前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数字电路与逻辑设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
论文关键词:数字电路与逻辑设计,教学模式,教学方法,实践教学
一、三本院校课程教学现状
三本学生中多才多艺的较多,平时开展各种社团活动比较频繁,学生自主创新思维活跃,但能够有条不紊自主学习的学生可能只有一少部分,许多学生对学习没有兴趣,课余时间几乎不学习。在教学过程中,刚开始学生还可以接受一些新知识,但随着教学的深入,学习难度的增大,学生感到了困难,随之学习的兴趣也越来越低,主动学习便是一句空话,学生也就是为了应付考试,甚至不少学生都是考前突击。这一特点在《数字电路与逻辑设计》课程的教学中也同样存在。要提高本课程的教学质量,我们在定位教学目标,设置教学内容,采用教学手段和方法的时候都必须以这一实际情况为前提。
二、教学理念,教育目标
三本教学有别于一本和二本,教学注重于学生应用能力和综合素质的培养,教学过程中突出培养学生应用知识,分析解决实际问题的能力,以学生为主体,以教师为主导,以教学为主线,树立能力培养目标为重中之重的思想,实现人才培养模式多元化,努力培养“宽口径、厚基础、强能力、高素质”,适应国际竞争和社会需求的应用型人才。三本教育要加强通识教育,注重文理渗透理工结合,体现本科教育的基础性和可发展性。努力探索人才培养新举措,深入推进人才培养模式改革,实现多元化人才培养新格局,大力实施“育人为本,全面发展”的人才培养战略,拓宽基础学科的范围和基础教学的内涵。
三、教材选取
考虑到三本学生理论基础较差,教材选取不应选择理论研究或理论推导比较复杂的教
材,否则会让学生还未涉及到重要的知识点就已经因为难度过大而丧失信心。教材选取要以应用为宗旨,强调理论与实践相结合。编写原则遵循由浅入深,通俗易懂,重点和难点采取阐述与比喻相结合,例题与习题相结合,实例与实验相结合,针对数字电路课程实践性强的特点,增加了与教材相应的实践环节教学内容。
四、教学内容
在三本的《数字电路与逻辑设计》教学中,应该注重基础教学,要求学生熟悉布尔代数的基本定律,掌握卡诺图与公式化简法;掌握数字电路中常用的基本单元电路和典型电路构成、原理与应用;掌握常用的中小规模组合逻辑电路和集成电路功能和设计方法。具有查阅集成电路器件手册,合理选用集成电路器件的能力。对集成芯片,重点分析电路的外特性和逻辑功,以一些典型集成电路为例介绍如何查阅集成电路手册、资料等,使学生学会在实际应用中正确选择和使用集成芯片[11]。
对于三本学生而言,在电路设计中要求学生掌握基本的设计方法,但可以适当降低对电路设计的要求,增强电路分析方法的教学。学生可以分析较复杂的电路,并且能够利用已有的电路进行修改,使电路满足自己设计的需要。
五、教学手段与教学方法
(一)采用现代化教学
《数字电路与逻辑设计》课程的特点就是电路图、逻辑图特别多,如果采用板书形式教学,既浪费课堂时间也达不到好的教学效果。教学过程中采用多媒体教学,可以使一些抽象的、难以解决的概念变得形象,易于学生接受。对于集成电路的分析和设计,为了增强演示效果,除了在PPT中添加更多的动画效果外,还可以采用Flash或Authorware软件制作动画效果,使电路的变化过程一目了然。
(二)结合实际教学
在授课过程中,针对三本学生可以结合生活中的应用举例,如目前LCD显示、数字温度计、十字路通灯控制、数字频率计、多媒体PC机里的显示卡、声卡是用数电中的数/模(D/A)转换实现图像显示和声音播放、制造业中的数控机床等都应用了数电技术。通过这些实例的介绍,可以使学生真正了解数字电路课程的重要性,从而提高对数字电路学习的兴趣和学习积极性。
(三)网络教学
网络教学可有两种方式,一是上传教师课堂教学过程的视频到校园网;二是教师制作图文并茂的课件,以及与该课程有紧密关系的资料一起上传到网上。目前大部分三本学生宿舍都可以登录校园网,学生可以在任何时间进行网络教学。网络教学的方式解决了学生传统的看书自学枯燥无味的问题。
六、实践教学
实践教学一般分为基础实验和课程设计两大部分。基础实验教学从属于理论教学,实验内容均为验证性实验。教师给出实验步骤、电路图,学生按部就班、验证结果,通过基础实验,使得学生对于课堂所学基本概念和方法的理解和掌握更加透彻,同时培养学生科学实验的精神和方法,训练严格严谨的工作作风。基础实验是理论和实际相互联系的一个重要教学环节,但是仅仅是这种以教师为主导的实验模式,不能激发起学生学习兴趣和积极性,学生仍然不善于综合运用所学知识分析和解决问题。课程设计的目标就是为了加强基础、拓宽知识面、增强学生的自主学习和工程实验能力、发展个性、启发创新、加强理论与实验。学生根据实验任务,自行设计电路和测试方案,增强学生自主学习能力,学生既动脑又动手,解决问题的能力大大提高[12]。
除此之外,还可以设置一些电子设计大赛,成立电子设计兴趣小组,在教师的指导下开展设计性和专题研究性实验,为希望进一步发展的学生提供良好的学习环境和创新研究场所,培养学生的团队协作精神,发挥学生学习的自主性和创造性,极大地提高学生的学习兴趣和动手能力。
七、结束语
随着高等教育的普及,三本学生的数量和质量也在日益增高,同时随着数字技术的广泛
普及,数字化社会已经到来,大规模、超大规模数字集成电路以其低功耗、高速度等特点, 应用越来越广泛。因此如何在有限的时间内使三本的学生扎实掌握数字电路基础知识理论和基本操作技能,培养分析问题、解决问题的能力,是教师在教学过程中需要认真思考的问题。使学生在传统的数字电路逻辑分析、逻辑设计思维训练的基础上进一步建立起现代数字电路的应用与设计思想,掌握现代电子技术的新技术和新器件,为走向实际工作岗位打下坚实的基础。
参考文献
[1] 谢丽.《数字电路与逻辑设计》教学改革实践.吉林省教育学院学报,2012年第02期
[2] 李琰,张翌呖. 数字电路的教学改革与创新.计算机光盘软件与应用,2011年第22期
[3] 李小珉,叶晓慧.深化《数字电路与逻辑设计》课程改革[J].长江大学学报(自科版),2OO4(4)
[4] 田东.数字电路课程设计的改革与探讨.实验技术与管理,2006年05期
[5] 马达灵,张云云.《数字电路》课程教学改革之我见.集宁师专学报,2008年12月第30卷第4期
[6] 邓朝霞.《数字电路》课程整合与优化的改革.广西教育学院学报,2006年第6期
[7] 张丽.高职《数字电路》课程教学方法的探索.读与写(教育教学刊),2010年04期
关键词: 数字电路设计; 现代数字逻辑设计方法; 数字电路教学改革; 转换真值表
中图分类号: TN710?34; TP302.1 文献标识码: A 文章编号: 1004?373X(2014)07?0139?04
Research on the necessity of change in digital circuit design method
based on CPLD/FPGA
SHUANG Kai, CAI Hong?ming
(College of Geophysics and Information Engineering, China University of Petroleum (Beijing), Beijing 102249, China)
Abstract: Application of large?scale programmable logic device has brought great flexibility to digital system design. The introduction of standard logic design language has greatly changed the design method, design process and design concepts of traditional digital system. As a technical foundation teaching link in the university, it should be adjusted accordingly. The problems of the traditional design approach and advantages of modern logic design methods are compared through the combinational logic and sequential logic design examples. By contrast, the modern logic design techniques has replaced the traditional method of digital system design and become the mainstream of the digital circuit design, which is the inevitable trend of development of electronic technology.
Keyword: digital circuit design; modern digital logic design method; digital circuit teaching reform; conversion truth table
0 引 言
20世纪90年代,国际上电子和计算机技术较为先进的国家,一直在积极探索新的电子电路设计方法,并在设计方法、工具等方面进行了彻底的变革,取得了巨大成功。在电子技术设计领域,可编程逻辑器件(如CPLD、FPGA)的应用,已得到广泛的普及,这些器件为数字系统的设计带来了极大的灵活性。这些器件可以通过类似软件编程的方式对其硬件结构和工作方式进行重构,从而使硬件设计像软件设计那样方便快捷。这就极大地改变了传统的数字系统设计方法、设计过程和设计观念,促进了数字逻辑电路设计技术的迅速发展。本文通过几个设计实例的对比阐述一个道理,随着数字电路中先进设计方法的引入,高等学校中数字电子技术的教学内容必须随之得到改善,使之与技术进步相互适应[1?3]。
数字电路根据逻辑功能的特点,分成两类,一类叫组合逻辑电路(简称组合电路),另一类是时序逻辑电路(简称时序电路)。组合逻辑电路在逻辑功能上的特点是任意时刻的输出仅取决于该时刻的输入,与电路初态无关。而时序逻辑电路任意时刻的输出不仅取决于当时的输入信号,还取决于电路原来的状态。本文从这两方面就传统手工设计存在的问题进行讨论。
1 组合逻辑设计中传统设计方法与可编程逻辑
设计方法的对比
列真值表,逻辑关系式,逻辑化简是组合逻辑设计的几个重要步骤。但这一经典的组合逻辑设计步骤并不总是必须的。实现特定逻辑功能的逻辑电路也是多种多样的。为了使逻辑电路的设计更简洁,通过各种方法对逻辑表达式进行化简是必要的。组合电路设计就是用最简单的逻辑电路实现给定逻辑表达式。在满足逻辑功能和技术要求基础上,力求电路简单、可靠。实现组合逻辑函数可采用基本门电路,也可采用中、大规模集成电路。
例1:三个人表决一件事情,结果按“少数服从多数”的原则决定这一逻辑问题[4?5]。在“三人表决”问题中,将三个人的意见分别设置为逻辑变量A、B、C,只能有同意或不同意两种意见。将表决结果设置为逻辑函数F,结果也只有“通过”与“不通过”两种情况。
传统的逻辑设计需要由下面的4个步骤完成:
(1) 列真值表
对于逻辑变量A、B、C,设同意为逻辑1,不同意为逻辑0。对于逻辑函数F,设表决通过为逻辑1,不通过为逻辑0。
根据“少数服从多数”的原则,将输入变量不同取值组合与函数值间的对应关系列成表,得到函数的真值表如表1所示。
表1 例1的真值表(共有23=8行)
[A\&B\&C\&F\&0\&0\&0\&0\&0\&0\&1\&0\&0\&1\&0\&0\&0\&1\&1\&1\&1\&0\&0\&0\&1\&0\&1\&1\&1\&1\&0\&1\&1\&1\&1\&1\&]
(2) 列逻辑函数表达式
三人表决器的逻辑表达式为:
[F=ABC+ABC+ABC+ABC] (1)
设N为上式中的逻辑项数,这时,共有逻辑项[N=C23+C33=4]项。
(3) 逻辑化简
三人表决器的逻辑表达式可化简为:
[F=BC+AC+AB]
(4) 画出逻辑电路图如图1所示。
尽管上面的分析看上去没有错误,但上例中的“三人表决器”设计给学生一个误导,好像按照上述的设计步骤就可以进行组合逻辑设计了。可以推导,若表决人数用[p]来表示,逻辑表达式的项数为[Np=k=p2+1pCkp,]其中[Ckp]为逻辑项的组合数。以[p=7]为例,这时表1中的表项为27=128项,式(1)中的逻辑项数N变为[N7=C47+C57+C67+C77=64]。
图1 例1的逻辑图
显然,随着表决者数量的增加,逻辑项数急剧增加,真值表不易绘制,逻辑公式无法手工书写,逻辑化简也非常困难。
多数表决器的逻辑公式由于过多的项数不易采用公式法化简。如果采用卡诺图化简法也会因输入变量过多而导致传统化简方法失效。
标准逻辑设计语言的出现给大规模逻辑设计带来了新的希望。硬件描述语言(HDL)的采用可以使设计者的精力集中于所设计的逻辑本身,不必过多的考虑如何实现这个逻辑以及需要用哪些定型的逻辑模块。这在以往中小规模集成电路逻辑设计与大规模可编程逻辑设计方法上产生了本质的差别。Verilog是一种以文本形式来描述数字系统硬件结构和行为的语言,用它可以表示逻辑电路图、逻辑表达式,还可以表示数字逻辑系统所完成的逻辑功能。在此,用Verilog设计一个“七人表决”逻辑,以考察采用现代逻辑设计方法较传统设计方法的优势。
在表决器的设计中,关键是对输入变量中为1的表决结果进行计数,如果把全部的逻辑状态列表分析,势必存在冗余的设计资源。根据多数表决的性质,考虑采用加法逻辑来统计表决结果,之后再判决加法器输出中1的个数即可实现该逻辑。Verilog设计如图2所示。
图2 七人表决的Verilog逻辑
在“七人表决”逻辑中,不再专注于每个逻辑变量状态的变化,只抓住关键问题多数表决有效,并用条件操作符“?”设计出所需的Verilog行为逻辑,剩下的实现问题交由计算机综合(synthesis)。可以看到,采用标准化的硬件描述语言,能有效地避开以往组合逻辑设计中逐一考察每个输入逻辑状态所带来的逻辑状态分析的爆炸,从而可以用较短的设计时间得到正确的逻辑输出。众所周知,加法器、比较器都是传统的组合逻辑教学内容,但以往的教学中由于采用手工分析方法,很难把这些不同的逻辑设计内容综合考虑进来。笔者认为,现代逻辑设计方法的引入将逐渐转化人们对传统逻辑设计中的关注点,势必引起逻辑设计教学方法的更新。有必要加大逻辑功能综合设计的内容,减少元器件级逻辑单元选型在教学中的比例。
2 时序逻辑设计中传统设计方法与现代可编程
逻辑设计方法的对比
数字电路的另一类设计内容是时序逻辑设计。时序逻辑设计分为同步与异步时序逻辑设计。一般地,同步时序逻辑设计的难度要高于异步时序逻辑。因此,也在时序逻辑电路设计上占有较多的学时。如果在教学改革中仅把可编程逻辑设计作为传统时序逻辑设计内容的补充,不但不能使学生体会到先进的计算机辅助逻辑设计所带来的便捷,还可能使学生按照传统的手工时序逻辑设计步骤去理解可编程时序逻辑,导致时序逻辑设计的复杂化,增加逻辑验证的成本。因此,有必要探讨传统设计方法与现代逻辑设计方法之间的差别。下面根据一个典型的时序逻辑设计来说明。
例2:试设计一个序列编码检测器[6?7],当检测到输入信号出现110序列时,电路输出1,否则输出0。
这个序列编码检测器如果按照传统的时序设计步骤,将会异常繁琐:
(1) 由给定的逻辑功能建立原始状态图和原始状态表
从给定的逻辑功能可知,电路有一个输入信号A和一个输出信号Y,电路功能是对输入信号A的编码序列进行检测,一旦检测到信号A出现连续编码为110的序列时,输出为1,检测到其他编码序列时,输出为0。
设电路的初始状态为a,如图3中箭头所指。在此状态下,电路输出[Y=0,]这时可能的输入有[A=0]和[A=1]两种情况。当CP脉冲相应边沿到来时,若[A=0,]则是收到0,应保持在状态a不变;若[A=1,]则转向状态[b,]表示电路收到一个1。当在状态[b]时,若输入[A=0,]则表明连续输入编码为10,不是110,则应回到初始状态[a,]重新开始检测;若[A=1,]则进入状态[c,]表示已连续收到两个1。在状态[c]时,若A=0,表明已收到序列编码110,则输出[Y=1,]并进入状态d;若[A=1,]则收到的编码为111,应保持在状态[c]不变,看下一个编码输入是否为[A=0;]由于尚未收到最后的0,故输出仍为0。在状态[d,]若输入[A=0,]则应回到状态[a,]重新开始检测;若[A=1,]电路应转向状态[b,]表示在收到110之后又重新收到一个1,已进入下一轮检测;在[d]状态下,无论[A]为何值,输出[Y]均为0。根据上述分析,可以得出如图3所示的原始状态图和表2所示的原始状态表。
图3 例2的原始状态图
表2 例2的原始状态表
[现态
[(Sn)]\&次态/输出[Sn+1Y]\&现态
[(Sn)]\&次态/输出[Sn+1Y]\&[A=0]\&[A=1]\&[A=0]\&[A=1]\&[a]
[b]\&[a/0]
[a/0]\&[b/0]
[c/0]\&[c]
[d]\&[d1]
[a/0]\&[c/0]
[b/0]\&]
(2) 状态化简
观察表2现态栏中[a]和[d]两行可以看出,当[A=0]和[A=1]时,分别具有相同的次态[a、][b]及相同的输出0,因此,[a]和[d]是等价状态,可以合并。最后得到化简后的状态表,见表3。
表3 例2经化简的状态表
[现态
[(Sn)]\&次态/输出[Sn+1Y]\&现态
[(Sn)]\&次态/输出[Sn+1Y]\&[A=0]\&[A=1]\&[A=0]\&[A=1]\&[a]
[b]\&[a/0]
[a/0]\&[b/0]
[c/0]\&[c]
\&[a1]
\&[c/0]
\&]
(3) 状态分配
化简后的状态有三个,可以用2位二进制代码组合(00,01,10,11)中的任意三个代码表示,用两个触发器组成电路。观察表3,当输入信号A=1时,有abc的变化顺序,当A=0时,又存在ca的变化。综合两方面考虑,这里采取00011100的变化顺序,会使其中的组合电路相对简单。于是,令a=00,b=01,c=11,得到状态分配后的状态图,如图4所示。
图4 例2状态分配后的状态图
(4) 选择触发器类型
这里选用逻辑功能较强的JK触发器可以得到较简化的组合电路。
(5) 确定激励方程组和输出方程组
用JK触发器设计时序电路时,电路的激励方程需要间接导出。表4所示的JK触发器特性表提供了在不同现态和输入条件下所对应的次态。而在时序电路设计时,状态表已列出现态到次态的转换关系,希望推导出触发器的激励条件。所以需将特性表做适当变换,以给定的状态转换为条件,列出所需求的输入信号,称为激励表。根据表4建立的JK触发器激励表如表5所示。表中的[x]表示其逻辑值与该行的状态转换无关。
表4 JK触发器特性表
[[Qn]\&[J]\&[K]\&[Qn+1]\&[Qn]\&[J]\&[K]\&[Qn+1]\&0\&0\&0\&0\&1\&0\&0\&1\&0\&0\&1\&0\&1\&0\&1\&0\&0\&1\&0\&1\&1\&1\&0\&1\&0\&1\&1\&1\&1\&1\&1\&0\&]
表5 JK触发器的激励表
[[Qn]\&[Qn+1]\&[J]\&[K]\&[Qn]\&[Qn+1]\&[J]\&[K]\&0\&0\&0\&[x]\&1\&0\&[x]\&1\&0\&1\&1\&[x]\&1\&1\&[x]\&0\&]
根据图4和表5可以列出状态转换真值表及两个触发器所要求的激励信号,见表6。
表6 例2的状态转换真值表及激励信号
[[Qn1]\&[Qn0]\&[A]\&[Qn+11]\&[Qn+10]\&[Y]\& 激励信号\&[J1]\&[K1]\&[J0]\&[K0]\&0\&0\&0\&0\&0\&0\&0\&[x]\&0\&[x]\&0\&0\&1\&0\&1\&0\&0\&[x]\&1\&[x]\&0\&1\&0\&0\&0\&0\&0\&[x]\&[x]\&1\&0\&1\&1\&1\&1\&0\&1\&[x]\&[x]\&0\&1\&1\&0\&0\&0\&1\&[x]\&1\&[x]\&1\&1\&1\&1\&1\&1\&0\&[x]\&0\&[x]\&0\&]
据此,分别画出两个触发器的输入J、K和电路输出Y的卡诺图,如图5所示。图中,不使用的状态均以无关项x填入。
图5 激励信号及输出信号的卡诺图
化简后得到激励方程组和输出方程。
[J1=Q0AK1=AJ0=AK0=AY=Q1A]
(6) 画出逻辑图,并检查自启动能力
根据激励方程组和输出方程画出逻辑图,如图6所示。
图6 例2的逻辑图
如果发现所设计的电路不能自启动,还应修改设计,直到能自启动为止。
由上面所列举的设计方法可以想见,继续增加检测位数会使逻辑设计更加复杂。
从上例可以看到,传统的时序逻辑设计方法尽管可以用来实现时序逻辑的设计,但设计步骤不仅复杂且需要设计者大费周折。可以预见,使用传统的时序逻辑设计方法设计复杂时序电路的难度很大。那么,采用什么方法才能使教学与现代逻辑设计技术接轨呢?
时序电路也被称为有限状态机(FSM)[6,8],因为它们的功能行为可以用有限的状态个数来表示。在与可编程逻辑设计的对比分析中,这里采用FSM设计这个序列检测器。
根据图3的状态转换图(采用图4中化简的状态转换图亦可),给逻辑状态[a,b,c,d]分别分配以Gray编码(00,01,11,10)。之所以采用Gray编码方法,是可以省掉序列检测中的计数检测。序列检测器的FSM逻辑如图7所示。经仿真验证,符合设计要求。
图7 例2的FSM实现
从上面的对比可以看出,传统时序逻辑设计以人工逻辑分析为基础,现有逻辑器件为基础构件,历经基本逻辑方程转换及最后的状态验证等多个环节,设计周期长,仅适合设计小规模、时序简单的逻辑单元[9];现代标准逻辑设计语言的设计方法以逻辑状态转换本身为要点,从逻辑门与触发器级逻辑设计上升的行为逻辑设计,更易于用来设计复杂的现代大规模时序逻辑。
3 结 论
现代逻辑设计方法的引入将逐渐转化人们对传统逻辑设计的关注点,大学基础教学中逻辑电路的设计方法也应随着这一技术的引入更新它的内容,改变传统逻辑设计占主导地位的现状。可以预见,大规模可编程逻辑器件的引入将会从根本上改变数字电子技术的教学模式。现代逻辑设计概念的引入,减少手工逻辑设计方法的比重、增加现代数字电路设计方法,注重基本概念的灵活运用都是数字电路教学改革的选题。广泛开展现代逻辑设计方法的研究,势必带来逻辑设计方法教学的变革。对于高等学校的教师来说,做好改革的思想准备已经是刻不容缓的了。
参考文献
[1] 鲍家元,毛文林.数字逻辑[M].北京:高等教育出版社,2002.
[2] 吕乐,杨爱琴.谈《数字电路与逻辑设计》课程教学改革[J].中国成人教育,2008(3):125?127.
[3] 李小珉,叶晓慧.深化《数字电路与逻辑设计》课程改革[J].长江大学学报:自科版,2004,1(4):124?125.
[4] 侯建军,路而红,熊华刚,等.数字电子技术基础[M].2版.北京:高等教育出版社,2007.
[5] 易亚军.《数字电子技术》教学研究[J].教育研究,2008(6):121?122.
[6] 康华光,邹寿彬,秦臻.电子技术基础:数字部分[M].5版.北京:高等教育出版社,2006.
[7] 邓水先.《数字逻辑电路》课程的教改探索[J].职业教育研究,2008(8):68?69.
关键词:Multisim; 序列信号发生器;教学;仿真
中图分类号:TN794文献标识码:A文章编号:1005-3824(2014)03-0062-03
0引言
数字电路是通信工程、电子信息工程、计算机科学与技术等专业的一门重要专业基础课程。随着电子技术的快速发展,对数字电路的教学也提出了越来越高的要求,而数字电路本身又是一门理论性和实践性都极强的课程[1]。学生对该课程的理解掌握程度直接影响到后续课程的学习。传统的理论教学方法主要在课堂上进行,由于不能搭建具体的电路进行动态演示,遇到一些功能原理复杂的电路,学生对其理解掌握就显得力不从心了,慢慢地就会失去学习的兴趣。作者所在的学校是一个三本院校,相对于一本、二本的学生,三本院校的学生基础较差,而且学习的主动性也较差。针对上述问题,如何改进教学方法,提高教学质量、激发学生的学习兴趣,成为教师亟待解决的问题[2]。
近些年来,随着计算机仿真技术的进步,电子设计自动化已成为数字电路分析和设计的重要工具。其中Multisim仿真软件以其形象直观、简单易学的特点,尤为适用于数字电路教学。它的引入让传统教学中学生只能想象的东西变得形象直观。这样既能让学生容易理解掌握,又能激发学生的学习兴趣。还能让学生有意识地亲自动手学会一种仿真工具,从而提高其创新能力和实践能力[3]。
1Multisim简介
Multisim 是美国国家仪器(NI)有限公司推出的以Windows为平台的仿真工具,适用于板级的模拟/数字电路板的仿真设计。它包含电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真分析[4]。目前为止,Multisim已经推出了多种版本,本文以最新版本Multisim 13仿真软件结合课堂实例进行仿真演示。
1.1Multisim13主要特点
1) 直观的图形界面。整个操作界面就像一个电子实验台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,点击鼠标可用导线将它们连接起来,可以灵活、直观地创建和修改电路。
2)丰富的元器件。它提供了超过17000多种元件,同时能方便地对元件各种参数进行编辑修改,能利用模型生成器以及代码模式创建模型等功能创建自己的元器件。
3)强大的仿真能力。支持模拟电路、数字电路、数模混合电路以及射频电路的设计仿真,支持汇编语言和C语言,使得虚拟仿真显得更加灵活[5]。
4)丰富的测试仪器。该软件提供了22种虚拟仪器进行电路动作的测量:如Multimeter(万用表),Function Generatoer(函数信号发生器),Oscilloscope(示波器) ,Bode Plotter(波特仪),Logic Converter(逻辑转换仪)等,这些仪器的设置和使用与真实的一样,可以动态交互显示。除了Multisim提供的默认的仪器外,还可以创建LabVIEW的自定义仪器,使得图形环境中可以灵活地测试、测量及控制应用程序的仪器。
1.2Multisim在理论教学中的应用
这里通过序列信号发生器的例子说明Multisim在数字电路理论教学中的应用。从传统的教学结果来看,学生对序列信号发生器的掌握并不理想,对其序列信号产生的方法也理解得不够透彻。
序列信号是指在时钟脉冲作用下产生的一串周期性的二进制信号。序列信号发生器在数字设备中具有重要的作用,它分为2种类型:一种为计数型,它由计数器辅以组合电路组成;另一种为移存型,它由移位寄存器辅以组合电路组成[6]。
下面通过具体实例说明Multisim13在数字电路教学中的应用。
实例1:试设计一个能产生序列信号为0101101的计数型序列信号发生器。
方法1:利用计数器和组合逻辑电路实现序列信号发生器
由状态表可得输出方程。Z=Qn2Qn0。由Multisim13搭建仿真电路,如图1所示。图1中74LS160采用同步置数法构成模7计数,在计数脉冲作用下,其输出Z依次输出0101101。
为了让学生能直观地看到输出是0还是1,这里用探针指示0或1,亮为1,灭为0(下同)。仿真结果与理论分析一致。
图174LS160构成序列发生器仿真图(一)方法2:利用计数器和数据选择器来实现序列信号发生器
原理是利用计数器(74LS160)的输出作为8选1数据选择器(74LS151)的地址变量控制端,将要产生的序列依次接入74LS151的7个数据输入端,在脉冲信号的作用下,74LS151依次输出0101101。仿真电路如图2所示,仿真结果也与理论分析相符。
图274LS160构成序列发生器仿真图(二)实例2:试设计一个能产生序列为00011101的移存型序列信号发生器。
由于该序列长度为8,故考虑采用3位移位寄存器。若选用双向4位移位寄存器74LS194,则仅用其中的3位:Q0,Q1和 Q2。由于该序列最左边3位为000,故电路中必包含一个状态为Q0Q1Q2=000,设为S1,依次右移一位,得到S2=001,S3=011,……,S8=001。由此知该电路具有8个状态,其状态转移表如表2所示,表2中Y表示移位寄存器所需的右移串行输入信号(即DSR)。Q2依次输出所需序列信号00011101。
综合上述2种类型序列信号发生器的仿真演示,既能让学生直观看到仿真过程与结果,又能让学生很清晰地理解掌握以上几个电路的工作原理,并能进一步对所学过的芯片功能加深印象。在不知不觉中,激发了学生的学习兴趣,使学习不再是枯燥乏味的行为。这样长期下去,教学质量将会有很大提高。
2结语
实践表明,将Multisim 13仿真软件用于《数字电路与逻辑设计》理论课程的辅助教学,能把较为复杂难懂的电路设计过程形象直观地展现学生面前,对提高学生的学习兴趣和效果,提高教师的教学质量等方面都有重要意义。同时,促使教师不断地将理论与实践相结合,从而提高老师的教学水平。
参考文献:
[1]刘太刚,韩琳.Multisim在数字电路理论课教学中的应用[J].牡丹江大学学报,2013,22 (7):161162,187.
[2]赵庆.三本院校EDA课程教学方法实践与思考[J].现代商贸工业,2013(7):144145.
[3]卢厚元.multisim11在电子技术教学中的应用[J].十堰职业技术学院学报,2013,26(3) 98101.
[4]黄菊. 基于共发射极电路Multisim仿真教学的好处研究[J].中国电子商务,2013(17):140,142
[5]肖杰,曾玢石,赵晋琴.Multisim在数字电子技术课程教学中的应用[J].当代教育论坛,2011(6):4143.
物联网工程包括在工学类里面。
物联网工程一般指高校开设物联网相关专业之一(物联网工程,传感网技术,智能电网)。本科,学制四年,授工学学士学位。
其主干学科与课程如下:
信息与通信工程,电子科学技术,计算机科学与技术。物联网概论,电路分析基础,信号与系统,模拟电子技术,数字电路与逻辑设计,微机原理与接口技术,工程电磁场,通信原理,计算机网络,现代通信网,传感器原理,嵌入式系统设计,无线通信原理,无线传感器网络,近距无线传输技术,二维条码技术,数据采集与处理,物联网安全技术,物联网组网技术等。
(来源:文章屋网 )
关键词:数字频率计 EDA VHDL 波形仿真
中图分类号:TN79 文献标识码:A 文章编号:1007-9416(2013)11-0135-03
1 引言
传统的设计方法是基于中小规模集成电路器件进行设计(如74系列及其改进系列、CC4000系列、74HC系列等都属于通用型数字集成电路),而且是采用自底向上进行设计。现代电子设计技术的核心的发展方向是基于计算机的电子设计自动化技术,即EDA(Electronic Design Automation)技术[1]。EDA技术减轻了设计人员的工作强度,提高了工作效率,缩短了产品的研发周期,是电子设计技术的一个巨大进步。超高速集成电路硬件描述语言(Very-High-Speed Integrated Circuit Hardware Description Language, VHDL)语言是EDA设计中一种重要的仿真语言,具有多层次描述系统硬件功能的能力,支持自顶向下和基于库的设计的特点,被广泛的应用于CPLD/FPGA的设计中。
在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系[2,3]。数字频率计是一种基本的测量频率的电子仪器,广泛应用于航天、电子、测控等领域。采用常规数字电路设计数字频率计,所用的器件较多、连线比较复杂,而且存在延时较大、测量误差较大、可靠性低等缺点。本文研究了基于EDA的数字频率计电路的设计方法,介绍了数字频率计的相应模块,并开展了相应的仿真实验。
2 数字频率计的设计原理
2.1 VHDL语言与软件仿真平台
VHDL出现于1982年,是一种针对于电路设计的高级语言。VHDL语言用于描述硬件电路,已经成了一种通用的硬件设计交换媒介[4]。该语言相比于其他语言具有对硬件的描述能力强、覆盖面广、语言精炼简洁、可读性强等特点,并且,VHDL支持支持模块化设计,缩短了开发的周期。
MAX+PLUSⅡ可编程逻辑开发软件是Altera公司推出的第三代PLD 开发系统,该软件提供了全面的逻辑设计能力,包括电路图、文本和波形的设计输入以及编译、逻辑综合、仿真和定时分析以及器件编程等诸多功能。具有包括开放式的界面、与结构无关、多平台、完全集成化、丰富的设计库在内的突出优点。其系统界面如图1所示。
2.2 设计基本原理
数字频率计的基本设计原理是选取一个频率稳定度较高的频率源作为基准频率,对比测量其他信号的频率,计算每秒内待测信号的脉冲个数。我们从MAX+PLUSⅡ实验台输入两个不同的时钟频率,其中一个作为基准频率(这里选取的是1HZ的CLK信号),另一个作为待测频率,经过相应的分频或倍频后,通过频率计计算出待测频率的频率值。由于本次设计的数字频率计采用1HZ的时钟频率作为基准频率,因此,我们需要计算1秒钟时基内待测信号整形后脉冲的个数,相应的计算结果即为当前频率值,并用十进制数码管显示最终结果[5,6]。
本频率计是8位十进制数字频率计,由四个模块构成:控制模块,有时钟使能的十进制计数器模块,锁存器模块和译码显示模块。数字频率计系统组成方框图如图2所示。
在上图中出现了三个重要的控制信号,分别是计数控制信号、锁存信号和清零信号。其中,计数控制信号是长度为1秒的高电平脉冲周期信号,可以对频率计的每一个计数器的使能端进行同步控制。实验中,当计数控制信号为高电平时开始计数;低电平时停止计数,并保持所计的数;锁存信号的上升沿到来时,将计数器在前一秒钟的计数值锁存在锁存器中,并控制显示模块显示当前数;锁存计数值后,由清零信号清除计数模块中的值。
3 模块实现
根据上述描述,数字频率计包含了控制模块,计数器模块,锁存器模块和译码显示共四个模块。下面我们将分别介绍这四个模块,并且给出其中最核心模块控制模块的设计程序。
3.1 控制模块
控制模块是本频率计设计的核心模块,既要求对频率计的每一个计数器的使能端进行同步控制,又要求能产生锁存信号将计数值记录到锁存器中。由此,利用VHDL语言设计该控制模块如下,仿真波形如图3所示。
3.2 其他模块
计数模块是对被测频率信号进行频率计数测量的模块,由8个一位十进制计数器级联组成,当时钟使能输入端为高电平时,进行计数,反之,锁定计数值。
我们可以先通过VHDL语言编写1个一位十进制计数器,再将其原件化后搭建成八位十进制计数模块。锁存模块由锁存器构成,当锁存信号的上升沿到达后信号被锁存到寄存器的内部,并由锁存器的输出端输出。译码显示模块对四位BCD码进行锁存,并转化为相应的三组七段码,用于驱动数码管,译成能在数码管上显示的相对应的数值。
根据本节所描述的各模块的基本原理,我们分别用VHDL语言进行编程实现,下一节将给出数字频率计的仿真结果。
4 仿真结果
在MAX+plus II的原理图编辑窗口的空白处双击,将弹出“Symbol”窗口,点击左侧的元件库栏中的Project项,选择刚才第3部分中生成的各个功能模块,再点击下方的OK,即可将此元件调入原理图编辑窗口中,并根据各模块功能和频率计的功能进行连接并生成顶层电路文件,如图4所示。
数字频率计的最终仿真波形如图5所示。实验验证了上述设计的正确性。
5 结语
本文基于EDA技术设计了数字频率计,描述了各模块的基本原理,用VHDL语言编程实现,并在MAX+PLUSⅡ软件上进行设计仿真,给出了最终的仿真实验结果。需要指出的是,用户可以在基本电路模块的基础上,修改VHDL源程序达到增加新功能的目标,例如由目前的8位增加到16位,改变基础频率的输入等,而不必更改硬件电路。
参考文献
[1]李晓辉.数字电路与逻辑设计[M].国防工业出版社,2012年.
[2]郭小东.基于VHDL语言的数字频率计电路的设计[J].信息与电脑(理论版),2009,7:064.
[3]潘明.基于复杂可编程逻辑器件的数字频率计设计[J].广西科学院学报,2002,18(4):244-251.
[4]齐京礼,宋毅芳,陈建泗.VHDL语言在FPGA中的应用[J].微计算机信息,2006,22(12): 149-151.