前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数控刀范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
技能大赛勇立潮头
潘志强在学校期间积极参加各种比赛。2014年8月,潘志强参加“华中数控杯”第六届全国数控技能大赛湖北省选拔赛,勇夺数控车组第一名;同年11月,潘志强代表湖北省参加了第六届中国技能大赛,取得优异成绩。2015年11月,他参加了2015中国技能大赛――湖北省首届技工院校技能大赛,夺得数控车组第二名;11月中旬,参加湖北省中等职业院校技能大赛,获得数控车组二等奖。
2016年4月,通过海选,潘志强代表襄阳闯入《中国大能手――数控车床》全国总决赛。尤其在备战《中国大能手》期间,他认真钻研、勤学苦练,自觉牺牲节假日和寒假休息时间,坚持不懈地刻苦训练。年纪最小、资历最浅的他不畏强手、勇于拼搏,在与来自全国的九名顶尖高手同台竞技过程中,以小组第一名的成绩杀入四强,最终取得全国第四名的优异成绩。 潘志强
技能成才不悔追求
2011年金秋时节,湖北省襄阳市谷城县紫金镇的初中毕业生潘志强走进了襄阳技师学院,成为中级数控2011-5班的一名学生。入校后不久,他就以全年级第一名的成绩考进了鸿准定向班。在班上,喜欢学习的他不仅是团支部书记,还集学习委员、课代表等多种职务于一身,成为班集体的核心和同学们学习上的表率。2013年9月,他转入高级数控2013-23班学习。
2014年春暖花开的季节,潘志强从100多名报名者中脱颖而出,以第一名的成绩考进了学院技能竞赛班。全班24人中,一半以上是比潘志强高一届的2012级技师班师兄。这个班有一个好听的名字――鱼跃班。这个由全班同学讨论并投票确定的名字,其寓意是“金鳞一跃,志在千里”,表达了同学们的美好愿望和远大志向。
同年6月,临近暑假,学院要抽调3名数控车、2名数控铣选手,利用暑假强化集训,备战全省技能大赛。当时潘志强并非种子选手,班主任秦卫老师已经确定了4名同学入选,只留了1个名额让大家毛遂自荐。在其他同学都积极准备赴烟台参加工学结合活动的时候,潘志强却主动找到老师,要求参加集训队,并得到了老师的首肯。有人说潘志强有点傻,放着暑假出门见世面、挣大钱的机会不去,反而“自投罗网”留下来训练,不仅一分钱挣不到,还要吃苦受累。
工夫不负有心人。在那次全省大赛上,襄阳技师学院取得了数控车第一、三名,数控铣第三、五名的好成绩,学院唯一一个获得第一名的选手就是潘志强。成绩的取得并非偶然。在技能成才的路上,潘志强有着自己的独到见解。他说,在学习技术的时候,理论和实操都重要,光会实操不行,光会理论也不行,要理论和实操融合,全面发展。在2014年全省大赛中,他只比第二名高了1.1分。他的实操得68分,理论得80分;第二名选手的实操得74分,理论得20分。潘志强胜就胜在理论与实操的均衡发展上。潘志强认为,在技能大赛中,心理素质十分重要。若平日有80分的实力,在大赛中能发挥出60分的水平就算不错的了,因为赛场的影响因素很多。要想在大赛中取得好成绩,要有临场不乱、临危不惧的心态。即使出错了,也不能丧失信心,不能太在意一时之得失,要以平常心坚持到最后。
技能雏鹰 蓄势待发
关键词:数控刀具;数控机床;刀具系统;设计优化
中图分类号:TG659 文献标识码:A 文章编号:1009-2374(2013)07-
加强刀具选择与优化刀具系统设计,将有助于降低企业刀具使用成本投入,更有利于提高数控机床生产效率。本文将简要阐述加强数控刀具管理、促进数控机床增效,并就数控机床,深入探讨数控车刀选择与优化刀具系统设计。
1 数控刀具的分类
1.1 根据数控刀具结构分类
就数控刀具结构而言,其可被简单划分为整体式、镶嵌式及减振式三大类。就镶嵌式数控刀具而言,其可被划分为机夹式及焊接式两类。就机夹式数控刀具刀体结构而言,其又可被划分为不转位及可转位两类。减振式数控刀具的适用情况:若刀具工作臂长,直径的比值过大,则往往使用减振式数控刀具以减少刀具振动,提高数控产品加工精度。
1.2 根据数控刀具制作材料分类
就数控刀具制作材料而言,其可被简单划分为高速钢刀具及硬质合金刀具、金刚石刀具三大类。通常情况下,高速钢属型坯材料,相对于硬质合金,高速钢的韧性更好,而其耐磨性、硬度及红硬性更差,因此高速钢刀具不适合用于高速切削及高硬度材料切削。相对于高速钢刀具及金刚石刀具,硬质合金刀具的切削性能更高,其在数控车削领域得到了广泛的应用。硬质合金刀片已经出现了标准规格系列产品,其具体切削性能及技术参数主要为其生产厂家提供。金刚石类刀具在难加工、高强度、高硬度、有色金属切削加工行业的应用较为普遍。
1.3 根据切削工序分类
就切削工序而言,数控车削刀具分为内孔、外圆、内螺纹、外螺纹及切槽、切端面环槽、切端面、切断等。数控车床机夹可转位刀具一般属标准规格,机夹可转位刀具的刀体及刀片均属标准规格,刀片材料以涂层硬质合金、硬质合金及高速钢为主。数控车床机夹可转位刀具类型以外圆刀具、内圆刀具、外螺纹刀具、内螺纹刀具、孔加工刀具(包括镗刀、中心孔钻头、丝锥等)切断刀具为主。机夹可转位刀具加固不重磨刀片常用结构有螺钉、杠销、螺钉压板、楔块等。就切削方式而言,数控车床所用刀具可分为圆表面切削刀具、中心孔类刀具、端面切削刀具。
2 数控加工刀具特点
2.1 刀具或刀片的经济寿命指标及耐用度的合理性
现阶段,数控加工刀具生产过程中,刀具质量测量的依据为刀具耐用度。切削刀具批量生产时,各刀具工件材质及材料间均或多或少地存在某些差异,原因是切削刀具生产将不可避免地受到某些客观因素的影响,如刃磨质量,所以,同一生产环境下生产的切削刀具,其耐用度也将不尽相同。就数控方面而言,刀具耐用度平均指标及其可靠指标Tp均应具备齐全。通常情况下,刀具标准可靠度不宜低于0.9。
2.2 刀片或刀具方便切削控制
因数控机床的各设备均存在多个刀具,且切削量相当大,则切削塑性金属过程中,必须确保刀具未被切屑缠绕及工艺和工件装备均应控制其切削不随意喷溅,以确保切削操作人员的安全及零件输送与定位,且避免其影响到切削液喷注施工质量,所以,在切削作业时做好使用振动切削、断屑块刀具等,以提高断削效果。
2.3 刀片或刀具切削参数及几何参数的典型化及规划化
数控刀具的精度应该得到切实的保证,数控刀具精度主要是指刀具形状精度、刀柄及刀片对数控机床主轴相对位置精度、刀柄及刀片拆装及转位重复精度。数控刀具切削部分几何尺寸变化幅度应该被控制在一定的范围内,不宜过大。此外,刀体刀片及刀杆反复装卸精度的稳定性应该得到控制。
2.4 优化刀柄及刀片自动换刀及定位基准系统
数控刀具更换的自动化及快速性要求刀柄及刀片高度的规格化、通用化及系列化,且刀具应该具备调整及控制尺寸的功能或自动补偿刀具磨损的装置,以加快刀具换刀调整速度。
3 刀具选择
3.1 数控刀具型号
国内外刀具厂商统一标准为ISO。若编号不同,其代表的刀具参数亦不同,则数控刀具选择时,应以其具体几何参数为参考依据。
3.2 刀片形状选择
3.2.1 数控车刀片形状主要由加工部位形状所决定,且其也为刀具选择的重要参考依据之一。数控车刀片形状主要包括刀尖角、刀具主偏角、刀具有效刃数等,通常情况下,刀尖强度随着刀尖角的增大而逐渐增强,若刀尖角小,其也不会对任何方面造成干涉。针对刀尖角小的刀具,其最佳使用范围为复杂型面,即沟槽或下坡型面开挖。表1列出了刀片形状选择所涉及的相关内容:
3.2.2 刀片类型。刀片类型主要是指刀具是否存在中心孔或断屑槽,选定刀体之后,可用刀片可适当确定为一类或几类。通常情况下,A、G、N等正反面均设置有刀刃的类型更容易被选中,理由是这三类刀片类型有助于刀片利用率的提高。
3.2.3 刀尖半径。刀尖圆弧半径事关数控刀具切削效率、被加工工件精度及其表面粗糙度等。就刀尖最大进给量与其圆弧半径间的关系而言,最大进给量应该≤80%刀尖圆弧半径,不然,其势必会导致刀具切削条件恶化或出现打刀及螺纹状问题。所以,在选择刀具时,一定要确保刀具的刀尖圆弧半径应该≥1.25倍最大进给量。
3.2.4 就小余量而言,若车削为小进给量,则其刀尖圆弧半径也应该足够小;若车削为大进给量,则其刀尖圆弧半径应该足够大。通常情况下,就精加工而言,刀具刀尖圆弧半径被设定为0.2、0.4或0.8;就半精加工而言,刀具刀尖圆弧半径被设定为0.4、0.8或1.2;就粗加工而言,刀具刀尖圆弧半径被设定为0.8、1.2、1.6或2.4。
3.3 车刀类型选择
3.3.1 选择刀具时,其要求刀具强度应该达到一定标准,且严禁与工件间发生冲突。就刀具刀杆头部形式而言,其应该以直头及主偏角为主要指标。偏头形式多样,则在刀具使用过程中,应该协调好刀片类型与工件形状间的关系。
3.3.2 选择车刀类型时,应该以刀具主偏角为依据。通常情况下,若工件存在直角台阶,其刀杆主偏角应该≥90°。就粗车而言,工件刀杆主偏角应为45°~90°;就精车而言,工件刀杆主偏角应为45°~75°。若工艺系统刚度足够,则工件主偏角应该足够小;若工艺系统刚度较弱,则工件主偏角应该足够大。
3.3.3 选择刀片卡紧方式。目前,刀具刀片卡紧方式主要分为C、D、M、P、S,具体选择何种刀片卡紧方式应以刀片形状及切削强度为参考依据。
3.4 刀杆尺寸选择
3.4.1 刀杆基本尺寸包括刀杆长度及宽度、刀尖高度,就标准系统尺寸内,刀杆长度、宽度及高度间均为一一对应的关系。刀杆尺寸应该与机床匹配,且
刀尖高度应该在刀夹及刀垫的协助下方能与机床匹配。
3.4.2 刀杆长度确定依据应为夹持悬伸量及长度。就外圆刀杆而言,通常情况下,其悬伸量应为1.5倍刀尖高度。此外,刀具加工部位位置及孔深应由内孔刀悬伸量为参考依据。
4 刀具系统的设计优化
4.1 工位刀具系统
就工位刀具系统而言,应该尤其关注机床与卡具、工件与刀具间的碰撞及干涉问题,其主要表现为:
4.1.1 若刀具安装方向为径向,其长度如果过长,则势必会导致机床内壁与刀具于刀位转换过程中发生碰撞现象。
4.1.2 若刀具处于邻刀位位置,则其对工件的干涉将发生在大直径带小孔工件加工过程中,尤其是在孔加工刀具时,此种干涉现象尤其普遍。此外,刀具与卡具间相互干涉现象也易发生于小直径内孔加工过程中,若工件直径较大,则加工部位与中心位置间的间距应该足够大。
4.1.3 刀具系统调试过程中,如果机床内壁与刀具间相互干涉与否不能被准确判定,则应该合理绘制刀具干涉图。因刀架工位数量较多,则刀夹相邻角度会相应变小,并最终致使无干涉区范围缩小。若加工工件直径较大,则其无干涉区应该相应扩大,这样便可有效改变装刀位置及减小刀具长度,例如尽量隔开孔加工刀具等。
4.2 刀架最大转动惯量
就刀架最大转动惯量而言,若刀夹重量较大、镗杆直径加大及其长度过长,则应该精确计算出刀架转动惯量,以确保最大转动惯量被控制在允许值范围内。
5 结语
数控加工刀具可简单划分为两大类,即模块化刀具及常规刀具。模块化刀具是数控加工刀具未来的发展方向,相对于常规刀具,模块化刀具具备众多独特的优势,即换刀停机时间相对缩短,从而实现了数控生产加工效率的提高;换刀速度相对加快及刀具安装时间大大缩短,从而实现了小批量数控产品生产经济性的提高;刀具合理化及标准化程度相对更高;刀具管理水平及数控柔性加工水平等相对更高;刀具的利用率得到了扩大,且刀具的性能实现了最大化发挥;刀具测量工作中断现象被消除,从而实现了线外预调的目的。
综上,刀具选择及刀具系统设计优化过程中,应该综合考虑刀具使用数量的减少、刀具使用成本的降低、工件产品加工质量及效率的提高等,并基于分析的基础上,选择高层次刀具等。
参考文献
[1] 关芳芳,汪木兰,袁勤,等.数控机床和金属切削原理与刀具课程内容整合与教学改革[J].中国现代教育装备,2010,(13):15-17.
[2] 赵晖,闫献国,陈峙,等.基于工件加工工艺特征的数控刀具选配系统[J].组合机床与自动化加工技术,2010,(4):100-102、105.
[3] 李后上,康敏,傅秀清,等.应用RFID的数控刀具识别系统设计与实现[J].现代制造工程,2011,(5):49-52.
【关键词】数控车床 钻孔夹具 弹簧夹筒
中图分类号:TG751.2 文献标识码:A 文章编号:1009―914X(2013)35―365―01
前言:
在普通车床上加工套类零件需要钻孔时,通常是将钻头直接套在尾座套筒上,或附加变径套或采用钻夹头等装夹进行钻孔,工人的劳动强度比较大,生产效率比较低。随着数控技术的发展,如今数控车床被广泛应用,我国在20 世纪七八十年代开始大力推广,尤其是适合我国国情的经济型数控系统,开始在机械制造等多个领域使用,但多数经济型数控车床,其尾座不能自动控制运动,钻孔操作跟普通车床一样,如广州数控设备厂生产的CSK6140-T 型数控车床。这样,在中、小批量生产套类零件时,其生产效率相对低下,工人的劳动强度大,加工质量难以保证。本文就上述情况考虑,自行设计一种专用夹具,此类问题就能迎刃而解。
一、夹具设计的思路启发
在数控车床的刀架上装上车刀后,可以通过数控系统里的加工程序控制车刀的运动轨迹,加工出外圆、槽和螺纹等等。同理,我们可以把钻头装在刀架上,通过加工程序控制钻头的运动进行钻孔。但是钻头的装夹部分有直柄和锥柄,这两种柄部都不能直接装在刀架上,为此,我设计了自动钻孔夹具。钻头或铰刀等刀具安装在车床的刀架上,问题就迎刃而解了。
二、拟定夹具的结构方案
刀具(钻头)的定位方案、定位方法和定位元件为了便于专业化生产,钻头的结构、尺寸已标准化和系列化。为方便安装使用,通常直径小于16mm 的钻头做成直柄,直径大于16mm 的钻头做成锥柄。这里所介绍的是直柄钻头的结构特征,应当选择的是外圆柱表面为定位基准,采用定心夹紧装置为定位元件,刀具(钻头)的夹紧方案、夹紧方法和夹紧装置根据钻头在加工中的使用特点,钻头的轴线必须与被加工孔的旋转轴线重合。根据数控机床对夹具要求,即应具有可靠的夹紧力,具有较高的定位精度,具有较强的刚性,结构尽量简单,以便于装卸(钻头)和夹具在机床上的安装,可采用已标准化的弹簧夹筒,即采用普通铣床上的铣刀弹簧夹筒,这样可以满足设计夹具(刀夹)要求,适应不同尺寸规格的直柄钻头。该装置是利用弹簧夹筒的弹性变形将钻头定心并夹紧的(这只是作为过渡装置用),弹簧夹筒如图1 所示。
图1 弹簧夹筒
三、夹具的设计
确定弹簧夹筒钻孔夹具的结构弹簧夹筒是该夹具中的主要元件,根据其构造特点,选择弹簧夹筒7∶24 的外圆锥表面为定位基准,夹具采用7∶24 的内圆锥表面作为定位元件。经济型数控车床的刀架采用的是一种简单的四工位自动换刀设备,只能安装普通方形刀把,不能安装回转体刀柄的刀具,所以该夹具外形应做成方形,依该数控车床四工位刀架安装刀具刀杆尺寸为25X25mm,并要求使麻花钻要安装在夹具上与主轴回转中心等高。该夹具为带有锥孔和凸出边缘的方块。厚度为23mm、宽度为25mm 的凸出边缘为装夹部分,A 面与B 面分别为定位面。带有锥孔部分是用来安装弹簧夹筒并带有钻头。在弹簧夹筒刀柄槽滑过防转销,为了避免弹簧夹筒在使用过程中,圆锥小端与夹具内圆锥孔小端发生不正常的干涉,可在内圆锥孔与内圆柱孔之间加段过渡槽。如图2所示。
图2 自动钻孔刀夹设计
夹具体材料为45# 钢,并进行调质处理,硬度为HBS280 左右,其目的是为了保证夹具体有足够的强度和硬度,经多次使用后仍有较高的尺寸精度和形位精度。
四、夹具加工的制作
在夹具设计的过程中要解决技术问题:是在制作过程中怎样保证自动钻孔夹具的锥孔与数控车床主轴同轴。自动钻孔夹具的外部形状可以在铣床上加工。而加工孔与锥孔时要使用四爪卡盘数控车床,用四爪卡盘夹住自动钻孔夹具,找正自动钻孔夹具孔轴心线与数控车床主轴轴心线的重合(可用百分表校正)。其工序为:先用φ12钻头钻穿钻孔夹具,再用φ21钻头扩孔,深度为108mm,最后用镗刀镗出内孔(内圆锥孔)。
五、夹具的使用说明
本夹具适用于无尾座运动控制功能的经济型数控车床,如CSK6140-T 型;适用于孔径小于16mm 的钻孔、扩孔和铰孔等场合。采用不同直径的钻头钻孔、扩孔等操作,要相应地选择不同规格的弹簧夹筒。
1、夹具工作原理
当转动螺钉1 时,使得弹簧夹筒2向右移动,在夹具体3 内圆锥表面的作用力下,弹簧夹筒的锥体部分收缩,最终使得钻头定心夹紧。(如图3、4所示)
图3 夹具、刀具装配1 图4 夹具、刀具装配图2
2、保证自动钻孔夹具的锥孔与数控车床主轴同轴
钻头在垂直方向上的中心高,由夹具的本身结构尺寸保证,为了方便对刀和检验夹具的锥孔是否和车床主轴同轴,我自制了辅助件1、辅助件2。其其使用过程为:将辅助件1安装在卡盘上(安装时要校正);将辅助件2安装在钻孔夹具,并安装于刀架上。手动移动数控车床的X轴和Z轴,使辅助件1与辅助件2两尖端重合(如辅助件2尖端低,还可以加辅助刀垫)。这样就可以保证自动钻孔夹具的锥孔与数控车床主轴同轴。
图5 检查刀夹与车床同轴度
3、使用自动钻孔夹具钻孔时对刀
X轴:当辅助件1与辅助件2两尖端重合(如图5所示),可以保证X方向对准工件中心,在录入方式输入G50,X0;然后在刀补输入X=0。
关键词:数控铣床;数控刀具;刀具材料;零件质量
“三分加工,七分刀具”这是对普通加工的真实写照,其实,对于数控加工而言,刀具的作用更胜于普通加工,尤其在刀具方面更是数控加工所独有。下面从刀具的材料要求和刀具选择两个方面对刀具在数控加工中的重要作一下探究。
一、铣床刀具材料
金属在切削过程中,刀具切削部分是在较大的切削压力、较高的切削温度级剧烈摩擦条件下工作的。在切削余量不均匀级断续加工时,刀具受到很大的冲击和振动,因此,刀具切削部分材料应具备如下性能:
1.高硬度。硬度是刀具材料最基本的性能,其硬度必须高于工件材料的硬度,方能将工件上多余的金属切削掉。
2.高耐磨性。高耐磨性是刀具抵抗磨损的能力,在剧烈的摩擦下刀具磨损要小高耐磨性一方面取决于它的硬度;另一方面与它的化学成分、纤维组织有关。材料硬度越高,耐磨性越好;含有耐磨的合金化合物越多,晶粒越细,分布均匀则耐磨性越好。
3.足够的强度和韧度。切削时刀具要能承受各种压力与冲击。一般用抗弯强度和冲击来衡量材料强度与韧度的高低。
4.高耐热性与化学稳定性。高耐热性,是指刀具在高温下仍能保持原有的硬度,强度,韧度还耐磨性能。化学稳定性,是指高温下不易与加工材料或周围介质发生化学反应的能力,包括抗氧化能力和粘结能力。化学稳定性越高,刀具磨损越慢,加工表面质量越好。
二、铣床刀具的选择
1.常用刀具的种类
数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。
(1)根据刀具结构可分为:
整体式; 镶嵌式,采用焊接或机夹式联接,机夹式又可分为不转位和可转位两种;特殊型式,如复合式刀具、减震式刀具等。
(2)根据制造刀具所用的材料可分为:
高速钢刀具; 硬质合金刀具; 金刚石刀具; 其他材料刀具,如立方氮化硼刀具、陶瓷刀具等。
(3)从切削工艺上可分为:
车削刀具,分外圆、内孔、螺纹、切割刀具等多种; 钻削刀具,包括钻头、铰刀、丝锥等; 镗削刀具; 铣削刀具等。
为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。
2.刀具的选择
刀具的选择是在数控编程的人机交互状态下进行的。应铣床刀具的选择分铣刀直径选择和铣刀齿数选择。铣刀直径的选择:一般尽可能选用小直径规格的铣刀,因为铣刀直径大,切削力矩增大,易造成切削振动,而且铣刀的切入长度增加,使铣削效率下降。当然,也不尽然,当铣刀的刚性较差,则应按加工情况尽可能选用较大直径的铣刀,以增加铣刀的刚性。
选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。
在经济型数控机床的加工过程中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工步骤;③粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;④先铣后钻 ;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。
因此刀具选用时应该符合下列原则:
(1)平面铣削应选用不重磨硬质合金端铣刀或立铣刀。一般采用二次走刀,第一次走刀最好用端铣刀粗铣,沿工件表面连续走刀。
注意选好每次走刀宽度和铣刀直径,使接刀刀痕不影响精切走刀精度。因此加工余量大又不均匀时,铣刀直径要选小些。精加工时铣刀直径要选大些,最好能包容加工面的整个宽度。
(2)立铣刀和镶硬质合金刀片的端铣刀主要用于加工凸台、凹槽和箱口面。
为了提高槽宽的加工精度,减少铣刀的种类,加工时可采用直径比槽宽小的铣刀,先铣槽的中间部分,然后用刀具半径补偿功能铣槽的两边。
(3)铣削平面零件的周边轮廓一般采用立铣刀。
(4)加工型面零件和变斜角轮廓外形时常采用球头刀、环形刀、鼓形刀和锥形刀等。
参考文献:
[1] 杨建明.数控加工工艺学与编程.北京:大学出版社,2006
[2] 华茂发.数控机床加工工艺.北京: 机械工业出版社.2004.
[3] 邓广敏. 加工中心操作工.北京.化学工业出版社.2005
关键词:数控加工;对刀点;刀位点;换刀点;设置;效率
数控加工中的工艺设计是十分重要的环节。它关系到所编制零件加工程序的正确性与合理性。由于数控加工过程是在加工程序的控制下自动进行的,因此对加工程序的正确性与合理性要求极高,不能有丝毫差错,否则加工不出合格零件。正因为如此,在编写程序前,编程人员必须对加工过程、工艺路线、刀具、切削用量等进行正确、合理的确定和选择。数控机床与普通机床的工艺处理虽然基本相同,但又有其特点。一般说来,数控加工的工序内容要比普通机床加工内容复杂。从编程来看,加工程序的编制要比普通机床编制工艺过程复杂。因为有较多的本来可由操作者灵活掌握随时调整的事情,在数控加工中都变成了必须事先选定和安排好的事情,这样才能保证加工的正确性。数控编程中的工艺处理主要包括数控加工的合理性分析、零件的工艺性分析、工艺过程和工艺路线的确定、零件安装方法的确定、选择刀具和确定切削用量等。
其中在编制程序时,如何正确地选择“对刀点”、“刀位点”和“换刀点”的位置尤为重要。
一 “对刀点”概念与设置
对刀点是指程序起点处刀具位置点。刀具究竟从什么位置开始移动到指定的位置呢? 所以在程序执行的一开始,必须确定刀具在工件坐标系下开始运动的位置,这一位置即为程序执行时刀具相对于工件运动的起点,所以称程序起始点或起刀点。此起始点一般通过对刀来确定,所以,该点又称对刀点。
对刀的目的是确定编程原点在机床坐标中的位置。对刀点可以选择在零件上的某一点,也可以选择在零件外(如夹具或机床上)的某一点,应选择在机床上容易找正,加工中便于检查,编程时便于数值计算的地方。所选择的对刀点必须与零件的定位基准有一定的坐标尺寸关系,如图1-1所示。当对刀精度要求较高时,对刀点应尽量选在零件的设计基准或工艺基准上。例如以孔定位的零件,选用孔的中心作为对刀点较合适。在利用相对坐标系编程的数控机床上,对刀点可选在零件中心孔上或垂直平面的交线上。在绝对坐标系编程的数控机床上,对刀点可选在机床坐标系的原点或距原点为确定值的点上。在安装零件时,零件坐标系与机床坐标系要有确定的尺寸关系。
在编制程序时,要正确选择对刀点的位置。对刀点设置原则是:便于数值处理和简化程序编制。易于找正并在加工过程中便于检查;引起的加工误差小。对刀点可以设置在加工零件上,也可以设置在夹具上或机床上,为了提高零件的加工精度,对刀点应尽量设置在零件的设计基准或工艺基谁上。实际操作机床时,可通过手工对刀操作把刀具的刀位点放到对刀点上,即“刀位点”与“对刀点”的重合。
二 刀位点概念
所谓 “刀位点”是指刀具的定位基准点,车刀的刀位点为刀尖或刀尖圆弧中心。平底立铣刀是刀具轴线与刀具底面的交点;球头铣刀是球头的球心,钻头是钻尖等。用手动对刀操作,对刀精度较低,且效率低。而有些工厂采用光学对刀镜、对刀仪、自动对刀装置等,以减少对刀时间,提高对刀精度。加工过程中需要换刀时,应规定换刀点。所谓“换刀点”是指刀架转动换刀时的位置,换刀点应设在工件或夹具的外部,以换刀时不碰工件及其它部件为准,如图1-2所示。
三 换刀点的概念与设置
换刀点是指加工过程中需要换刀时刀具的相对位置点。带有多刀加工的数控机床,在加工过程中如需换刀,编程时要设置一个换刀点。换刀点是转换刀位置的基准点。换刀点应选在零件的外部,如图1-1所示,以避免加工过程中换刀时划伤工件或夹具。
特别是数控车加工过程中更换刀具是自动完成的,如果每次都返回机床参考点换刀,不仅会增加空行程的时间,而且还会增大机床的磨损,因此需要设置一个刀架换刀的位置,并将该位置称作换刀点。换刀点应选在最安全的位置,即换刀时刀架或刀盘上的任何刀具不能与工件发生碰撞的位置。数控车削加工程序中自动换刀采用刀具功能指令Txxxx,而且要使刀架先回到换刀点,然后再换刀。
四 研究结论
1 对刀点应选择在机床上容易找正,加工中便于检查,编程时便于数值计算的地方。所选择的对刀点必须与零件的定位基准有一定的坐标尺寸关系,在实际操作机床时,可通过手工对刀操作把刀具的刀位点放到对刀点上,即“刀位点”与“对刀点”的重合。
2 换刀点应选在零件的外部最安全的位置,即换刀时刀架或刀盘上的任何刀具不能与工件发生碰撞的位置,同时在可能的情况下应尽可能的靠近工件以保证加工效率。
3 实际加工中还应根据工件的批量及机床的情况等等来综合考虑“对刀点”、“刀位点”和“换刀点”的位置的选择,切忌不可盲目的教条主义。■
参考文献
[1] 魏杰《数控机床编程与操作》电子工业出版社2012-07