首页 > 文章中心 > 电源开关

电源开关

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电源开关范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

电源开关

电源开关范文第1篇

1、按用途分类:波动开关,波段开关,录放开关,电源开关,预选开关,限位开关,控制开关,转换开关,隔离开关,行程开关,墙壁开关,智能防火开关等。

2、按结构分类:微动开关,船型开关,钮子开关,拨动开关,按钮开关,按键开关,薄膜开关,智能防火开关,更安全的钢架开关等。

3、按开关数分类:单控开关、双控开关、多控开关、调光开关、调速开关、门铃开关、感应开关、触摸开关、遥控开关、智能开关、插卡取电开关、浴霸专用开关、网络开关。

(来源:文章屋网 )

电源开关范文第2篇

(淮安信息职业技术学院,江苏 淮安 223003)

【摘要】在微控制器中嵌入TCP/IP协议,并利用HTTP协议实现嵌入式WEB服务器,计算机可通过WEB服务器实现对电源开关的远程控制功能。根据功能需求,给出系统设计方案。

关键词 微控制器;以太网;TCP/IP协议;嵌入式WEB服务器

基金项目:江苏省淮安市科技支撑计划(工业)专项基金项目(HAG2012056)。

作者简介:索明何(1979—),男,山东淄博人,淮安信息职业技术学院,讲师、工程师,研究方向为嵌入式系统与物联网技术。

宋刚永(1980—),男,江苏宿迁人,淮安信息职业技术学院,讲师、工程师,研究方向为电子技术及应用。

0引言

在许多用电场所包括工业用电及生活用电,电源的通与断都需要人工操作,这会带来许多不便,并且有时在无人管理的情况下会造成电能的超级浪费甚至会带来危险因素。在此提出一种解决方案——基于嵌入式WEB服务器的远程电源开关设计。

1系统硬件设计方案

远程电源开关的总体结构框架如图1所示。由微控制器、以太网接口模块和控制模块三大部分组成。

其中,为使电源控制开关接入以太网,需通过以太网接口模块将其接入以太网。为了简化电路设计,亦可选择内部集成以太网控制器的微控制器;控制模块可选继电器或可控硅等器件,实现单片机弱电控制用电器强电。

2系统软件设计方案

系统软件设计的核心是嵌入式TCP/IP协议的设计。

2.1嵌入式TCP/IP协议构架

如图2所示,在应用层,主要设计两个应用程序:(1)使用HTTP协议,实现嵌入式WEB服务器,用于计算机与电源开关的远程通信控制。(2)调用Ping命令,测试计算机与远程电源开关之间的连通性。

在传输层,主要使用TCP协议。应用层的HTTP协议封装成TCP协议的格式。

在网络层,使用IP协议和ICMP协议。其中,传输层的TCP协议和UDP协议以及本层的ICMP协议都要封装成IP协议格式进行传输。

在网络层及以上各层,使用的是32位的IP地址,而数据链路层使用的是48位的MAC地址,因此使用了ARP协议。

要实现远程开关接入以太网,还需要以太网控制器的驱动程序设计,主要完成以太网控制器的的初始化和读写程序。

2.2嵌入式WEB服务器的设计

一个 WEB 服务器也称为 HTTP 服务器,它通过 HTTP 协议与客户端通信。这个客户端通常指的是 WEB 浏览器。HTTP 是一种让 WEB 服务器与浏览器(客户端)通过Internet 发送与接收数据的协议。它是一个请求、响应协议——客户端发出一个请求,服务器响应这个请求。HTTP 运用可靠的TCP连接,通常用的TCP 80端口。

从功能上来讲,WEB服务器监听用户端的服务请求,根据用户请求的类型提供相应的服务,用户端使用WEB浏览器和WEB服务器进行通信。用户请求有两种:GET请求和POST请求。WEB服务器在接收到用户端的请求后,处理用户请求并返回需要的数据。在 HTTP 中,客户端总是通过建立一个连接与发送一个 HTTP 请求来发起一个事务。服务器不能主动去与客户端联系,也不能给客户端发出一个回叫连接。客户端与服务器端都可以提前中断一个连接。

嵌入式WEB服务器的设计流程如图3所示。

3结束语

本系统设计方案,遵循了节约能源的原则且自身造价低,因此具有广阔的应用前景及巨大的市场潜力,可广泛应用于智能小区、学校、公司等多种场合,并易于推广,有极好的实际意义及较高的社会价值。

参考文献

[1]索明何.基于Internet的嵌入式远程控制开关设计与实现[J].科技信息,2010(35).

电源开关范文第3篇

关键词:通信电源开关技术

引言

通信电源是通信行业的动力,在电信网络中发挥着不可替代的作用,具有无可比拟的重要基础地位。通信电源又是通信设备系统的心脏,即使是瞬间的中断也是不允许的,因为通信电源系统发生直流供电中断故障是灾难性的,往往会造成整个通信局(站)和通信网络的全部中断和瘫痪。通信电源是电信网络中不可缺少的重要组成部分,是一个完整、规模日趋庞大和复杂的交换、传输、数据、信息、业务、智能等通信网的基石和后台保障,因此通信电源直接关系到整个网络的稳定、可靠和畅通,而开关电源因效率高、体积小、重量轻等优点被大量运用在通信设备供电中。

一、开关电源占据通信电源的主导地位

通信直流稳压电源按照其实现直流稳压方法的不同,可分为:线性电源、相控电源和开关电源三种。

1.1线性电源是通过串联调整管来连续控制,其功率调整管总是工作在放大区。由于调整管上功率损耗很大,造成电源效率较低,只有20~40%,发热损耗严重,安装有体积很大的散热器,因而功率体积系数只有20~30W/dm3。因此线性电源主要用于小功率、对稳压精度要求很高的场合,如通信设备内部电路的辅助电源等。

1.2相控电源是将市电直接经整流滤波后提供直流,通过改变晶闸管的导通相位来控制直流电压。由于相控电源的工作频率低,工频变压器的体积和噪声大,造成对电网干扰和负载变化的响应慢,设备笨重,且危害维护人员的身体健康。另外,其功率因数较低,只有0.6~0.7,严重污染电力电网,效率较低,只有60~80%,造成能源的极大浪费。因此传统的相控电源已逐渐被淘汰。

1.3开关电源的功率调整管工作在开关状态,主要的优点在"高频"上。其工作频率高,大都在40kHz以上,无烦人的噪声。体积小,重量轻,适用于分散供电,可与通信设备放在同一机房。效率高,大于90%,在当前能源比较紧张的情况下,能够在节能上做出很大的贡献。功率因数高,大于0.92,当采用有效的功率因数校正电路时,功率因数可接近于1,且对公共电网基本上无污染。模块化的设计,可实行N+1配置,可靠性高。维护方便,可在运行中更换模块,而不影响系统供电,扩容方便、分段投资,可在初建时,预留终期模块的机架,随时扩容。调试方便,内设模拟测试电路,无需另配假负载。具有监控功能,并配有标准通信接口,可实现集中监控,无人值守。

二、开关电源的关键技术

开关电源中具有技术突破主要有体现在以下四个方面:

2.1均流技术

大功率电源系统需要用若干台开关电源并联,以满足负载功率的要求,另外通信电源必须通过并联技术来实现模块备份,以提高电源系统的可靠性。因此并联技术在供电系统中必不可少,而并联运行的整流模块间需要采用均流措施,它是实现大功率电源系统的关键,用以保证模块间电流应力和热应力的均匀分配,防止一台或多台模块运行在限流或满载状态,同时延长电源系统的寿命和平均无故障时间。

2.2软开关技术

DC-DC变换器是开关电源的主要组成部分,因此功率变换技术一直受到全世界电力电子学科和行业研究的关注。而如何降低开关损耗,提高开关电源的频率和开关电源的系统效率,代表了开关电源的发展趋势。在经过了硬开关PWM(或PFM)技术和硬开关加吸收网络技术后,软开关技术得到了广泛应用。这样能够极大地降低开关损耗,减小功率器件电和热应力,改善器件工作环境,降低电磁干扰,提高功率密度等,为开关电源实现高效、节能、体积小、重量轻和高可靠性的要求做出了贡献。软开关技术有:谐振技术、准谐振技术、PWM和准谐振相结合的技术。

2.3功率因数校正技术

功率因数校正技术有:采用三相三线制整流,即无中线整流方式,可使谐波含量大大降低,功率因数可达0.86以上;采用无源功率因数校正技术,即在三相三线整流方式下加入一定的电感,可使功率因数达0.93以上,谐波含量降到10%以下;采用有源功率因数校正技术,即在输入整流部分加入一级功率处理电路,使无功功率几乎为0,功率因数可达0.99以上,谐波含量降到5%以下。

2.4智能化监控技术

开关电源大量应用控制技术、计算机技术,进行各种异常保护、信号检测、电池自动管理等,实时监视通信电源设备运行状态,记录和处理有关数据,及时发现故障,以先进的、集中的、自动化的维护管理方式来管理通信电源设备,从而提高供电系统的可靠性。智能化监控技术的应用,使得维护人员面对的不再是复杂的器件和电路,而是一个人机表达和交流的信息,大大改进了维护管理方式。

三、开关电源的发展

开关电源在发展,今后仍要不断提高开关电源和供电系统的高新技术含量,以支撑高速发展的现代化通信网络的建设和运行维护管理为主导方向,以高可靠性、高稳定性和可维护性为最终目的。具体有以下几个方面:

3.1小型化

随着通信设备日益集成化、小型化和分散化的发展,以及势在必行的分散供电的广泛应用,要求开关电源也相应小型化,而开关电源工作频率高频化和控制电路集成化,使开关电源的小型化成为可能。特别是随着小型化开关电源的市场迅速扩大,如接入网、数据产品、移动基站、无线市话等,一些小功率模块插件形式的开关电源将应运而生,大有蓬勃发展之势。如中兴通讯的ZXDU45嵌入式电源,在结构上采用标准的19英寸插框设计,高度为4U,功能齐全,使用起来极为安全方便。

3.2高智能化

随着开关电源在通信领域多方面的广泛使用,而维护人员又不是专业电源维护人员,只有借助其智能化,对电源设备的运行状态自动检测,对电源故障及时发现、诊断和处理。这就要求智能化在原有监控功能的基础上,增加诊断功能,即故障诊断专家系统,以指导维护人员处理问题,加快故障诊断和检修过程。

3.3电池管理

电池在通信电源系统中的重要性,要求开关电源应具备完善的电池管理功能,充分考虑到电池对管理的需求,全方位地管理电池。也就是说,我们不能满足于对电池的均/浮充、温度补偿、电池保护等方面的管理,还要在电池的充/放电曲线、容量测试、容量恢复等方面进行高层次的管理。

电源开关范文第4篇

关键词:彩电;开关电源;电路

中图分类号:G712 文献标志码:A 文章编号:1674-9324(2013)22-0190-02

在彩色电视机中,开关电源是整机工作的能量供给中心,是彩电核心的电路,对于一个无线电技术人员或维修人员来说,怎样才能尽快看懂开关电源电路图并在维修中加以利用呢?这确实是个是非重要的问题。因为许多的初学者(学生)一接触开关电源,特别是知道开关电源里面有高电压,大电流,维修时就被吓的不知从何下手,甚至根本不敢动手。也有的学生因学习方法不对,走了不少弯路,浪费了不少宝贵时间。确实,要真正看懂开关电源的电路图不是一朝一夕就能办到的,因为开关电源毕竟比传统的串联稳压电源要复杂得多,但读懂彩电开关电源也不是高不可攀的,只要有一定的无线电基础知识,加之有一套合适的学习方法,持之以恒,经过一定时间的努力,是完全可以学懂彩电开关电源的,那么如何掌握开关电源,看懂开关电源的电路图呢?笔者觉得可以从下述几个方面入手来识读开关电源。

一、弄清开关电源的结构,查找出开关电源的组成电路

不管开关电源如何复杂,按照其激励方式可以分为自激式和他激式两种类型,由于自激式开关电源应用广泛,他激式开关电源应用较少,因此本文主要讨论自激式开关电源的识读技巧。一般地,自激式开关稳压电源电路由整流、滤波、消磁和抗干扰电路,开关管和开关变压器,启动电路和正反馈电路,稳压电路、保护电路、遥控/开关机电路组成,所以,分析开关电源时,首先根据开关电源类型定义,弄懂开关电源的结构型式。是串联型还是并联型,是调频式还是调宽式,是他激式还是自激式,然后再从图中一步一步找出上述开关电源组成电路的元件,在识读电路时,可根据下述思路进行。

1.消磁和抗干扰电路是开关电源最前级电路,顺着电源开关和保险管,能很快地查找到。

2.整流和滤波电路:消磁和抗干扰电路后,电路图上排列整齐的四个二极管便是桥式整流的鲜明特征,滤波电容直接接在二极管的输出端,400V的耐压也使学生能顺利找到。

3.找准开关变压器和开关管,开关管一般和开关变压器连在一起,经开关变压器的储能绕组,接到300V电源上(即滤波电容的正极),依据这两点,就能找到开关管。

4.以开关管为核心,寻找启动电路,正反馈电路,稳压电路和保护电路。其依据是:启动电路是为开关管提供基极电压的,通常由三个电阻将300V电源引至开关管的基极;正反馈电路最终要将正反馈信号反馈到开关管的基极,通常是由反馈绕组将反馈电压经振荡电流送至开关管基极;稳压电路要控制输出电压,是通过控制开关管基极电压以控制开关管的导通时间来实现的,保护电路保护动作时,是旁路开关管的基极电压,使开关管截止来实现的。

二、分析振荡原理时,要找准充放电回路

在分析开关电源的振荡原理时,往往有反馈对电容充电和电容放电过程,寻找充放电途径是一个难点,我们可以遵循这种原则。

1.电感对电容充电时,应从电感正端开始,到电感负端为结束,电容放电应从电容正电压处开始到电容负电压处为终点。

2.不管电感对电容充电还是电容放电,其途径应选择阻抗小的电路。

下图为电容充电电路:

电感L1对电容C1充电,其途径是:

电感L1{十}R3C1L1{一}在C1充得上正下负电压。当然L1还有一条途径:由L1{十}R1R2C1R4L1{一}虽然该路径对C1也充电,但电流很小,因此,分析电路但因充电电流小而时常被忽略。

三、稳压分析时,应掌握三极管各极电压变化关系

根据电子技术知识,可以分析得出:

其结论为,射同集反,该结论反映基极电压变化,引起集电极和发射极的电压变化规律。

2.三极管UeUc或UeUc,该结论反映,发射极电压变化,引起的集电极电压变化规律。

四、能正确地分析出开关电源的振荡,稳压保护过程

振荡过程,通过查找出启动电路和正反馈电路,再根据充放电回路的小阻抗路径原则,引导学生分析开关管是如何饱和的,又是怎样截止的;稳压过程,可先假设输出电压是上升或下降的再根据查找出的稳压电路,应用三极管各极电压的变化关系,可很快分析输出电压是如何回到正常值的,保护过程,有过流保护和过压保护,可假设负载有短路或开路,导致电流过大或电压过高,保护电路是如何让开关电源停止工作的。

五、看图应注意的几个问题

上面介绍了识读开关电源的技巧,还要强调读电路图应注意的几个问题。

1.要充分利用图中所给的资料,如元器件的型号,规格(如电容耐压),数据,工作电压,信号波形,测试点,警惕标志等,进一步深入理解电路原理。

2.对主要元器件的作用要清楚,好坏要会判断。看懂电路图的目的无非是两个:一是搞懂工作原理,二是为了对电视机进行维修,只有对电路图中的每个原件的作用清楚,好坏会判断,才能分析出故障的部位并找出损坏的元器件。

3.识读电路原理图时,还要能熟记各种元器件的符号并与实物能相对照。不仅要熟记各种元器件、接插件及连线的符号含义,还要能清楚各元器件的主要性能,特点和用途。只有这样,才能分析电路的原理时,对电路的信号流程和通路能一目了然。

电源开关范文第5篇

【关键词】工作原理分析;常见故障分析;故障检测实例

目前,计算机、DVD、彩电等家用电器电源大部分采用开关电源,这些家用电器出现的电路故障大部分由开关电源损坏引起。笔者长期从事家用电子专业理论与实操教学,对开关电源接触较多,下面以长虹G2136(K)彩电开关电源为例,深入介绍该电源的工作原理和典型故障分析与检修。

一、工作原理分析

电源原理图如图1所示。

1.整流滤波电路

电源设计有两级滤波器。L502、C501、C502组成一级型低通滤波器,防止电网高频干扰进入机内。L503、C507、C518再组成一级低通滤波器,抑制开关电源本身产生的高频干扰信号,防止其串入电网造成干扰。VD501~VD504、C507组成桥式整流滤波电路,C503~C506四个小电容分别并联在四个整流二极管两端,起分流和过滤作用,防止高频浪涌电流损坏二极管。

2.消磁电路

RT501、XC216组成开机消磁电路。开机瞬间,消磁回路电流很大,电流在消磁线圈中产生交变磁场,对显像管屏幕进行消磁。消磁电阻RT501是个正温度系数热敏电阻,因为电流热效应,阻值随温度上升而增大,当温度达到居里点后,电阻值趋向无穷大,这时消磁回路呈开路状态。

3.启动电路

220V交流电经整流滤波后产生约300V直流电压,经T511的绕组③、⑦绕组加到开关管V513集电极。同时300V直流电压经R520、R521、R522、R524加到V513基极,为V513提供基极电流IB,V513具备导通条件,产生集电极电流IC。IC流过T511的③、⑦绕组,因互感效应在反馈绕组产生①为正②为负的感应电动势,感应电动势经反馈支路C514、R519、VD517、R524向开关管V513提供持续的基极电流,使得IB迅速增大,导致IC增大,这一正反馈过程促使V513迅速进入饱和状态,开关电源启动工作。VD517的作用在于加大电源启动时由正反馈绕组提供给V513的基极电流,加快V513进入饱和状态。因为在开机瞬间C517电压不能突变,可保护V513防止大电流冲击损坏,还具有吸收激励尖峰电压的作用。

4.振荡电路

电源启动后,开关管V513进入饱和状态,300V直流电压加在变压器T511的绕组③、⑦上,反馈绕组①、②感应出上正下负电压对电容C514充电,使C514两端产生上负下正的电压,促使C513基极电位下降,开关管V513退出饱和状态,V513集电极电流急剧下降,绕组③、⑦和反馈绕组①、②的电压极性变成上负下正,强烈正反馈过程促使V513基极电位进一步下降,其集电极电流迅速下降,V513迅速从饱和导通状态进入截止状态。这时初级绕组存储的磁能开始通过次级绕组和负载放电。由于V513截止,C514两端电压经VD517R519进行放电,一定时间后,在启动电路作用下,最终使开关管V513再次回到初始状态,开关电源完成了一个周期振荡过程。如此循环工作,电源进入稳定的振荡过程。

5.受控振荡及稳压电路

为了稳定开关电源输出电压,必须使振荡处于受控状态,受控振荡主要靠开关稳压电路中的误差取样电路R561、R562、R563、RP551,误差放大管V553,光耦VD515及V511、V512等组成。通过对130V电压取样误差放大,经过光电耦合器的隔离,由V511、V512管控制电源开关管V513的导通时间长短来实现,实际是通过控制开关电源振荡频率来实现。

6.保护电路

过压保护电路由VD518、VD519、R523、V512组成,当输入电压升高,正反馈电压随着升高,V519反向击穿导通,反馈电压经VD518、VD519、R523给V512提供较大的IB,V512饱和导通后对V513进行分流,迫使其截止,电源处于待机保护状态。

过流保护电路由R526、R515、V512组成,当开关管V513电流过大时,感应电动势上升导致其基极电压升高,因R526、R515串联分压,使V512基极电压上升而进入饱和状态,将V513基极和发射极完全旁路,控制V513在截止状态,开关电源停止工作,实现过流保护。

二、开关电源常见故障分析

1.烧保险丝

产生此故障主要原因是:整流二极管击穿、大滤波电容击穿、开关管击穿、消磁电阻短路、负载短路等导致电路中电流过大,一般通过电阻测量法查出。

2.输出电压全部为0V

输出电压全部为0V时,故障可能在以下电路:启动回路、开/待机控制电路、保护电路、振荡控制电路和整流输出电路等。在检修该类型故障时,本着先易后难逐步深入检测的原则,细心观察电源部分元器件是否有烧毁,变色变味迹象,然后利用万用表检测各关键点、关键元件电压、电流或阻值是否正常。根据检修经验,出现较多故障有:开/待机控制电路不正常;启动回路的电阻烧断;保护或振荡控制电路的三极管损坏;整流滤波电路的保险电阻烧断等。

3.输出电压整体偏低

因有电压输出,所以启动电路、开/待机控制电路基本正常。该类型故障一般由振荡稳压控制电路不正常造成,在检修时,重点检测反馈绕组的反馈回路、光耦控制回路和取样控制回路等部分电路元器件是否有损坏。如电源的稳压二极管、光耦等是最容易损坏的元器件。

4.开关管发热,容易烧坏

产生此类型故障时,开关管通常很快烧坏。在开关电源中,开关管是工作在开关状态,发热量很小,当进入放大状态时产生的热量急剧增大,最终过流或过热损坏。所以针对此故障应重点检测振荡电路。

三、故障检修实例

实例1:

故障现象:开机,工作指示灯不亮,开关电源无电压输出。

分析和检修:先观察开关电源的元器件无烧毁变色变味迹象,接着用万用表测量输出电压全部为0V。本着先易后难的原则,直接测量C507主滤波电容两端电压,发现有约300V,再测量开关管V513的基极无负压,首先检测启动电路。关机,电阻法测量启动电路的各个元件。在测量前,先对主滤波电容进行放电,用自制的灯泡负载对C507进行放电,彻底放完后再检测。发现R521阻值为2M欧姆,已严重变值,按图纸参数更换后,开机,电源输出全部正常,工作一段时间后电压依然保持稳定,故障彻底排除。

实例2:

故障现象:开机,工作指示灯不亮,开关电源无电压输出。

分析和检修:该机是因遭受雷击后才无法工作,先观察开关电源的元器件无烧毁变色变味迹象,测量C507主滤波电容两端有约300V的电压,检测启动电路正常,测量V513基极电压为0V,初步判断故障在振荡控制、稳压控制或者保护电路。断开负载,接上灯泡做负载,通电检测V513基极依然没有负压。断电,电阻法测量V513基极对地阻值为0,存在短路。根据图纸分析可知,重点检测与基极有关的元件,检测振荡和反馈电路的元件正常,当检测V512的C和E极阻值时发现为0,拆下认真检测时果然其C和E极已击穿短路。由于V512的C和E极击穿,造成V513基极电位始终为0V,最终导致开关电源不工作。试用相同参数的三极管更换,开机,电源指示灯亮,开关电源输出正常,故障排除。

实例3:

故障现象:开机,电源瞬间有微弱电压输出,但立即变为0V。

分析和检修:先观察开关电源的元器件无烧毁变色变味迹象,接着用万用表监测输出电压,开关接通一瞬间有电压输出,还没来得及看大小立即变为0V。根据原理分析,能够有瞬间输出,说明启动电路基本正常,但电源不能维持振荡,可能是因为保护或自身电路出问题。把所有负载断开,接上一灯泡做负载,通电,故障依旧,不是因为保护而停振。检查开关管基极有关元件,重点检测振荡控制元件,当检测C514时发现其容量偏低,试用相同参数的新电容更换,再开机时电源工作一切正常,试机一段时间后正常,故障排除。原因是C514已经接近开路,电源在启动一瞬间有电压输出,但不能建立振荡,所以电压立即变为0V。

实例4:

故障现象:开机后图像在垂直方向上有S形扭曲。

分析和检修:先观察开关电源的元器件无烧毁变色变味迹象,用万用表检测各组输出电压值和正常值相差不大。根据原理分析此类故障多数由电源滤波不良而造成,直接用示波器观察开关管V513基极波形,发现除了有正常调制的脉冲信号外,还看到低频脉冲信号,果然是由于低频干扰存在纹波而造成图像S扭曲。关机,用电阻法检测整流滤波电路和与V513基极有关的各个元件。首先检测C507、C518主滤波电容,用仪表检测C507的容量由原来的100uF变成60uF,试用一原参数电容更换,发现图像正常,故障排除。

四、结束语

通过对长虹G2136(K)彩电开关电源原理分析和故障检修,我不断总结和积累经验,举一反三,深刻体会到“维修”是一门理论与实践紧密结合的技术,促使我今后加强专业理论的学习,进而指导实际检修操作。

参考文献

[1]钱如竹,主编.大屏幕彩色电视机速修方法与技巧[M].人民邮电出版社,1999,10.