岗位,也体现不出与中职学生在岗位上的竞争力[11]。经调研和分析,确定“集成电路版图设计”、“微电子工艺及管理”、“设备维护”作为本专业学生培养的核心工作岗位。

微电子专业的培养目标为:培养德、智、体、美全面发展,能适应现代化建设和经济发展需要,具有良好职业道德和创新精神,熟悉微电子器件及工艺的基本原理,具备集成电路版图设计、晶圆制造及封装测试中的设备操作与维护、工艺管理、产品测试、品质管理能力,面向生产服务一线的高素质应用型技术人才。

2微电子技术专业实验室建设目标

高职教育以培养高素质应用型人才为主,培养的学生不仅具有较好的理论基础,更应具有较好的基本技能。根据以上培养目标,高职微电子技术专业重点培养学生微电子材料工艺及IC领域如下方向的基本技能:

(1)微电子材料器件工艺与检测。了解微电子材料与器件的常规工艺制备过程,并了解其主要参数的表征及测试方法;

(2)IC设计技术。了解IC设计的流程,掌握IC设计的基本原理和方法,重点熟练掌握IC版图设计工具软件的使用方法;

(3)IC制造与封装测试技术。了解IC制造的基本过程和工艺,掌握基本的IC封装及测试原理和方法,并学会基本测试仪器的使用方法。

为实现以上目标,在微电子技术专业实验室的建设上,至少应围绕如下几个方向来进行:①集成电路设计,特别是集成电路版图设计方向;②微电子材料和集成电路工艺方向;③集成电路封装及测试方向。目前国内各高职院校的微电子技术专业根据自身的实际情况,基本上也是围绕这几个发展分支来建设专业实验室[12]。

微电子实验设备非常昂贵,若要建设完善的微电子技术专业实验室,其建设资金的投入是非常庞大的,大部分学校也没有这样的建设能力。为此,在有限的建设资金上,实验室建设采取实用化原则,以国家投入或学校自筹资金方式建立微电子基础性实验室、IC版图设计实验室、微电子材料及器件工艺实验室,而对于投资较大的IC封装及测试实验室,主要采取与企业共建的方式进行建设。

3微电子技术专业实验室建设方案

根据以上微电子技术专业实验室建设目标,苏州市职业大学结合省实训基地和省光伏发电工程技术开发中心的建设,建立了IC版图设计实验室、微电子材料及器件工艺实验室和IC封装测试实验室。

3.1IC版图设计实验室

IC设计包括IC系统设计、IC线路设计、IP核设计和IC版图设计。其中IC版图设计工作的任务量大、所需人员多,是一种高技能、应用型技术,是最适合高职微电子技术专业学生就业的工作岗位。

IC版图设计实验室的建设,以服务器和计算机终端组成,再配置IC设计软件。其中,终端一般要配置40套以上,以便课堂上每位学生均能单独练习。

IC版图设计实验室的建设投入大,特别是IC设计软件价格昂贵,可争取大学计划、实验室共建等多种方式,获得EDA软件商的支持。苏州市职业大学与SprigSoftInc.合作,引进其先进的IC版图设计软件平台Laker,并与IC设计公共服务平台提供商苏州中科集成电路设计公司进行深度合作,发挥各自优势,共同进行IC版图设计高技能人才的培养与培训。

3.2微电子材料及器件工艺实验室

微电子材料、器件涉及的工艺广泛,实验设备价格昂贵,只能用有限的资金投入,解决一些微电子最常用的工艺实验设备。为让学生对微电子工艺有感性认识和实践机会,经调研,认为净化、扩散退火、薄膜工艺、光刻工艺、霍尔效应测试等是微电子行业应用较多的公共技术。微电子材料器件工艺与检测实验室,建设为千级的净化实验室,以扩散退火炉、真空镀膜设备为基础,并配以相关的光刻机、光学显微镜、霍尔效应测试仪等,从而满足从微电子材料的制备工艺到微电子材料与器件的性能测试等实验需求。

该实验室也结合了省光伏发电工程技术开发中心的建设,兼以实现太阳能光伏电池的制备实验,为微电子技术专业的“半导体器件物理”、“集成电路工艺”、“太阳能光伏电池”等课程提供实验支撑。

3.3IC封装测试实验室

近几年来,国内IC产业有较大的发展,尤其是IC制造及IC封装测试业发展很快,在我国集成电路产业链中有着举足轻重的地位,占据了我国微电子产业的半壁江山[13]。IC封装及测试行业也是微电子技术专业学生重要的就业岗位。

建设IC封装测试实验室是培养高素质IC应用型人才的必要要求。

IC封装及测试实验设备价格非常昂贵,高校往往没有能力独立承建。可采用与企业共建的方式进行建设。本实验室与华润矽科微电子有限公司合作共建,建有集成电路自动测试系统、引线键合、电子显微镜、晶体管特性测试及电子测试设备等。

该实验室的建成,为微电子技术专业的“半导体器件物理”、“微电子封装技术”、“集成电路工艺”、“集成电路测试”等课程提供实验支撑。

集成电路封装范文第4篇

集成电路封装的结构型式

集成电路芯片的封装技术已历经了好几代的变迁,技术指标一代比一代先进,如芯片面积与封装面积越来越接近,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚节距减小,可靠性提高,更加方便等等。芯片封装形式很多,但就其与PCB的安装方式来看主要有以下两类封装:通孔式封装和表面贴装式封装。

通孔式封装,是Ic的引脚通过穿孔电路板,在板的背后焊接。主要包括双列直插式封装(DIP)和针栅阵列封装(PGA)。较受欢迎的表面贴装式封装,是将芯片载体(封装)直接焊接在PCB上的封装。包括:小外形封装SOP:四方扁平封装QFP;塑料引线芯片载体封装PLCC:无引线陶瓷芯片载体封装LCC:球栅阵列封装BGA、芯片级封装CSP等。

老化测试插座的结构

无论是通孔式封装还是表面贴装式封装,生产制造过程中的老化测试都是一个重要环节,所以老化测试插座是随着集成电路的发展而发展的。老化测试插座的结构是根据集成电路封装结构的不同而设计的。其命名与集成电路封装形式一致。因此,为了顺应集成电路的飞速发展,一般而言,有什么样的封装形式就有什么样的老化测试插座。并且由于集成电路封装节距小、密度大,所以给老化测试插座的设计与制造带来了很大的难度。下面对老化测试插座的结构作简单介绍。

通孔式封装老化测试插座

单、双列直插式封装老化测试插座

单、双列直插式封装的I/O接脚是从封装的对边伸延出来的,然后弯曲(见图1)。双列直插式封装有塑料PDIP和陶瓷CDIP两种,中心距为2.54mm或1.778mm,一般是8~64接脚,而塑料封装DIP的接脚数目通常可以多至68。因为压模和引线框的关系,令制造尺寸更大的DIP有困难,导致接脚数目局限在68以内。由于DIP接脚数目比较少,最多为68,所以DIP老化测试插座一般采用低插拔力片簧式结构(见图2),此结构由接触件和绝缘安装板组成。接触件采用片簧式结构使封装引线,与片簧式接触件双面接触、耐磨损,并易于插拔。

虽然国内外大多数Ic生产厂家在对DIP进行老化测试时采用上述的片簧式结构,也有少数的Ic生产厂家采用手柄式老化测试插座,这种插座是零插拔力结构,设计制造难度比较大,价格也比较高,所以也有少数Ic生产厂家使用圆孔式结构(见图3),即装机用DIP插座,因装机用DIP插座插拔力小,接触可靠,并且价格很便宜。

针栅阵列封装(PGA)封装老化测试插座

PGA是通孔封装中的一种流行封装,它是一个多层的芯片载体封装,外形通常是正方形的,这类封装底部焊有接脚,通常用在接脚数目超过68的超大规模IC(VLSI)上。当需要高接脚数目或低热阻时,PGA是DIP的最佳取代封装方式。PGA封装的外形见图4。

PPGA为塑料针栅阵列封装,CPGA为陶瓷针栅阵列封装其节距为2.54mm。而FPGA为窄节距PGA,目前接脚节距为0.80mm、0.65mm的FPGA为主流。目前国内常用的PGA封装接脚数目从100(10×10)到441(21×21)或更多。

对于接脚数目少于100线的PGA封装进行老化测试时,国内有一小部分生产厂家采用性价比较好、插拔力较小的圆孔插入式插座(见图5)。而对于超过接脚数目100的,则要使用零插拔力老化测试插座。

PGA零插拔力老化测试插座的结构形式(见图6)。使用时把这种插座的手柄轻轻抬起,PGA就可以很容易、轻松地插入插座中,然后将手柄水平放置到原处,利用插座本身的特殊结构生成的挤压力,将PGA的接脚与插座牢牢地接触,绝对不存在接触不良的问题,而拆卸PGA芯片只需将插座的手柄轻轻抬起、则压力解除,PGA芯片既可轻松取出。由于PGA零插拔力插座使用方便,接触可靠,也常用于装机。例如,计算机主机中的CPU就使用的是PGA零插拔力插座。

表面贴装式封装老化测试插座

表面贴装式封装形式

QFP四方扁平封装适用于高频和多接脚器件,四边都有细小的

“L”字引线(见图7)。小外形封装(SOP)的引线与QFP方式基本相同。唯一区别是QPP一般为正方形、四边都有引线,而SOP则是两对边有引线,见图8。

QFP在电路板的占位比DIP节省一倍。外形可以是正方形或长方形,引线节距为1,27mm、lmm、0.8mm、0.65mm和0.5mm,引线数目由20-240。而SOP的引线节距最大为1.27 mm,最小为0.5mm,比DIP要小很多。到了20世纪80年代,出现的内存第二代封装技术以TSOP为代表,它很快为业界所普遍采用,到目前为止还保持着内存封装的主流地位。

LCC系列封装是无引线封装,其引线是采用特殊的工艺手段附着在陶瓷底板上的镀金片,节距为1.27 mm,常见芯数为18、20、24、28、68等。封装形式见图9。

塑料有引线芯片载体(PLCC/JLCC)是TI于1980年代初期开发的,是代替无引线芯片载体的一个低成本封装方式。PLCC是T形弯曲

(T―bend)的,那是说这封装的接脚向内弯曲成“I”的形状,所以有些厂家也NqJLCC或QYJ.(见图10)。PLCC的优点是占的安装位置更小,而且接脚受封装保护。PLCC通常是,正方形或长方形,四边都有接脚,节距为1.27 mm或0.65mm。引线数常见的有18、20、22、28、32、44、52、68、84。

J形引线小外形封装(sOJ)的对边伸延出来的,然后弯曲成“T”形(见图11),引线形状与PLCC相同,不过PLCC的引线分布在四边,其引线节距为1.27mm,常用芯数为16、20、24、26、28、32、34、40、44(节距为0.80)。

为满足发展的需要,在原有封装方式的基础上,又增添了新的方式一一球栅阵列封装(BGA)、盘栅阵列封装(LGA),芯片尺寸封装(CSP)、多芯片组件(MCM)等等,其外形见图12,由图可以看出,这几种封装形式充分利用整个底部来与电路板互连,用的不是接脚,而是焊锡球,因此除了封装方便容易外,还缩短了与PCB板之间的互连距离。

集成电路封装范文第5篇

航空微电子及关键技术

以集成电路为核心的微电子技术,在军事通信、军事指挥、军事侦察、电子干扰和反干扰、无人机、军用飞机、导弹,雷达、自动化武器系统等方面得到广泛应用,覆盖了军事信息领域的方方面面。因此,现代信息化战争又被称为“芯片之战”。出于国防装备的需要,世界军事强国不仅重视通用微电子技术发展,也十分重视专用微电子技术的发展。这是因为专用微电子产品不仅在国防装备中应用广泛,而且对国防装备的作战效能起着关键作用。美国提出,在其防务的技术优势中,集成电路是最重要的因素。20世纪80年代美国就将集成电路列为战略性产业。决定航空电子系统成本和技术的关键和核心,是以航空关键集成电路和元器件为核心的航空微电子技术和产品。

当前微电子科学技术一个重要的发展方向,就是由集成电路(IC)向集成系统(IS)转变,并由此产生了微系统。微系统有两重含义:一是将电子信息系统集成到硅芯片上,即信息系统的芯片集成——片上系统或System on-a-Chip(SoC)。另一含义就是微电子机械系统(MEMS)和微光机电系统。

SoC将一个基于PCB上实现的系统功能尽可能的转化为基于功能、性能高度集成的基于硅的系统级芯片实现。因此,SoC尽可能多的集成系统的功能,可以减小系统体积重量,提高系统的性能,提高系统的可靠性,并能降低系统的制造成本。

MCM(Multi-Chip Module)是利用先进的微组装技术将多个(2个或以上)集成电路管芯及其他微型元器件组装在单一封装外壳内,形成具有一定部件或系统功能的高密度微电子组件。基于MCM基础上发展起来的系统级封装SIP(System in Package),是将整个应用系统中所有的电路管芯和其他微型元器件组装在单一封装外壳内的技术。MCM/SIP技术的开发应用将是突破传统封装固有瓶颈的一种有效途径,实现信息技术的发展对集成电路的封装密度、处理速度、体积、重量及可靠性等方面提出新的应用要求。

上世纪90年代,美国NASA为实现太空飞船小型和微型化提出先进飞行计算机计划(AFC),将MCM 作为在微电子领域保持领先地位的重要技术加以发展,并确定其为2010年前重点发展的十大军民两用高新技术之一。 日本一直以来都是MCM 技术的推崇者,他们建立的MCM技术协会进一步促进多芯片组件的发展与应用。

虽然SoC可以集成多种功能IP,但多工艺混合的IP难以采用SoC在单一硅片上实现, 因此虽然SoC发展迅速,但并不能取代MCM/SIP技术,一定程度上来讲,MCM/SIP技术是对SoC实现小型化的重要补充。因此,SoC/MCM(SIP)技术固有的技术优点,是航空电子系统低功耗、高性能、高可靠、超小型化的发展的永恒追求,也是航空电子系统发展迫切需要的核心技术之一。

航空微电子产业的国内外现状

航空电子系统所用关键集成电路与元器件的基本上可以分为四大类别:通用高端芯片、航空专用集成电路、机载任务子系统专用处理芯片、航空核心元器件。

1、通用高端芯片,主要是指处理类、存储类、电源类、A/D、D/A、OP等类别的集成电路。高端通用芯片决定航空电子系统的整体性能,是航空系统中不可缺少的一类重要器件。由于武器装备发展的需求超前于我国集成电路的研制和国产化,各项主战装备进入设计定型时,国内出现无“芯”可用的状况,导致定型装备的高端通用芯片基本依赖于进口,在重点型号中几款用量大的CPU芯片大都要依靠进口,只有少数是国产化的CPU芯片,而且性能都比较低。

2、航空专用集成电路,主要包是指总线网络及相关标准协议,以及使用MCM、SIP设计的模块。航空专用集成电路一般分为两种:第一种是满足航空标准、协议和规范的专用电路,如支持ARINC429协议、1553B协议、光纤通道FC-AE协议等的电路,它决定了航空电子系统的体系结构。这类芯片主要是总线协议处理类芯片,是航空电子系统的“中枢神经”,遍布飞机的各个部件和角落。第二种是满足飞机应用环境要求的专用集成电路。这类芯片是面向航空电子系统的应用需求特点开发的芯片。欧美新一代飞机研制中,广泛使用了SoC/MCM(SIP)技术手段,实现低功耗、高性能、高可靠性、超小型化的最终目标。为了达到F-22等新一代飞机综合核心处理机(ICP)对“性能/体积”方面的要求,美国“宝石台”计划中定义了多达12种MCM。

3、机载任务子系统专用处理电路,主要包括弹载计算机小型化核心芯片、头显定位处理系统芯片、头/平显畸变校正芯片、机载专用远程激光测距芯片以及机载防撞系统综合信号处理芯片等。机载任务子系统专用处理电路是决定航电任务子系统或设备某些特定性能的专用集成电路,如弹载计算机、头显定位处理系统芯片、头/平显畸变校正芯片、机载专用远程激光测距芯片和机载防撞系统综合信号处理芯片。目前国内该类任务子系统多采用专用电路板卡实现,缺点主要在于体积大、功耗高、集成度低、数据处理时间长等。