首页 > 文章中心 > 神经网络论文

神经网络论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇神经网络论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

神经网络论文

神经网络论文范文第1篇

1.1BP神经网络简介神经网络由大量简单的单元构成的非线性系统,具有非线性映射能力,不需要精确的数学模型,擅长从输入输出数据中学习有用知识[7]。神经元是神经网络基本单元。神经元模型如图1所示。由连接权、加法器和非线性激活函数这3种元素组成。1986年,Rumelhart及其研究小组在Nature杂志上发表误差反向传播(errorback-propagation)算法[8],并将该算法用于神经网络的研究,使之成为迄今为止最著名的多层神经网络学习算法———BP算法[9]。由该算法训练的网络,称为BP神经网络。BP神经网络是一种正向的、各层相互连接的网络。输入信号首先经过输入层传递给各隐含层节点,经过激发函数,将隐含层节点的输出传递到输出节点,最后经过再经过激发函数后才给出输出结果,若输出层的输出和期望输出之间的误差达不到要求,则转入反方向传播,将误差信号沿原来的连接通路返回,通过修个神经网络各层的权值,使过程的输出和神经网络的输出之间的误差信号达到期望值为止[10]。

1.2电池SOC的定义动力电池的剩余电量,是指电池在当前时刻,达到放电截止电压前可以使用的电量。目前,国内外普遍采用荷电状态来表征电池的剩余容量[11]。电池的荷电状态(SOC)是电池的剩余电量与电池的额定电量的比值。

1.3影响电池SOC的因素动力电池是一个非线性系统,其中电池的荷电状态受到很多种因素的影响,主要包括电池的充/放电倍率、自放电、环境温度以及电池的工作状态等因素。(1)电池的充/放电倍率电池的放电电流的大小,会影响电池的容量。在其他条件相同的情况下,电池的放电容量会随着放电倍率的增加而降低[12]。(2)自放电自放电又称荷电保持能力,指在一定的条件下,当电池处于开路状态时,电池对电量的储存能力。电池在自放电的作用下,SOC值会随着存储时间的增加而减小。(3)温度首先,锂离子电池正常工作的温度有一定的要求。动力电池的使用环境温度发生变化时,电池的可用容量也会随之发生变化。在温度较低时,电池活性较低,电池可用容量降低;当温度升高时,电池活性增强,可用容量也随之增多。因此,在预估电池的荷电状态时,需要考虑到电池的温度的影响。

2神经网络SOC估计器设计

2.1实验数据的获取本研究的实验数据是在ADVISOR2002汽车仿真软件上仿真得到的。ADVISOR(AdvancedVehicleSim-ulator,高级车辆仿真器)是由美国可再生能源实验室,在Matlab/Simulink软件环境下开发的高级车辆仿真软件[13]。该软件的界面友好、源代码完全开放,目前已经在世界范围内广泛使用。ADVISOR采用了前向、后向相结合的混合仿真方法。后向仿真方法是在假设车辆能满足道路循环的请求行驶轨迹(包括汽车行驶速度、道路坡度和汽车动态质量)的前提下,计算汽车中各个部件性能的仿真方法,前向仿真是根据驾驶员行为调节部件,使得车辆各部件跟随路面循环工况[14]。本研究在ADVISOR软件搭建了某国产电动汽车的仿真平台。整车的主要技术参数如表1所示[15-16]。模拟行驶程序使用的测试路程是ECE工况、UDDS工况和HWFET工况混合行驶工况,其速度与时间关系曲线如图2所示。ECE工况、UDDS工况和HWFET工况均被广泛应用于电动汽车性能测试。其中ECE工况为欧洲经济委员会汽车法规规定的汽车测试循环工况。ECE工况是用来测试车辆在城市低速道路下车辆的循环工况。其循环时间为195s,车辆行驶的路程为0.99km,最高车速为50km/h。UDDS工况是美国环境保护署制订的城市道路循环工况,用来测试车辆在城市道路下行驶的各种性能的循环工况。其循环时间为1367s,行驶路程为11.99km,最高车速为91.25km/h。HW-FET工况为美国环境保护署制订的汽车在高速公路上的循环工况,用来测试汽车在高速道路上车辆行驶的循环工况,其循环时间为767s,行驶路程为1.51km,最高车速为96.4km/h。在搭建的仿真平台上,本研究进行了仿真,其中电动汽车使用的电池为锂电池。虚拟电动汽车共行驶了2329s,行驶的距离为14.49km。对电动汽车的电池的充放电电流、电池温度和电池的SOC进行采集,得到结果如图3~5所示。

2.2数据预处理根据前文的分析,本研究的神经网络模型训练数据选择如下。本研究选择动力电池的充放电电流和电池的温度作为动力电池神经网络的输入,电池的SOC作为神经网络的输出。在对神经网络训练之前,对训练数据进行归一化操作。归一化操作可以避免各个因子之间的量级差异,加快BP神经网络训练的收敛,减少计算难度。对数据进行如下操作。

2.3动力电池SOC神经网络的训练SOC估计是根据动力电池的电流、温度的数值得到电池的SOC数值。使用神经网络设计估计器的目的是为了能够逼近函数。本研究使用了BP神经网络模型来逼近动力电池的电流、温度和SOC之间的关系,其中BP神经网络的隐含层选择tansig函数。学习算法使用基于数值最优化理论的Levenberg-Marquardt算法作为神经网络的学习算法。

3实验验证及结果分析

为了验证模型的有效性,本研究采用了另外3种工况混合的行驶工况的实验数据作为测试样本数据来验证本研究得到的神经网络模型。这3种工况分别是:普锐斯工况(Prius工况,该种工况用来测试丰田普锐斯混合动力汽车的行驶工况),CYC_Nuremberg_R36工况(该种工况用来测试德国纽伦堡市36路公共汽车线路工况)和CYC_US06工况(该种工况用来考察测试车辆在高速情况下的行驶状况)。以上3种工况基本上能够模拟出汽车在城市中行驶的加速、减速、低速和高速行驶的各种工况,测试混合工况如图6所示。本研究对得到的测试数据同样进行归一化处理。模型的输入为电池的电流和温度,模型的输出为SOC值。最后,得到的电池SOC的实际值和经过神经网络得到的SOC估计值如图7所示。通过求神经网络模型的输出值和真实值之间的误差值,来评价本研究的神经网络模型的精度。其计算公式如下式所示。得到的神经网模型的估计值与动力电池SOC的真实值之间的误差如图8所示。通过图8可以看出,神经网络估计器的估计值与电池SOC的真实值之间绝对误差的最大值为4%左右,符合动力电池对SOC预测的精度要求。

4结束语

神经网络论文范文第2篇

小波神经网络的网络结构和基本的BP神经网络类似,一般采用输入层、隐含层和输出层三部分。小波神经网络隐含层的转移函数采用小波函数,但小波函数的选取目前还未有统一的理论。Szu构造的Morlet小波函数。

2工程应用

2.1工程概况北京地铁6号线东延部分东部新城站至东小营站区间工程位于北京市通州区,起点为东部新城站,终点为东小营站。该区间由东部新城站向东,沿运河东大街北侧设置,沿线穿越绿地、宋郎路路口,到达东小营站,其中在宋郎路路口和运河东大街东南有多处雨水、电力和电信管线。区间穿越的地层主要有粉细砂层、局部夹粉质粘土层、中粗砂层。工程采用直径为6m的土压平衡盾构机进行施工。

2.2网络设计和数据采集小波神经网络的结构设计对预测结果影响较大,应充分考虑与施工相关的各种因素,如地表沉降的成因、工程地质条件和施工工艺参数等。盾构施工引起的地表沉降易受到以下因素影响:盾构施工区间的水文地质条件对沉降量的影响较大;当盾构机由于某种原因停止推进时,千斤顶会漏油回缩导致盾构机后退,引起盾前土体压力减小;盾尾脱空后,管片和土体之间存在空隙,由于注浆不及时,土体填充盾尾空隙引起土体局部塌落;盾壳移动引起土体的摩擦和剪切作用,在该作用力下土体产生变形;盾构改变开挖方向,往往会引起超挖现象,土体受到的扰动随之加大,引起土体局部变形破坏;开挖面的土体靠土仓压力来维持,但是在施工过程中,土仓压力和开挖面压力并不是出于完全平衡状态,这种不平衡状态容易引起土体的坍塌变形。综合考虑各相关因素,确定在对于地表沉降较为敏感的土体参数和施工参数中选取覆土厚度(H)、压缩模量(Es)、粘聚力(c)、天然密度(ρ)、内摩擦角(Ф)、千斤顶推力(F)和注浆压力(P)共7个参数作为神经网络的输入参数。小波神经网络的隐层节点数选择目前还没有成熟的理论依据,可参考BP神经网络的隐层节点选取,通过经验和实验分析以输入节点的2~4倍综合确定,最终选择为13。小波神经网络预测模型的网络结构为7-13-1。盾构施工引起的短期地表沉降对地表建筑和地下管线影响最大,且该施工区段地层变化较小,掘进速度基本不变,故可以选取盾构机通过该点50m后的稳定沉降数据。在施工单位提供的相关测量数据和地质资料中选取了51组数据,将其中36组作为训练数据,如表1所示。选择15组作为测试数据,如表2所示。

2.3地表沉降预测与分析根据选取的36组数据和已经确定的7-13-1的网络结构,分别建立小波神经网络和BP神经网络的预测模型。设定训练目标为0.001,BP神经网络的初始权值、阈值和小波神经网络的伸缩参数、平移参数分别在[-1,1]之间随机赋值。得到训练结果如图1所示。结果显示,经过1050次训练后小波神经网络的训练误差可以达到训练目标,而BP神经网络需要8500次训练才能达到训练目标。小波神经网络的训练速度相比于BP神经网络有较大优势。对于已经训练好的两种模型,使用相同的测试样本进行预测分析,得到的预测结果如图2所示,预测结果和实际测量值的误差如表3所示。可以看出,BP神经网络和小波神经网络的最小、最大误差分别为3.1%、27.3%,2.8%、14.5%,故小波神经网络的预测精度要好于BP神经网络,且预测结果均在工程允许范围内,可以依据此预测结果对现场施工控制参数的制定提供科学的指导。

3结论

神经网络论文范文第3篇

企业绿色竞争力评价机制是通过一系列评价指标来完成的,评价指标选择不同会产生不同的评价结果,所以评价指标的选择是建立评价系统的关键。对应于绿色竞争力的基本特征,构建评价指标体系包含六个方面的指标。然后采用频度统计法、理论分析法初步设置指标,通过主成分分析法、极大不相关法对指标进一步筛选、分类,然后采用专家咨询法调整指标,并综合前人的研究成果构建企业绿色竞争力评价指标体系如表1所示。

2基于BP神经网络的企业绿色竞争力评价方法

2.1指标归一化处理企业绿色竞争力评价指标体系中有些指标是正指标,有些指标是逆指标,需要对各指标进行归一化去量纲处理。

2.2BP神经网络评价的基本原理BP神经网络是一种具有两层或两层以上的阶层型神经网络,层间神经元实现全连接,而层内各神经元间无连接。典型的BP网络是三层前馈阶层网络,即:输入层、隐含层和输出层。BP网络的学习由四个过程组成,输入模式由输入层经中间层向输出层的“模式顺传播”过程;网络的希望输出与网络实际输出之差的误差信号,由输出层经中间层向输入层逐层修正连接权的“误差逆传播”过程;由“模式顺传播”与“误差逆传播”的反复交替进行的网络“记忆训练”过程;网络趋向收敛即网络的全局误差趋向极小值的“学习收敛”过程。BP神经网络分析具有许多优秀的品质,并且善于从近似的、不确定的、甚至相互矛盾的知识环境中做出决策。其模型的结构如图1所示。应用BP网络对企业绿色竞争力做评价的方法是把用于描述评价对象的特征信息作为神经网络的输出向量,将代表相应综合评价的量值作为神经网络的输出向量;使用网络前,用一些经传统综合评价取得成功的样本训练这个网络,使它所持有的权值系数值经过自适应学习后得到正确的内部表示,训练后的神经网络便可作为企业绿色竞争力评价的有效工具。

3企业绿色竞争力评价实例分析

本文的实证分析过程选取了我国造纸业上市公司作为研究案例,具体指标值来源于X纸业集团。首先对各输入指标进行归一化处理,然后利用BP神经网络模型对企业绿色竞争力进行评价。在构造评价企业绿色竞争力的BP神经网络时,考虑到二级指标体系包括36个指标,所以输入层神经元设36个;设置1个输出层神经元,为了增加评价结果的直观性,将评价结果划分为优、良、中、差四个等级,分别对应于(1,0,0,0)、(0,1,0,0)、(0,0,1,0)、(0,0,0,1);隐含层神经元可根据经验公式n1=sqr(tm+n)+d来确定,其中m为输入层神经元个数,n为输出层神经元个数,d为0到10之间的常数,本文取d=5,由此可确定隐含层神经元个数n1=11。使用Matlab编程软件编写BP神经网络程序,取神经网络学习效率η=0.05,给定收敛值ε=0.001,当企业的指标值经输入层进入网络时,网络便用训练好的权值进行运作,最后根据输出层输出的向量值的隶属关系确定企业的绿色竞争力,得到输出结果为(0.9863,-0.0048,-0.0169,-0.0124),此输出结果与(1,0,0,0)等级最为契合,表明该企业具有较强的绿色竞争力。

4结论

神经网络论文范文第4篇

只有清楚地了解电梯控制系统的运行原理才能够及时准确的诊断出电梯故障原因,因此清楚的了解电梯运行原理,每一个电梯维修人员必须要做到。电梯运行过程总体上可分为以下几个阶段:第一、登记层外召唤信号和登记内选指令阶段;第二、电梯门关闭或者电梯按照系统指令停运阶段;第三、启动阶段;第四、在到达信号记录的楼层前进行减速制动;第五、平层开门阶段。在整个过程中电梯需要从外界接收信号并处理,然后完成相应的指令或者输出信号,由此可以将电梯看作是一个完整的独立的系统,只需要外界给予相应的信号就可以自动的做出动作。电梯系统内部复杂的构件紧密的结合在一起,正是如此才使得电梯系统故障具有了复杂性、层次性、相关性以及不确定性的特点。

二、神经网络技术基本原理

生物学上的神经是由一个个简单的神经元相互连接进而形成了复杂的庞大的神经系统,同理,神经网络就是由大量简单的处理单元相互连接形成的复杂的智能系统。单独的处理单元类似于一个神经元,是一个可以接受不同信息但是只输出一种信息的结构单位。神经网络系统与生物学神经系统相似的是具有自我修改能力,它可以同时接收大量的数据并进行统一的分析处理,进而输出相应的处理结果。这就使得神经网络系统具有了高度容错性、高度并行性、自我修改性、学习性以及高度复杂性,也正是由于这些特性才使的利用神经网络技术能够及时准确的查明电梯故障原因并得出故障解决方案。电梯故障诊断中应用的神经网络模型分为三个层次:输入层、接收外部信号或者是电梯自我检测信息(如载重信息);隐含层、对接收到了大量数据进行相应的分析处理;输出层、将记录着动作命令的数据传送出来。在电梯出现故障时,首先可以通过神经网络模型快速确定故障发生在哪一层达到节约时间的目的。但是神经网络也会因为收敛速度过于慢、训练强度太大或者是选择的网络模型不好等问题导致诊断结果受到影响。

三、神经网络模型在电梯故障诊断中的应用分类

神经网络模型已经成为了如今电梯故障诊断中应用最广泛的技术模型,相比于传统方式它具有诊断速度快、故障原因命中率高的优点,因此引起了各方面专业人士的强烈关注,并在他们的不懈努力下得到了发展与创新。它跨越多个专业领域、通过对各种复杂的高难度工作的不断的发展与改进出现了越来越多的应用模型,下面主要介绍了当前应用最普遍的BP网络模型,并且简单的引入并介绍了近年来新兴的模糊神经网络模型和遗传小波神经网络模型。

(一)BP网络模型

BP神经网络作为神经网络应用最广泛的一种,它多应用的误差反向传播算法使其在模式识别、诊断故障、图像识别以及管理系统方面具有相对先进性。基于BP网络的电梯故障诊断技术就是通过学习故障信息、诊断经验并不断训练,并将所学到的知识利用各层次之间节点上的权值从而表达出来。BP网络系统的主要诊断步骤主要可以分为三步。第一步:对输入输出的数据进行归一化处理,将数据映射到特定的区间。第二步:建立BP网络模型,训练BP网络模型。第三:通过已经训练好的网络模型对原来的样本进行全面的检测。算法步骤:a、在一定的取值范围内对数据进行初始化;b、确定输入值数值大小,计算出预期输出量;c、用实际输出的值减去上一步得到的数值;d、将上一步得到的误差分配到隐含层,从而计算出隐含层的误差;e、修正输出层的权值和阈值,修正隐含层的权值;f、修正隐含层的阈值,修正隐含层和输入层的权值。

(二)遗传小波神经网络模型

遗传算法运用了生物界的优胜劣汰、适者生存的思想对复杂问题进行优化,适用于复杂的故障,起到了优化简化问题的作用。对局部数据进行详细的分析是小波法最大的特点,所以它被誉为“数字显微镜”。遗传算法小波神经网络就是运用小波进行分解的方法分解模拟故障信号,将得到的数据进行归一化,将归一化后的数值输入到神经网络模型中。它融合了神经网络、小波分析和遗传算法三者所有的优点。基于遗传小波神经网络的电梯故障诊断的一般步骤为:测试节点信号采样、小波分解、故障特征量提取、归一化得到训练样本集、遗传算法优化、得到故障类型。遗传小波神经网络模型在故障原因复杂、数据信息量巨大的电梯系统的应用中能够发挥更大的作用。

(三)模糊神经网络模型

模糊神经网络模型就是创新性的将神经网络与模糊理论结合到一起。它采用了广义的方向推理和广义的前向推理两种推理方式。与其它两种模型不同的是,它的语言逻辑、判断依据和结论都是模糊的。但是它的数据处理能力还有自我学习能力并没有因此而变差,反而更加丰富了它的定性知识的内容。在处理实际问题的过程中,首先要建立所有可能发生的故障的完整集合,其次将所有的故障发生原因归入到同一个集合中去,最后就是建立故障和原因的关系矩阵。分别叫做模糊故障集、模糊原因集、模糊关系矩阵。相较于BP网络模型,这种模型更加的简单易行,充分发挥了神经网络和模糊逻辑的优点,不会因为故障原因过于复杂而失去诊断的准确性,在原本丰富定性知识和强大数据处理能力的基础上具有了很大的自我训练能力。

四、结语

神经网络论文范文第5篇

关键词:立井井筒非采动破裂反向传播网络神经网络预测数值模拟

一、煤矿立井发生破坏问题的提出

徐淮地区是中国东部主要的煤炭开采基地,其煤炭的生产直接影响着我国煤炭的总产量,在国民经济建设中占有重要的地位。然而自20世纪80年代以来,在我国徐淮地区(徐州、淮北、淮南)地区,出现了一种新的矿井破裂灾害——井筒的非采动破裂,即煤矿立井在不受地下采动影响的条件下(井筒及其附近的工业广场都留有足够的保护煤柱),井壁发生严重变形和破裂,致使提升运输困难。90年代以来,在我国特大型煤炭企业'''');">企业兖州矿业集团的9对井筒也先后发生了破坏(有关兖州矿区井筒破裂的基本情况如表1所示)。煤矿竖井是矿山生产运输的咽喉要道,因此竖井的破坏严重影响了矿山生产,给各煤矿造成了巨大的经济损失。

为了尽量减少立井的非采动破裂所造成的经济损失,现在各大矿山都对井筒的变形进行了预报和治理,到目前对井筒破裂的预报方法主要有两种:

1)第一种方法是通过加强对井筒变形的监测,以监测数据为依据,对井筒的变形进行分析,对其破裂进行预报。

2)第二种方法是新近发展起来的预报方法[1,2,3],即系统科学、智能技术方法,特别是研究非线性复杂系统的一些方法。其主要内容使用系统科学原理或智能技术来建立模型的框架,用观测的实测资料填充以实现建模。

本文采用实际与智能技术相结合的预报方法,建立井筒破裂的人工神经网络模型,模仿人脑的运行机制,通过对井筒破坏规律的学习,使网络具有根据特征值对井筒破坏进行预报的能力,并据此来推测相关煤矿的井筒破坏规律。

表1兖州矿区井筒破裂的基本情况

Table1BasicsituationofshaftliningfractureinYanzhouCoalMine

矿区

序号

井筒名称

竣工时间

破裂时间

净径/m

外径/m

施工方法

井壁类型

表土厚度/m

破裂深度/m

破裂情况

兖州

1

鲍店副井

1979.11.26

1995.6.5

8.0

10.2

冻结法

双层井壁

148.6

126.9

罐道缝压实,罐道,管路压缩弯曲,混凝土表层剥落出现水平裂缝,竖筋弯曲外露

2

鲍店主井

1979.5.14

1995.7.12

6.5

8.5

冻结法

双层井壁

148.69

136—144

3

鲍店北风井

1979.10.21

1996.8.2

5.0

6.6

冻结法

双层井壁

202.56

168.4,180,204

4

鲍店南风井

1979.8.1

1996.8.9

冻结法

双层井壁

157.92

158.1—159.3

5

兴隆庄西风井

1976.8

1995.10

5.5

7.4

冻结法

双层井壁

183.9

165.5—171.6

6

兴隆庄东风井

1977.5.31

1997.6.7

5.0

6.4

冻结法

双层井壁

176.45

157—180

7

兴隆庄主井

1977.8.13

1997.6.23

冻结法

双层井壁

189.31

150,184

在未出现严重破裂时进行了治理

8

兴隆庄副井

1978.9

1997.6.26

冻结法

双层井壁

190.41

154,200

罐道缝压实,罐道,管路压缩弯曲,混凝土表层剥落出现水平裂缝,竖筋弯曲外露

9

杨村主井

1984.12

1997.2.29

5.0

6.6

冻结法

双层井壁

185.42

176.5,196

10

杨村副井

1985.1.23

1997.12.2

冻结法

双层井壁

184.45

160,176,212

在未出现严重破裂时进行了治理

11

杨村北风井

1984.10.31

1997.2.4

4.5

5.9

冻结法

双层井壁

173.40

179.6,150,156.6

罐道缝压实,罐道,管路压缩弯曲,混凝土表层剥落出现水平裂缝,竖筋弯曲外露

二、人工神经网络的预报原理

人工神经网络实现井筒破裂的智能预报,是通过机器学习的方法[4]对破裂井筒的特征值进行抽取,并对已知的井筒破裂规律进行学习掌握规律性,然后运用训练好的神经网络对其他井筒进行推理预测,并据此对其他井筒的破裂进行预报(其流程见图1)。

三、立井井筒破裂影响因素的选取

经调查表明立井井壁破裂的主要原因为:在煤矿开采过程中新生界底部第四系含水层(底含)的水头的大幅疏降,使该含水层及上覆土层产生压缩和变形,且引起地表沉降,在地层发生变形的过程中对井壁产生垂直向下的附加力,使得立井井壁发生破裂。

立井井筒破裂矿区的水文地质与工程地质条件都具有如下的特点:井筒都穿过第四系深厚表土,其厚度大都在200m左右。土层结构复杂,但大体上都可分为四个含水层和三个隔水层共七个工程岩组,即由上至下常简称为一含、一隔、二含、二隔、三含、三隔和底含(四含)。

通过对立井井筒非采动破裂机理及破裂矿区的水文地质与工程地质特点分析选取以下几个因素作为影响立井井筒破裂的特征因素:

1、表土层厚度

由于立井井筒非采动破裂只发生在厚冲积层中建成的立井井筒,因此表土层厚度是立井井筒非采动破裂现象发生的必要因素。表土层厚度越大,土层对立井井筒的侧压力越大,且土层与井筒的相互作用的面积增大,底含沉降时产生的立井井筒附加力加大,立井井筒发生破裂的可能性越大。

2、底含厚度

底含厚度决定了立井井筒周围土层的变形量,且土层变形量直接关系到立井井筒附加应力的大小,因此底含厚度越大,井筒破裂的可能性增大,所以确定底含厚度为立井井筒破裂的主要影响因素。

3、底含水位降速

底含水位降速决定了立井井筒周围土层变形的速率,从而决定了立井井壁破裂的时间。底含水头降速直接决定了立井井筒破裂时间的大小。

4、井筒外径

由于在确定的工程地质条件下立井井筒外表面积与立井井筒附加力的大小成正比,则确定立井井筒外径大小为立井井筒破裂的主要因素。

5、井壁厚度

井壁厚度越大,立井井筒的净截面积越大,立井井壁内壁应力降低,有利于立井井筒的稳定。

四、神经网络的设计与实现

根据以上对影响井筒变形的特征因素的选取,选择反向传播(backpropagation,BP)神经网络算法对井筒的破裂规律进行训练,其网络为包含两层隐含层的神经网络,输入层、隐含层、输出层的神经元的个数分别为5、20、10、1,

表2神经网络的输入矢量p及目标矢量t

Table2Inputvectorpandtargetvectortoftheneuralnetwork

输入矢量p

输出矢量t

表土层厚度(m)

井筒外径(m)

井壁厚度(m)

底含水位降速(米/年)

底含厚度(m)

井壁破裂时间(月)

189.31

8.92

1.21

3.764

34.1

192

190.41

10.1

1.3

3.212

30

225

190.41

6.4

0.7

2.988

32.85

241

189.5

7.4

0.95

3.652

29.9

230

148.69

8.5

1

5.196

56.29

194

148.6

10

1

5.262

55.0

187

202.56

6.6

0.8

5.053

59.0

190

185.5

6.4

0.7

7.192

57.72

146

其训练函数分别采用双曲正切函数tansig及线性激活函数purelin[5],网络学习采用的输入矢量及目标矢量如表2所示。

网络训练后,其输出值与期望值之及目标误差如表3所示。

表3BP网络对井筒破坏规律的学习

Table3BPnetworklearningofshaftliningfractureregularity

输入矢量p

目标矢量t

目标误差

输出矢量

a

189.31

8.92

1.21

3.764

34.1

192

0.0001

199.5

190.41

10.1

1.3

3.212

30

225

0.0001

222.3

190.41

6.4

0.7

2.988

32.85

241

0.0001

243.8

189.5

7.4

0.95

3.652

29.9

230

0.0001

221.3

148.69

8.5

1

5.196

56.29

194

0.0001

193.06

148.6

10

1

5.262

55.0

187

0.0001

185.6

202.56

6.6

0.8

5.053

59.0

190

0.0001

188.9

185.5

6.4

0.7

7.192

57.72

146

0.0001

147.23

五、实例应用及与数值模拟结果的比较

兖州矿区杨村煤矿北风井井筒表土段厚173.4m,采用冻结法施工,于1984年竣工,在1997年的检查中发现井壁已发生了破裂,现在用学习后的神经网络对杨村北风井的井筒破裂时间进行预测,预测结果如所表4示。

据上表可以得出有神经网络预报得出的预测值与实际的目标矢量之间的误差仅为0.015,该误差在现场的实际工作中是可以接受的,这说明由BP网来预测竖井的非采动破坏在实际工作中是可行的,且行之有效。

表4神经网络对杨村北风井破裂的预测

Table4NeuralnetworkforecasttothefracturetimeofYangcunnorthshaft

输入矢量p

目标矢量t

输出矢量

a

误差

表土层厚度(m)

井筒直径(m)

井壁厚度(m)

底含水位降速(米/年)

底含厚度(m)

井壁破裂时间(月)

173.4

5.9

0.7

7.5

65.3

136

138

0.015

根据兖州矿区的工程地质资料和及杨村立井井筒施工资料建立了立井井筒破裂的几何计算模型,采用Flac3D进行数值模拟计算,模型共19008个六面体、21600个结点。数值模拟计算后立井井壁最大z方向应力随底含水头降变化如图2所示,底含失水沉降情况下立井井壁发生破裂时的底含水头降为0.8MPa左右,换算为水头高度等于80m,此时井壁内部的最大应力为30MPa,达到了立井井筒的破裂强度。则立井井筒的破裂时间T为:

T=底含水头高度损失量/底含水位降速

=(80÷7.5)×12

=128月

根据底含水头降速可得立井井筒破裂的时间为128月,与神经网络预测值相比,相差10月左右,因此可以认为神经网络预测基本可以用于立井井筒破裂时间的预测。

图2立井井壁最大z方向应力随底含水头降变化

Fig.2Waterheadvariationinbottomaquifervs.maximumz-directionalstressinshaftlining