首页 > 文章中心 > 雷电风险评估

雷电风险评估

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇雷电风险评估范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

雷电风险评估

雷电风险评估范文第1篇

1.1主要的评估方法

目前雷电灾害风险评估的方法大致可以分为三类:单体建(构)筑物雷击评估方法、区域雷击评估方法、区域雷击易损性评估方法,后两者亦可归为区域评估方法。单体建(构)筑物评估方法是针对单个建筑的雷击风险评估,评估建筑物或其内部电子信息系统遭受雷击损害的风险。在国外主要依据IEC61662、IEC62305-2、ITU-TK.39等标准进行评估,国内主要依据GB/T21714.2-2008及特定对象的评估标准GB50343《建筑物电子信息系统防雷技术规范》、QX3-2000《气象信息系统雷击电磁脉冲防护规范》等[2~3]。此方法是最早应用的雷电风险评估方法,比较成熟,适用于小型项目或项目建筑单体数不多时,能定量的评估单体建筑的雷击风险,对于大型项目不能科学的评估整体的风险等级和分布。区域雷电风险评估方法是对整个项目区域的雷电风险等级进行确认(如湖南省防雷中心开发的区域评估方法)或者对整个项目区域中每个子区域的雷电风险等级进行确认(如江苏、上海等地的区域评估方法),该方法有利于对整个项目进行整体把握及确认项目的重点防护区域,这样能更科学、更合理的统筹区域雷电灾害的防御,因而此方法能应用于大型项目的雷电灾害风险评估,当然这种方法属于定性的分析,是近几年才研究开发的,还处于探索改进阶段。区域雷击易损性评估方法是选取地区(市或县)的雷暴日数、雷电灾害频度、生命易损模数及经济易损模数等作为雷电风险指标,运用层次分析法来计算各个地区的雷击易损度,最后形成某个省或某个市的雷电风险区划图,为区域防灾减灾提供科学依据。此方法适用于省份或地级市的区域雷电风险划分。

1.2评估数学原理

单体建(构)筑物的评估是依据风险计算公式R=N·P·L进行定量计算分析,其中R是风险值,N是年危险事件次数,P是损害概率,L是损失率。区域雷电风险评估是运用模糊数学确定风险指标的隶属度,运用层次分析法确定风险指标的权重,风险计算公式为:R=Knj=1ΣQj×Gj,式中:K是修正指标;Qj是风险指标的权重;Gj是风险的隶属度。当然也有运用其他一些统计学的方法进行风险划分和归类[9]。

1.3评估方法的评价和建议

目前雷电灾害风险评估方法主要是以上三种,在实际业务当中因为针对的是具体项目,因而采用的是前两种评估方法。单体建筑风险评估和区域雷电风险评估各有各的优缺点和适用范围,针对目前各省份风险评估方法运用的实际情况,为了更好的评估项目雷电风险,提出更具实际指导意义的雷电防护措施,笔者认为在实际的雷电风险评估业务当中:①应当注重区域风险评估和单体建筑风险评估相结合、定性与定量相结合,通过区域风险评估可以给出项目的整体雷电风险等级或者区域中的防护重点子区域,再利用单体建筑风险评估可以进一步计算出项目风险等级高的区域或子区域中单体建筑的具体风险大小,依据这些计算结果提出的雷电防护措施将更具指导性意义;②应根据项目的特点选择合理的评估方法,因为有些行业已出台自己行业的风险评估方法,这时我们就应当结合行业评估标准进行评估;③目前的雷电风险评估业务基本上是方案评估,而风险评估分为预评估、方案评估及现状评估,由于随着项目的运营,项目的一些特性会发生变化,如项目的建筑特性、内存物、内部系统等等,这些变化会导致项目雷电风险值的变化,因而可以开展项目的雷击现状风险评估。当然以上只是个人的观点,纯粹从雷电风险评估业务发展方向而言,而雷电风险评估业务的发展还有赖于国家的相关政策。

2应用实例

2.1项目概况

湘西自治州公安局交警大队建设的麻栗场考试中心是我州较为大型的公共建设项目,总面积约为182772.5m2,占地200多亩,其中分为小车考试场地、大车桩考区、大车场内考试区、科目三发车区、停车区、模拟高速考区、监控候考大楼、考试业务用房、绿化区,考场内共分布77处摄像头。整个项目人员是一个密集区域,设备又是另一个密集区域,区域性特征十分明显。以前开展雷电灾害风险评估大部分是以计算保护建筑物及其内部人员设备为基础,而该项目不但需要保护建筑物内人员和设备,还需要保护建筑物外空旷场地的人员和设备的安全。

2.2评估方法和技术路线

由于该项目所涉及的区域面积大,并且仪器设备多(建筑相对少),根据前面对几种风险评估方法的探讨,选择区域雷电风险评估的方法进行评估。将整个项目分为六个区域,区域一:考试业务用房、监控候考大楼、停车区、发车区;区域二:小车考试区;区域三:大车桩考区;区域四:大车场内考试区;区域五:模拟高速公路考区、进出道路;区域六:绿化区。根据灾害的理论分析,灾害的发生是由致灾环境的危险性和承灾体的易损性及脆弱性决定的,具体到雷电,雷击风险是指人身和财产容易受到雷电伤害或破坏的程度,它直接反映了人身和财产在遭受雷电袭击时的脆弱性。就考试中心而言,其致灾因子是雷电,承灾体是处于地面上的人和物体,因而主要从人身安全和经济价值两方面来进行雷击风险的考虑,根据具体情况把区域内的主要风险划分为两类:R1人员伤亡损失风险、R2建筑物遭受雷击损失风险。区域性的雷击风险评估是对区域内各个子区域中各个风险类别的危险程度、可能造成的损失程度做出的预测性评价,在对考试中心进行雷击风险评估时,我们根据具体的情况选取四个主要的评估指标:G1气象指标、G2地物环境指标、G3承灾体的风险指标和K评估修正指标。其中,前两项指标着重于考虑雷电发生频率和雷击风险概率,反映致灾因子的时空分布情况,后两项指标主要表征致灾体(人和建筑物)的易损情况和建筑物本身的抗灾能力对雷击风险的影响。首先,对应于上述四个主要的评估指标,通过分别分析各个指标不同的影响因子,达到对四个主要指标评价的目的;然后,根据四个主要评估指标的评估结果,按照R1和R2两种风险类别,根据风险评估计算模型()计算出各自的风险值(总的风险值R=R1×QR1+R2×QR2),从而得出各个区域的雷击风险情况;最后,根据风险等级划分指标,对各个区域的风险进行等级划分,确定整个考试中心区的风险区划。

2.3评估结果

通过以上评估方法和技术路线分别估算出每个分区的风险值R,根据风险值R的大小,判断每个分区不同风险程度,可得以下区域色斑图。红色(区域一):极高风险区;黄色(区域二、三、四、五):高风险区;蓝色(区域六):中风险区。由图1可知:区域一为极高风险区,发生雷击后该区域所造成的人员伤亡以及经济损失概率最大,该区域内监控候考大楼、考试业务用房应按二类防雷建筑物来设计防直击雷保护措施,单栋按B级进行建筑物内电子信息系统的防雷;停车区、发车区属于露天人员密集场所,应重点考虑采取防直击雷等防护措施。区域二、三、四、五为高风险区,发生雷击后该区域所造成的人员伤亡以及经济损失仅次于区域一、使用性质均为考试考场和人员出入通道等,露天电子设备较多,人员走动密度较小,并且人员基本处于车内(较安全),故应以防护场地内的电子设备为重点,按实际设备情况具体设计相应的防雷保护措施。区域五内人员进出道路口有一门卫值班室,应考虑防直击雷以及防雷电感应等保护措施。其他道路因人员密度分布情况不详,建设方因根据实际投入使用后的情况,有针对性的采取相应的防雷保护措施。区域六为中风险区,发生雷击后该区域所造成的人员伤亡以及经济损失概率最小,该区域为项目区域内电子设备少,人员走动密度最小场地。

3结束语

雷电风险评估范文第2篇

关键词:建筑物;雷电灾害;风险评估;保护措施

中图分类号:S761.5 文献标识码:A 文章编号:

雷电是发生于大气中的一种瞬时高电压、大电流、强电磁辐射的灾害性天气现象。它无孔不入地威胁人类的生命财产安全,照成巨大损失,危害公共服务。面对这种风险,正确的方法是正视并且认识它。努力寻找有效的措施来降低风险或让风险产生效益。为此,防雷设计之前,应进行雷击风险评估,为决定防护对象是否需要提供防护措施。雷电灾害有两类:一类为直接雷击灾害,另一类为感应雷击灾害。前者会直接击死、击伤人畜,击坏输电线、建筑物,甚至引发火灾;后者悄悄发生,不易察觉,主要以电磁感应和过电压波的形式对微电子设备构成危害。两种形式的雷击尽管表现形式不同,但对人民生命财产均构成严重威胁。本文研究的对象是全国多雷暴地区之一,该地区2007―2012年期间年平均雷暴日达25天左右,每年因雷击造成部分人员伤亡和大量经济损失。根据《中华人民共和国气象法》、国务院《气象灾害防御条例》、中国气象局令第20号《防雷减灾管理办法》等法律法规要求,经过大量的分析计算对该项目雷电灾害风险进行了评估,并对该地区的建筑规划、功能区布局和防雷设计提出了合理的建议,为选择适当的防护措施提供技术参考。

1 雷击风险评估的几个基本概念

1.1 损害成因

雷电流是造成损害的主要原因。通常按雷击点的位置分为以下几种损害成因:

――Sl:雷击建筑物;

――S2:雷击建筑物附近;

――S3:雷击服务设施;

――S4:雷击服务设施附近。

1.2损害类型

雷击可能造成损害取决于需保护对象的特性。其中最重要的特性有:建筑物的结构类型、内部物品、用途、服务设施类型以及所采取的保护措施。在实际的风险评估中将雷击引起的基本损害类型划分为以下三种:

――Dl:人畜伤害;

――D2:物理损害;

――D3:电气和电子系统故障。

雷电对建筑物的损害可能局限于建筑物的某一部分。也可能扩展到整个建筑物,还可能殃及四周的建筑物或环境(例如化学物质泄漏或放射性辐射)。影响服务设施的雷电不但会造成设施上的相关电气和电子系统损坏。而且也会对提供服务的线路或管道本身造成损坏。损坏还可能扩展到与设施相连的内部系统。

1.3损失类型

每类损害。不论单独出现或与其他损害共同作用,会在被保护对象中产生不同的损失。可能出现的损失类型取决于需保护对象本身的特性及其内存物,建筑物中应考虑以下几种类型的损失:

――Ll:人身伤亡损失;

――L2:公众服务损失;

――L3:文化遗产损失;

――L4:经济损失(建筑物及其内存物的损失)。

1.险和风险分量

风险是指因雷电造成的年平均可能损失(人和物)与需保护对象(人和物)的总价值之比。对建筑物中可能出现的各类损失,应计算其所对应的风险。建筑物中需估算的风险有:

――Rl:人身伤亡损失风险;

――R2:公众服务损失风险;

――R3:文化遗产损失风险;

――R4:经济损失风险。

计算各种损失风险时。可按损害成因或损害类型确定构成风险的各个风险分量,然后计算出各个风险分量并求和即可得出各类损失风险。

2影响建筑物风险评估的各种因素

建筑物各风险分量受气象条件、建筑物、内部系统及可能采取的保护措施的特性影响。

2.1雷击大地密度的因素

是每年每平方公里雷击被评估对象所在大地的次数(Ng),在世界上很多地区,这个数值由地闪定位网络系统提供。目前我国大部分地区利用气象台站历史观测资料及闪电定位资料综合计算得出该地区Ng值范围。

2.2截收面积的因素

分为雷击建筑物(及附近)截收面积、雷击服务设施(及附近)截收面积。用于各风险分量计算。

2.3位置因子的因素

一般指评估对象的暴露程度、周围物体的影响程度。可直接理解为与周围物体的高度比较,孤立建筑物的系数最大。对于服务设施,如果周围有高于它的建筑物,此因子取值为0。

2.4土壤类型、地板类型的因素

地面接触电阻越高。其造成的人畜伤害风险越小。常见材质的接触电阻由低至高有混凝土(包括农地),大理石、陶瓷,沙砾、厚毛毯、一般地毯,沥青、油毡、木头。

2.5变压器因子的因素

主要是针对服务设施中的高低压配电线路。接有变压器的线路。其风险值降低。

2.6环境因子的因素

只有在估算分量RZ时,才考虑环境因子。在有高层建筑的市区,该因子忽略不计,在农村,取值最大。

2.7建筑物内外人员数量的因素

遇到特殊危险时,应考虑人员疏散的难易程度,人员数量对RB、RV的估算有影响。

2.8防雷系统的防雷级别因素

建筑物设计安装的防雷系统(LPS),其防雷级别(LPL)高低直接影响RA、RB的估算。在强雷暴日地区。提高防雷系统的防雷级别。降低相应风险的效果明显。LPS还间接影响估算RC、RM、RU、RV分量

时的参数取值。

2.9 匹配的SPD防护的因素

安装匹配的SPD进行防护。是防止过电压、过电流引起内部系统故障的最有效措施。防护系统安装匹配SPD,其遭雷击风险远低于只考虑屏蔽、合理布线、等电位连接等其它措施。SPD防护标准和分级

在国标GB/T 21714中有明确规定。

2.10屏蔽、合理布线、等电位连接网络、设备冲击耐压的因素

雷击建筑物或建筑物附近时建筑物空间屏蔽、内部线路屏蔽等电位连接等措施能减少设备损害风险;而雷击入户线路或附近时,外部线路屏蔽措施则更有效。显然,设备损害风险与其自身的耐压水平有关。

2.1 1 防火措施、火灾危险性的因素

在估算物理损害风险分量RB、RV时,必须考虑建筑物消防负荷、消防措施的设计情况。

2.12建筑物类型的因素

建筑物类型也是雷击风险评估必须考虑的因素,但同一种类型在不同风险估算中,其参数取值相差较大。例如,对一般的建筑物,在人身伤亡风险评估时,参数取值由高至低排列为医院、旅馆、民居建筑,工业建筑、商业建筑、学校,公共娱乐场所、博物馆,办公楼等;而进行财产损失评估时,排列为办公楼、医院、旅馆、工业建筑、商业建筑,博物馆、学校,公共娱乐场所,民居建筑。

3 结语

除了常规的防雷措施外,影响雷击风险评估的因素还包括建筑物的结构特性、地板类型,消防负荷、消防措施,以及电源、通信等线路的特性等。因此,雷击风险评估应遵循科学、严谨、全面的原则,使其更具精确性和指导性。

参考文献

[1]国家技术监督局.GB50057--94,建筑物防雷设计规范Is].北京:中国计划出版社.2000

[2]劳小青,高皴,吴海,等,2007年海南岛闪电特征初步分析[J],气象研究与应用,2009。30(2):90-92

[3]罗茂兴,周德吉,葛意活.高山风化石土壤防雷接地降阻工程技术探讨[J].广西气象,2003,24(1):42_43

[4]林卓宏,田军利.高层智能大厦雷击机理及防雷设计[J].气象研究与应用,2008,29(1):69―7l

[5]陈秉华.智能建筑接地技术探讨[J].广西气象,2005,26(3):39-4l

[6]苏平.百色机场大型地网接地电阻测试经验与总结[J].广西气象,2006,27(4):59-6l

[7]国家质量监督检验检疫总局.GB甩1714―2008/1EC62305:2006雷电防护[S].北京:中国标准出版社,2008

[8]高焱,劳小青,李健生,等,雷击风险评估中雷击大地年平均密度的计算[J],气象研究与应用,2009,30(3):38―70

[9]洪展.雷电对石油气站的危害及防护措施[J].气象研究与应用,2007,28(3):67-69

[10]周开春,何明峰.多种降阻材料搭配在变电站接地网改造中应用[J].广西气象,2006,27(3)

雷电风险评估范文第3篇

以电网遭受雷害多影响因子作为研究重点,采用层次分析与模糊数学相结合理论,对高压电网展开雷害风险评估研究。以某地500kV高压电网为工程背景,以雷击跳闸率、雷击重合闸率、手动强送成功率、供电可靠性、线路重要性等级、运行时间、设备损害性指标为评估电网雷害风险的分析因子,将该地电网雷害风险等级定为Ⅲ级中等雷害风险,并对此提出针对性的防雷措施,以给工程实际提供指导与借鉴。

关键词:

电网雷害;风险评估;层次分析法;模糊数学理论;防雷措施

近些年来,随着国民经济的迅速发展与电力需求的不断增长,对输电线路供电可靠性的要求越来越高,电力生产的安全问题也越来越突出。对于输电线路来讲,雷击跳闸一直是影响高压送电线路供电可靠性的重要因素[1-2]。而大气雷电活动的随机性和复杂性,造成架空线路的雷击跳闸成为困扰安全供电的一个难题。尽管国家电网取得了快速的发展,但是相应的电网安全问题也开始越发突出,其中雷电灾害作为无法避免的外部灾害,给电网的安全运营带来了很大的风险。通常情况下,由于变电站安设有直击雷防护装置而使得雷电灾害对变电站的影响有限,其影响主要集中在高压输电线路。

架空输电线路防雷是电力系统防雷工作的重要方面,常用的防雷改进措施有[3]:架设避雷线、安装避雷针、加强线路绝缘、采用差绝缘方式、升高避雷线减小保护角、装设消雷器及预放电棒与负角保护针、使用接地降阻剂等。解决线路的雷害问题,要从实际出发因地制宜,综合治理。

通常而言,雷电灾害轻则造成输电线路同一输电通道多回线路相继跳闸、同塔双回线路同时闪络等故障,重则造成长时间电力供应中断甚至永久性故障。目前,对于高压输电线路遭受雷害的风险研究[4],相关学者及机构仅以雷击跳闸率作为高压输电线路遭受雷害的评价指标,这是不合理的,因为尽管雷击引起的线路跳闸次数较多,但因重合闸成功率较高,其占非计划停运比例要比其占跳闸比例低。此外,输电线路的雷电灾害影响因子不是单一的,它除了受雷击跳闸率控制,还与输电线路雷电活动强度、地闪密度、线路走廊雷电活动频率、地形地貌、输电线路对电网重要性程度等因子有关,需要考虑多因素影响结果[5]。因此,本文从电网遭受雷害的多影响因子作为出发点,采用层次分析与模糊数学相结合的理论,对其展开风险评估研究,并对此提出防雷措施,以给工程实际提供指导与借鉴。

1理论方法

1.1层次分析法20世纪70年代初,美国学者SattyT.L.提出了层次分析法[6],它是一种层次权重决策分析方法,该方法基于网络系统理论和多目标综合评价,能够将定量分析与定性分析相结合,对多目标、复杂问题展开准确的决策。层次分析总的来说包含4个步骤:建立层次结构模型、构造两两比较的判断矩阵、层次单排序及一致性检验、层次总排序及一致性检验。

1.2模糊数学法模糊数学又称Fuzzy数学,是研究和处理模糊性现象的一种数学理论和方法,1965年,模糊数学开始得到快速发展[7]。模糊数学法首先要求给出电网雷害影响因素集合U及雷害风险发生级别集合V,U中每一个单因素对应雷害风险级别V的模糊子集为单因素模糊矩阵R,再根据每个因素对目标贡献程度,得到权重矩阵A,最后对矩阵R进行关于A的模糊变换,得到目标事物的评判集B。

1.3综合评价层次分析的优点是能够定量地得到定性的因素的权重值,再结合模糊数学理论,才能够综合计算出要分析对象的结果。基于层次分析-模糊数学综合评价,首先要确定各层次各因素两两之间的权重。为避免对权重定性赋值带来的失准,SattyT.L.提出了一致判断矩阵法,该方法采用1~9标度法的相对尺度,以提高准确度,当一致性比率小于0.1时,认为能够得到满意的一致性[8]。

2电网雷害多影响因子分析

输电线路是电力系统的最重要的组成部分,由于它暴露在复杂多变的自然环境里面,因此很容易且无法避免受到外界环境的影响和损害,尤其是当雷雨天气发生时,输电线路易于遭受雷击,并发生停电事故。因此,要进行电网雷害研究,首先要确定影响电网雷害的因素有哪些。电网遭受雷害的影响因子不是单一的,也不是几个因子单独发生作用,而是多个因子发生耦合作用。根据目前国内外的研究成果[9-10],评估电网雷害风险的因子主要有雷击跳闸率、雷击重合闸率、手动强送成功率、供电可靠性、线路重要性等级、运行时间、设备损害性指标。据此,建立电网雷害多因子层次结构示意图,结构为:A为目标层,即:电网雷害风险;B为准则层,具体为B1(供电可靠性)、B2(运行时间)、B3(重要性等级)、B4(设备损害性);C为方案层,即:各个线路,具体为C1(线路1)、C2(线路2)…Cn(线路n)。层次结构示意图见图1。

3工程实例分析

3.1工程概况我国南方某地区500kV电网含有3条输电线路D、E、F,现以该地区这3条输电线路2007—2012年的实测数据,来分析预测该地区的雷害风险等级。3条输电线路的准则层实测数据占比如表1所示(以1为基数)。

3.2综合分析

3.2.1层次分析结构根据电网雷害多因子分析结果,结合应用实例表1数据,在Yaahp层次分析软件建立电网雷害风险等级的层次结构模型,层次结构模型如图2所示。对于层次结构模型中的电网雷害风险等级,本文划分为4个级别:Ⅰ级无风险、Ⅱ级低风险、Ⅲ级中等风险、Ⅳ级高风险。

3.2.2一致性检验矩阵在层次结构模型的基础上,结合1~9标度类型及专家系统意见,赋予B1~B4、C1~C3相应的权重分值,最终得到A-B、B1-C、B2-C、B3-C、B4-C5个判断矩阵。

3.2.3计算权重在矩阵判断一致性检验的基础上,进一步计算A-B、B-C排序的单排序权重值及6个因素的总排序权重值,权重计算结果如表2所示。把表2中的权重值用向量的形式表示,即得权重矩阵:A[0.475299,0.257689,0.267112]。

3.2.4隶属函数和模糊矩阵就每个雷害影响因素进行统计与分析,每个因素对应的不同雷害级别为一个隶属函数。本文定义该隶属函数为降半阶梯分布函数,取阶次k=1。分布函数的方程。3.2.5综合评判根据上述计算,现对模糊矩阵R进行关于权重矩阵A的模糊变换,最终得到目标事物的最终评判集B。根据模糊数学中的贴近度原理,所得到的评判集B=[B1,B2,B3,B4]=[Ⅰ,Ⅱ,Ⅲ,Ⅳ级雷害风险],其中最大隶属度Bi所在的位置即对应目标的最终评判级别。因此,该地区电网的最大隶属度为B3=0.902=Ⅲ级中等雷害风险,需要采取相应防雷害措施。

4输电线路的雷害原因分析

输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿[11]。这种过电压可分为直击雷过电压和感应雷过电压。输电线路感应雷过电压最大可达到400kV左右,它对35kV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁较小[12]。110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重危害线路安全运行。反击雷过电压是雷击杆顶或避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别。绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值、线路防雷保护方式、杆塔高度、特殊地形有关,主要发生在两边相。

5电网线路防雷措施

结合目前我国输电线路的电压等级、我国各地雷电活动的规律、线路所经区域的不同地形、地貌特点、土壤电阻率等自然条件,目前常用的防雷保护措施主要有以下几种[13-15]。(1)架设避雷线避雷线能够对雷电产生分流作用,降低杆塔顶端电位,同时,其对导线有耦合作用,对导线有屏蔽作用,它是高压及超高压输电线路基本的防雷手段。(2)改善接地网形式由于接地装置的接地电阻大小是防止雷击闪络的关键,因此可以通过改善接地网形式,降低杆塔的接地电阻值,对杆塔降低接地装置的工频接地电阻,是提高线路耐雷水平、防止雷电波反击的有效措施。(3)架设耦合地线架设耦合地线无法减少雷电绕击率,但其能够通过增加避雷线与导线间的耦合作用,来降低绝缘子串上电压,达到分流雷电流的目的,进而增加输电线路的耐雷水平。(4)适当提高杆塔的绝缘水平提高杆塔的绝缘水平,能够对防止绕击起到一定的作用,也能对防止雷击杆塔顶部的反击过电压产生效果。(5)采用不平衡绝缘方式当普通的防雷措施不能满足现代高压及超高压线路的防雷要求时,可以通过采用不平衡绝缘方式,以避免双回线路在遭受雷击时同时跳闸。(6)装设避雷器避雷线的架设在一定程度上降低了导线上的感应过电压,但不是完全消除,这就要求安装避雷器来将雷电流泄放到大地,从而限制过电压,保障输电线路及设备的安全。一般在线路交叉处、高度较高的杆塔顶端、终端塔上装设避雷器以限制过电压。

6结语

电网雷害尽管是小概率事件,但其具有随机性强,一旦发生损失大的特点,而输电线路的雷电灾害影响又是受诸如雷击跳闸率、雷电活动强度、地闪密度、线路走廊雷电活动频率、地形地貌、输电线路对电网重要性程度等多因子控制,因此在实际电网雷害风险评估中,需要考虑多因素耦合作用的结果。此外,还应结合高压输电线路运行经验以及系统运行方式,通过比较选取合理的防雷设计,以提高高压输电线路的耐雷水平。

参考文献

[1]赵淳,陈家宏,王剑,等.电网雷害风险评估技术研究[J].高电压技术,2011,37(12):3012-3021.

[2]马御棠,王磊,马仪,等.云南电网雷害风险分布图的绘制与应用[J].高压电器,2013,49(4):76-81.

[3]程宏波,何正友,胡海涛,等.高速铁路牵引供电系统雷电灾害风险评估及预警[J].铁道学报,2013,35(5):21-26.

[4]崔雪.用电负荷管理系统终端设备雷害风险评估[D].上海:上海交通大学,2009.

[5]张晓明,吴焯军,甘艳,等.一种基于改进层次分析法的输电线路雷害风险评估模型[J].电力建设,2012,33(8):35-39.

[6]赵焕臣.层次分析法[M].北京:科学出版社,1986.

[7]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2004.

[8]孙雷雷,王小霖,龚学毅.基于雷电定位数据的广州白云机场10kV配网雷击风险评估[J].电网与清洁能源,2014,30(3):40-47.

[9]赵淳,阮江军,李晓岚,等.输电线路综合防雷措施技术经济性评估[J].高电压技术,2011,37(2):290-297.

[10]李振,余占清,何金良,等.线路避雷器改善同塔多回线路防雷性能的分析[J].高电压技术,2011,37(12):3120-3128.

[11]方宏,周青.高压架空输电线路防雷措施的研究与实践[J].南京工程学院学报(自然科学版),2011,9(3):61-66.

[12]孙禔,孙鹏.湖北省高压输电线路防雷现状及综合防雷措施[J].中国电力,2006,39(2):35-38.

[13]莫付江,陈允平,阮江军.输电线路杆塔模型与防雷性能计算研究[J].电网技术,2004,28(21):80-84.

[14]高峰,周利军,曹晓斌,等.直流输电线路防雷侧针防护效果研究[J].电瓷避雷器,2012(6):56-61.

雷电风险评估范文第4篇

【关键词】 雷电灾害 风险评估 标准 防雷

1 引言

从标准角度看,目前国内外有多个关于雷电灾害风险评估的标准,本文主要就雷电灾害风险评估的各种标准进行对比,并分析其优缺点。

2 雷电灾害风险评估的标准介绍

我国各个省市所应用风险评估的方法和规范并不相同,例如江苏省评估工作基于IEC62305和GB21714,重庆、西安则基于QX/T85-2007,但总体来说,有关雷电灾害风险评估的标准主要有以下几种:(1)《气象信息系统雷击电磁脉冲防护规范》(QX3-2000),适用范围是由雷击电磁脉冲(LEMP)对气象信息系统造成损失的风险的评估,所用的方法基于早期国外防雷标准中的因子分析法,评估的重点是确定年平均直击雷次数和年平均允许雷击次数;(2)《通信局站雷电损坏危险的评估》(ITU-T K.39),适用于通信局站雷电过电压(过电流)造成的设备危害和人员安全危害的风险的评估;(3)《建筑物电子信息体统防雷技术规范》(GB 50343―2004),按建筑物电子信息系统所处环境进行雷电灾害风险评估,确定雷电防护等级;(4)《雷击损害风险评估》(IEC6166),主要阐述了建筑物与服务设施的分类、雷灾风险、防护措施的选择过程以及建筑物与服务设施防护的基本标准等问题;(5)《雷电防护》(IEC 62305),共分5个部分,IEC 62305-1清楚地说明了在防雷电保护结构中遵循的一般原则;IEC 62305-2表述了保护的需要、安装保护措施的经济利益和适当的保护措施的选择程序,以及风险管理的方法;IEC 62305-3涉及减少对建筑物的物理损害和威胁生命安全的方法;IEC 62305-4阐述了减少建筑物内电器和电子系统故障的方法;IEC 62305-5涉及减少与建筑物有关的服务(主要是电力和电信)的物理损害和出现故障的方法;(6)《雷电灾害风险评估技术规范》(QX/T85―2007),此规范将雷电灾害风险评估分为预评估、方案评估与现状评估,主要包括大气雷电环境评价、雷击损害风险评估、雷电灾害易损性评估、雷电灾害环境影响评价等内容。

3 雷电灾害风险评估方法

目前,雷电灾害风险评估的方法大致有两种,一种是定性评估,一种是定量评估。GB50057-2010中规定建筑物应根据其重要性、使用性、发生雷电事故的可能性和后果,按防雷要求分为三类,这属于定性评估。而IEC62305-2以及由此衍生出的GB/T21714、 QX/T85-2007则通过对损失量的影响因子的选择,然后进行计算,得出雷击风险的各种损失的数值,这属于定量评估。

综合来看,我国的雷电灾害风险评估采用了定性与定量相结的方法,有的地方用定性,有的地方用定量,还没有统一。在该方法的基础上,结合中国国情,在个别参数的选取上细化或有少许变动。

4 雷电灾害风险评估标准的分析

4.1 评估标准的局限性

任何方法都是有其适用的范围的,同样,评估中经常用到的标准也是有其适用范围的,下面对常用的雷电灾害风险评估标准的范围进行简单的分析:

IEC62305-1适用于建筑物包括其中的装备和设备,也包括人身以及进入建筑物的公共设施。不适用于铁路设施,车辆、船只、飞行器、海岸设施以及地下高压管道。

IEC62305-2适用于由雷击导致的建筑物内或公共设施内的风险评估。

GB/T21714.2适用于建筑物和服务设施的雷击风险评估。

QX/T85-2007适用于新建、改建、扩建项目的雷电灾害风险评估。

以上三个规范,均不适用于铁路设施,车辆、船只、飞行器、海岸设施以及地下高压管道。因此,当评估对象出现特殊化时,雷击风险评估需要加入新的技术标准。

4.2 评估标准的比较

4.2.1 评估标准的相似性

(1)各评估标准都把重点放在雷电灾害损害次数这个参数上,而决定损害次数的子参数的选取大多以经验为主。

(2)各评估标准都需要计算出实际损害次数(实际风险)和允许损害次数(允许风险),然后给出风险级别并提供适当的防护措施。

(3)各评估标准在处理雷电灾害损失和雷电灾害风险时,都使用相对值,且大部分参数都以表格等形式给出一定的典型值,取值不连续而且很难达到比较高的精度。

(4)各评估标准都要求精确得到评估对象(建筑物或服务设施)的雷击有效面积,乘上当地的雷击密度而计算其可能雷击次数,然后需要求得允许雷灾水平(可承受雷灾水平)。

4.2.2 评估标准的区别

虽然个标准之间有一定的相似性,但同时也存在着许多区别:(1)从评估结果考虑,通过对各个标准之间做比较,可以发现ITU-T k.39和IEC61662都是以公式R=N×P×δ基本计算公式,两个标准都考虑了人身损失和财产损失等,都是通过计算防雷装置的拦截效率E来最终确定评估对象的雷电防护必要性和防护等级(防护级别)。而IEC62305、GB/T21714.2和QX/T85-2007都是以公式Rx=Nx×Px×Lx基本公式,三个标准都考率了人身伤亡损失风险、公众服务损失风险、文化遗产损失风险及经济损失风险,都是通过确定风险分量并计算风险分量值,将其分量值与其分量最大允许值相比较最终确定该建筑物是否在风险允许范围内

(2)IEC61662、IEC62305标准包括尤其衍生出来的GB/T21714.2和QX/T85-2007是最复杂、准确度及可信度最高的,也是我国目前气象行业开展雷击灾害风险评估的主要技术规范,综合了建筑物所在区域预计年遭受雷击次数N、在建筑物区域内遭受到雷击后可能发生雷电灾害损失的概率P及建筑物在遭受雷击后可能发生的后果及损失程度L三个因素,而每个因素的计算都是通过一系列的相关限制因子来确定的。但是GB/T21714.2里面的分量、因子、概率、损失率等数据是德国人根据欧洲的雷电特性、雷电环境、年平均雷暴日、土壤电阻率等统计、计算出的,适合欧洲情况。而中国在雷电特性、雷电环境、年平均雷暴日、土壤电阻率等各方面是截然不同的。因此,还需要将GB/T21714.2的分量、因子、概率、损失率等统计、计算出适合中国国情的数据(3)QX3-2000与GB50343―2004标准的评估重点是确定年平均允许雷击次数Nc,但其所采用的公式不同,QX3-2000计算Nc的公式为Nc=5.8*10-3/C或Nc=5.8*10-4/C,其中C=C1+C2+C3+C4+C5,因此其评估精度主要取决于建筑材料因子、信息系统重要程度因子、设备耐冲击类型因子、设备的LPZ因子和雷击后果因子。而GB50343―2004计算Nc的公式为Nc=5.8*10-1.5/C,其中C=C1+C2+C3+C4+C5+C6,C1~C5同QX3-2000中规定的,C6为区域雷暴等级因子。两种标准虽然计算公式类似,但所用的指数不同,同时GB50343―2004也比QX3-2000多了一个因子(4)QX3-2000和GB50343―2004与IEC61662标准在计算雷击大地的平局密度Ng的计算公式上也是不同的,QX3-2000和GB50343―2004计算Ng的公式为Ng=0.024Td1.3,而IEC61662中为Ng=0.04Td1.25(5)ITU-Tk.39标准的评估重点是确定雷电损害次数F,F=Fd +Fn +Fs+Fa,其中Fd=Ng*Ad*Pd,Fn=Ng*An*Pn,Fs =Ng*As*Ps,Fa=Ng*Aa*Pa,一般情况下以Fs为主;而面积Ad,An,As和Aa,在评估时要注意各类面积可能重叠,概率因子P的确定方法基本上来自于经验,其大小与设备自身性质和特定的保护措施有关。

由以上分析可以看出,这些常用雷电灾害风险评估标准中包含了三个评估评估重点,即确定雷击风险R,确定年平均雷击次数Nc以及确定雷电损害次数F,并且各标准所采用的公式及所需因子等也不尽相同,采用的方法也不相同,但各有其优缺点,应当根据评估对象的特点进行选取。

5 结语

通过对雷电灾害风险评估常用标准的分析,各标准都对雷击损害风险评估的方法、流程及各因子的选取等方面进行了详细的介绍,但是对大气雷电环境的评价都是简单介绍,而进行大气雷电环境评价的基础是拥有数量足够、信息可靠的闪电资料,对目标地点周边一定距离内雷电环境分析,区别于以往一贯的基于雷暴日进行大气雷电环境分析的粗略计算;即使是同一地区相距较近的两地,也有可能得到不同的雷电环境分析结论。

参考文献:

[1]QX3-2000气象信息系统雷击电磁脉冲防护规范.

[2]ITU-T K.39《通信局站雷电损坏危险的评估》.

[3]GB 50343―2004《建筑物电子信息体统防雷技术规范》.

[4]IEC6166《雷击损害风险评估》.

[5]IEC 62305《雷电防护》.

[6]QX/T85―2007《雷电灾害风险评估技术规范》.

[7]GB/T21714.2-2008《雷电防护 第2部分 风险管理》.

[8]钟万强,肖稳安.建筑物雷电灾害风险评估的标准、体系和方法,http://qxbzjk.cma,/servlet/News?Node=15611.

雷电风险评估范文第5篇

【关键词】承压类特种设备 典型事故 现实风险分级评价

承压类特种设备是社会发展和人们生活需要的重要基础设备,其共同特点是危险性较大,对人们生命安全有着较大威胁,在现实当中,有许多有承压类特种设备问题引发的安全事故,因此,加强对承压类特种设备运行安全的监管,正确的评价其运行风险,对于保证社会经济稳定发展和人们正常生活有着重要意义。

1 承压类特种设备典型事故现实风险评价的指标

1.1 评价指标的选择

评价指标体现着承压类特种设备的特性,直接关系到其典型事故现实风险的大小,所以,选择合理的评价指标十分重要。在评价指标体系当中,按照其指标类型的不同,可分为动态和静态两者,按照指标代表事故发生率,可分为概率性指标和严重性指标。其选择方法主要有以下两种:

1.1.1 FTA法初步选择评价指标

FTA法即故障树分析法,是通过对事故发生原因的分析来,制定相应正确的故障树,进而得到事故风险评价指标,其优点在于能够对事故原因作出准确、详细、全面的分析,综合了定性和定量分析方法,选择过程较为简单,具有较好的实用性。在实际选择过程中,其具体步骤包括:(1)确定典型事故事件,并分析事故有关的各个方面因素,包括人员、设备、环境和管理等;(2)根据所得结果,对所有原因进行从上往下的逐级分析,以确定最根本原因,并根据逻辑关系绘制相应的故障树;(3)通过定性分析的方法,得到最根本原因事件的结构重要度,确定基本事件的重要性,将结构重要度最小的基本事件排除,进而得到事故的风险因素;(4)初选评价指标:通过分析、归纳和总结上述得到的事故风险因素,结合风险定义和SMART原则,从严重性和概率两个层次和人员、设备、管理、环境四个方面初选相应的评价指标[1]。

1.1.2 根据风险重要性优选评价指标

初选得到的评价指标数量较多,并不能准确地反应典型事故现实风险的等级高低,所以,还需要对这些评价指标进行优选,优选运用的方法通常是风险重要性评价法。该方法的优点在于问卷内容直接明了,得到的问卷数据处理较为简单方便,十分适用于大批量评价指标的筛选,对于剔除不重要或不容易获得的指标有着重要作用。

风险重要性评价法优选的具体操作步骤为:(1)分析初选评价指标的重要性,通常而言,指标重要性可分为极重要、重要、普通、不重要和极不重要五个等级,采用五分制从高到低依次代表;(2)计算评价指标的重要性系数,将调查问卷数据进行统计处理,通过相应的计算公式得到计算指标重要性系数,以便于对比评价指标的重要性;(3)对评价指标进行筛选,根据上一步得到的评价指标重要性系数,将重要性系数值超过2.5且变异系数值在25%以内的评价指标作为风险评价指标,其它不符合标准的指标去除。

1.2 锅炉的风险评价指标体系

根据锅炉运行的各种典型事故分析,锅炉运行安全的风险影响因素主要包括技术、管理和运行状况三个方面,其具体评价指标体系主要有以下内容:

首先,在技术方面,评价指标主要包括额定功率、额定工作压力、能源种类和制造商资质等。其中,额定功率的风险等级从高到低分别为:≥14.0MW、[7.0,14.0)MW、[1.4,7.0)MW和

2 承压类特种设备典型事故现实风险评价的模型

2.1 基于风险大小的承压类特种设备分级模型

承压类特种设备的典型事故是指发生于设备使用运行期间的安全事故,主要是由于监督管理不善引起的,因此,在评价承压类特种设备的风险时,要考虑现实风险和固有风险两个方面内容,以保证风险评价模型的全面、系统、准确。

以风险大小为基础建立的承压类特种设备分级模型,其出发点是预防公共安全事故的发生,对风险分级的基础是事故预防的技术、教育、管理理论和安全系统人员、设备、管理、环境四要素理论,采用的方法主要有风险数学函数和风险矩阵模型,从而对承压类特种设备典型事故发生的可能性以及事故结果的严重性影响因素进行确认。

在本模型中,事故发生的可能性因素主要包括技术、运行和管理三个方面,在风险评价指标上,也从这三个方面入手;事故结果严重性程度上,主要包括对人员安全影响、对财产的影响和对环境的影响以及事故本身的社会影响等方面。

2.2 承压类特种设备定量分级的数学模型

在建立承压类特种设备定量分级数学模型过程中,识别典型事故现实风险评价指标和指标权重都是通过风险数学函数引入的,然后根据矩阵相乘的基本算法,得到相应的数学模型。

在模型建立过程中,具体计算方法为:R=[P][M]*[L][N],其中,[P]、[M]分别是设备风险评价指标合集及相应的矩阵,[L]、[N]分别是设备风险后果严重评价指标合集及相应矩阵。

设备风险评价指标合集[M]=[mi]T,i=1,2,3……n,设备风险后果严重评价指标合集[N]=[ni]T,i=1,2,3……n,其中,mi和ni均代表各自评价指标的权重,两个公式中的n均代表评价指标的数量[3]。

在定量分级数学模型当中,根据计算得到的R值,通常将风险等级从高到低划分为Ⅰ-Ⅳ四级,并采取不同的控制策略,以便于降低设备运行安全事故概率。其中,Ⅰ级代表不可接受风险,主要通过终止设备运行和最高级别预控措施,直到风险消除或降低至安全值后恢复运行;Ⅱ代表不期望风险,主要通过限制运行和中级别预控以及高强度监管措施,将风险降低;Ⅲ级表示能够接受风险,控制措施主要有部分限制运行、低级别预控和较高强度的监管以及采取必要保护措施;Ⅳ级表示低风险,控制措施主要有警告信息、常规监管以及企业自控。

3 结语

承压类特种设备作为一种重要的基础设备,对于国民经济发展和社会生产生活有着重要影响,一旦发生安全事故,极容易引起重大的生命财产损失,所以,保证承压类特种设备运行安全极为重要。而通过承压类特种设备典型事故现实风险分级评价的方法,将设备运行风险因素纳入评价指标体系当中,能够对设备运行风险进行有效评价,采取合理的措施降低风险问题发生,提高识别运行安全。

参考文献:

[1] 罗云,徐丽丽,崔文,黄强华,罗志群,葛升群,夏锋社.承压类特种设备典型事故现实风险分级评价方法研究[J].安全与环境工程,2014(01):98-102+107.

[2] 王新杰,罗云,何毅,李顺荣,陈志良.承压类特种设备使用过程风险分级方法研究[J].工业安全与环保,2014(04):52-55+59.