前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇光伏项目总结范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
本研究采用模糊综合评价方法对光伏电站项目进行后评价,同时辅以层次分析法构建定性与量化结合的后评价综合指标体系。光伏电站项目后评价基本原则借鉴国内外研究成果,尤其是国际组织和发达国家项目后评价的成熟经验,光伏电站项目后评价应遵循的基本原则:一是定性与量化分析相结合,以量化分析为主;二是综合与单项分析相结合,以单项分析为主;三是动态与静态分析相结合,以动态分析为主。光伏电站项目后评价方法光伏电站项目具有产品生命周期长、一次性投资大、品质形成链式环节复杂、不确定因素多等自身特性,而光伏电站项目后评价又具有多方面性、多层次性、模糊性和同一层次不同因素重要性有所差异等特点,精确度研究的传统数学难以解决这类问题,作为研究和处理模糊现象的模糊数学应运而生,为后评价工作提供了数学语言和定量方法。本研究选用模糊综合评价模型进行项目后评价。模糊数学隶属度理论将边界模糊、难以量化因素的定性判断转化为定量评价,即运用模糊数学对受多重因素制约的事物或对象做出综合性评价。其基本原理是:首先确定被评价对象的因素集和评价集;再分别确定各因素的权重及它们的隶属度向量,获得模糊评价矩阵;再把模糊评价矩阵与因素的权向量进行模糊运算,并进行归一化,得到模糊评价综合结果[7]。2.3构建光伏电站项目后评价指标体系参考相关文献,考虑到光伏电站项目后评价所涉及的各方面,本文从实施过程、营运效果、社会影响和环境影响等4个方面构建综合指标体系,如图1所示。图1光伏电站项目后评价指标体系(1)实施过程。包括建设必要性(做正确的事)、施工效率(正确地做事),以及决定二者的路径指南(设计合理性)等二级指标。光伏电站建设可以在一定程度上满足我国经济快速增长对电力的需求,其宏观意义不言而喻。但具体到个别项目,又存在是否因地、因时和因事制宜等必要性研究的需要。设计合理性即考察其是否严格按照有关标准及规范确定项目的总体、专项和详细计划,明确其品质要求、技术路线及工艺程序。由于我国尚无光伏电站正式标准,因此暂时只能参照欧美相关规范考核。施工效率是考察项目建设实施过程在数量、质量、安全、进度、造价及现场管控等方面是否达到了设计规定的目标,总结项目建设机构组织、前期准备、招投标、施工监理等方面的成功经验或失败教训。由于光伏电站项目的特殊性,施工单位是否具有相应的土建、电建等多种资质,是否拥有高素质复合人才队伍,是至关重要的。(2)营运效果。营运效果是在项目建成并运营一段时间后,对项目运行实际情况达到预期效果的程度,或项目目标达成度进行对比分析,在锁定偏离度问题及找出成因的基础上,总结经验教训,提出改进和完善对策。光伏电站营运效果分析是项目后评价的核心环节。方法主要是对照项目立项书、可行性研究报告、项目评估报告、设计文件等要求,检查光伏电站营运后各项经济技术指标的实际水平。由于光伏电站营运受阳光等自然因素影响很大,因此,与常年稳定运行的火力发电设施不同,如发电量或维护成本的日、月、季、年水平等指标具有特殊重要性,评价指标只能取其年平均值。在营运效果中,财务效果是反映项目建设完成后是否达到预期效果的关键指标,可分为投资回收期与投资收益率两个三级指标。投资回收期反映光伏电站初始投资在多长时间后能够收回;投资收益率则反映电站运营为企业带来的直接收益。光伏电站初期投资大,很大程度上依赖政府补贴和贷款,若上述指标比较理想,则可增加企业还款能力,从而有利于其持续发展,由于篇幅限制,此处并未对三级指标进行分析。(3)社会影响。分别从对能源结构、产业结构和工业经济等影响考虑。光伏发电可以有效避免火力发电产生过量二氧化碳的弊端。太阳能是取之不尽、用之不竭的清洁能源,光伏电站蓬勃发展必然对改善能源结构、进而促进整个经济结构低碳化、推动经济健康持续发展产生积极影响。(4)环境影响。相对火力发电,光伏电站无粉尘(PM2.5)、CO2和SO2等污染排放,是一种清洁的新能源,但可能对周边居民产生一定程度的光污染。因此,本研究设立生活和生态两个环境影响因子进行综合分析。
光伏电站项目后评价的实施步骤
本研究按以下步骤实施光伏电站项目后评价。(1)权重确定。在建立光伏电站项目后评价指标体系基础上,首先确定各指标权重。目前确定权重常用方法主要有层次分析法和熵权法。尽管后者是一种客观赋权法,不依赖主观评判,但基于光伏电站的特性,许多指标的值无法准确测量,故采用美国著名运筹学家T.L.Saaty最早提出的层次分析法。这是一种可将复杂的决策思路层次化,使决策过程涉及的定性因素与定量因素较好融合的方法。(2)建立评价指标集(U)。U是综合评价指标的集合,具有层次性,第一层为准则层,U={U1,U2,U3,…,Uj},第二层为子准则层,U={Ui1,Ui2,Ui3,…,Uij},i=1,2,3,…,j,以后各层依此类推。(3)建立评语集(V)。评语集即各指标所有的可能结果组成的集合,V={V1,V2,V3,V4,V5}={优、良好、中、及格、差},需邀请多位专家判断各指标在V集合中的所属元素。(4)确定权重集。由如上层次分析法确定了权重,第一层权重集为W={W1,W2,W3,…,Wj},第二层权重集为Wi={Wi1,Wi2,Wi3,…,Wij}。(5)单因素评价,建立模糊关系矩阵R。对各评价指标进行量化,即确定从单因素角度分析评价指标对各级模糊等级子集的隶属度,当所有指标隶属度计算完成后,即可得到模糊关系矩阵R。(6)模糊合成,得到S。S={S1,S2,S3,…,Sn},S=WR,“”代表算子。一般各评价因素对被评价对象并非同等重要,用权重集W对矩阵R进行综合,即可得到从整体看被评价对象对各评价等级的隶属程度。(7)综合评价结果。观察S集合中最大值对应的等级,表示被评价对象在该方面做得最好;再将上述S集合与分值相结合,可直观看到被评价对象在不同指标层的分值,具体体现其各方面的评价结果。
实证研究
中节能射阳光伏电站总投资3.88亿元人民币,由中节能太阳能科技有限公司和江苏振发太阳能科技有限公司分别出资80%和20%共同兴建,于2010年9月1日开工,同年12月26日竣工。电站坐落在江苏射阳临港工业区高压走廊下方,占用滩涂面积约800亩,一期规模为20MWp,运行期25年,年发电2300kwh。与火电发电机组相比,年节约8983t标煤,减排CO232246t。这里简要展开项目后评价的主要内容。首先建立指标体系如图1所示的,然后采用德尔菲法,选取10位专家征询意见,对上述指标进行判断,得出层次分析法需要的判断矩阵;再对判断结果做简单算术平均,最终得到5个判断矩阵。使用Matlab软件调用eig函数,得到各矩阵均具有满意的一致性,并得到权重分别为:W=(0.1378,0.5174,0.2282,0.1166),W1=(0.3520,0.4483,0.1996),W2=(0.2857,0.7143),W3=(0.6572,0.2270,0.1158),W4=(0.5,0.5)。根据如上建立的评语集,请之前10位专家再评分,综合后进行归一化,得到模糊隶属度组成的如下4个模糊关系矩阵:10.50.30.10.1000.40.30.300000.40.20.30.100R....20.50.30.200000.30.30.40000R....30.40.20.20.2000.20.30.20.3000.40.40.10.100R...40.60.40000000.50.5000000R......这里采用加权平均算子进行模糊合成,即:S1=W1*R1=(0.435,0.280,0.230,0.055,0.000),S2=W2*R2=(0.357,0.300,0.343,0.000,0.000),S3=W3*R3=(0.355,0.246,0.188,0.211,0.000),S4=W4*R4=(0.550,0.450,0.000,0.000,0.000),R=(S1,S2,S3,S4)。S=W*R=(0.390,0.302,0.252,0.056,0.000)。假定给评语集不同等级赋予的分值分别为90~100,80~90,70~80,60~70,60以下,取V=(95,85,75,65,30),分值为各个区间的中位数。则有F1=0.435*95+0.280*85+0.230*75+0.055*65+0.000*30=85.95,依次可得F2=85.14,F3=82.45,F4=90.5,总体得分为F=85.26。根据所搜集资料和如上分析,得到中节能射阳光伏电站具有良好综合效益的结论。其中,F4>F1>F2>F3环境效益为最好,其次为实施过程,第3为营运效果,最后为社会影响。在环境方面,与常规发电相比,光伏发电没有中间转换过程,发电过程不消耗传统资源,不产生温室气体,无工业三废。而本项目按系统理论寿命25年计算,年节约标准煤8983t,年减排CO232246t。本项目特色是利用滩涂,不仅不占用土地资源,而且发展渔业生产,开发观光农业,打造集绿色能源、生态、观光、科普教育等为一体的光伏发电基地,环境效益突出。在项目实施过程中,前期规划准备充分,设计方案水平较高,施工组织到位,资质健全,人员素质满足要求,很好完成了预期的数量、质量、安全、进度、造价及现场管控等各项指标。营运效果中的财务效果,以及社会影响指标不如前二者显著,这一方面因为该光伏发电项目规模经济效应不明显,未达到与常规发电相近的发电量,其对当地能源和经济结构转换难以产生决定性影响,项目本身财务效果短期亦难以显现;另一方面也表明,企业在扩大社会影响、加强与当地产业联动、发展多元化经营和降低整体营运成本上,还有很大拓展空间,需要着力挖掘。
发展光伏发电的建议
大力开发光伏发电内需市场相对欧洲多数国家,我国太阳能资源丰度与光伏开发利用度反差很大,光伏发电内需市场极其广阔。开发光伏发电内需市场既可缓解经济增长对电力供应和生态环境保护的双重压力,又可增强能源结构调整和经济结构升级的双重动力,可谓一举多得,是贯彻落实“十”关于“推动能源生产和消费革命,控制能源消费总量,加强节能降耗,支持节能低碳产业和新能源、可再生能源发展,确保国家能源安全”精神的实际行动,应当高度重视、扎实推进。加强项目后评价对光伏发展的支撑力度目前对光伏电站建设存在一些认识障碍,如看到光伏产品遭受国外贸易壁垒便对内需市场悲观失望,将光伏电站一次性投资大与其生命周期成本混为一谈等等。这既表明我国光伏项目后评价很不到位,也说明发展这一软科学同样具有实实在在的硬道理。当前应加紧出台项目后评价相关法规和标准,首先强制规定对光伏电站等国家补贴的长期性重大项目必须进行规范的后评价。其次,应通过人才培养和引进加快项目后评价专业队伍建设,加强国际合作与交流,扩大和整合后评价专业机构,增强项目后评价能力,提高后评价服务水平。
【关键词】光伏发电;工艺方案选择;电气方案选择
0 引言
太阳能光伏发电作为重要的可再生能源形式,发电产业快速发展,市场应用规模迅速扩大,太阳能光伏发电有可能在不远的将来很大程度上改变能源生产、供应和消费方式,给能源发展带来革新[1]。广东省是我国能源消费大省,同时作为经济大省,伴随着经济的快速发展,对能源的需求量也在显著增长,为满足电力系统可持续发展的战略要求,积极地开发利用本地区的太阳能等清洁可再生能源已势在必行、大势所趋,以多元化能源开发的方式满足经济发展的需求是电力发展的长远目标。
1 工程概况
项目选址在广东某市,工程规划建设3MW光伏发电项目,为节约用地,项目建设在两所大学校区已有建筑物内,分别为A 站和B 站。A站用于建设建筑有教学楼、图书馆、行政楼等共计19 幢建筑,屋面有效面积合计达到16060 m2,计算太阳能电池组件安装容量可达1557.36kWp。B 站用于建设太阳能光伏电站的的建筑主要有行政楼、图书馆、教学楼以及体育看台等共15幢建筑,总共可利用屋顶面积约为16483m2,计算太阳能电池组件安装容量可达1446.48kWp。
2 光伏发电系统工艺方案选择
2.1 系统方式选择
目前上网型太阳能光伏发电工程的形式主要有:光伏建筑一体化(BIPV)、地面太阳能发电场、屋顶太阳能发电系统(BAPV)。(1)光伏建筑一体化是光伏发电系统以建筑材料的形式作为建筑的一部分,通常为建筑屋顶和光照条件较好的建筑立面,发电多为建筑自用[2]。(2)地面太阳能发电场是利用地面专门的场地建设光伏发电系统,需要占地面积较大,在我国一般建设在西部地区较多;(3)屋顶太阳能发电系统则是利用现有建筑的闲置屋顶,建设光伏发电系统,所需条件是有较大面积且朝向较好的建筑物屋顶,该方案主要优点是受日照辐射条件好,不占用专门的用地面积,符合建设条件的建筑量大,可大规模推广应用,而且建设改造成本低,发电并网条件好,光伏组件安装方式比较自由,系统效率高,可实现较大规模装机[3]。
综上所述,与其它光伏发电形式相比,屋顶太阳能光伏发电系统具有突出的优点,尤其适合在工商业发达且缺乏可供开发利用空地的地区大规模推广应用,经过方案比较,该项目采用屋顶太阳能发电形式,考虑需要较大屋面,同时为便于管理,经过选址,目前某市大学城恰具备这种条件,而且在大学城具有更好的示范效应,对推动我国在该领域的成功运作更具有示范意义。
2.2 光伏组件选择
光伏组件约占整体造价的50%,是太阳能发电系统中价值最高的部分,其质量和成本将直接决定整个系统的质量和成本,所以对光伏组件的选择显得尤为重要[4]。目前太阳能电池主要有晶硅、薄膜、聚光三种材料,薄膜为第二代光伏技术,主要运用于建筑一体化项目,聚光为新兴的第三代光伏技术,虽然转换效率高达40%以上,但目前在起步阶段,运用不广泛,且成本高,而晶体硅电池因转换率较高、成本相对较低是目前的主流品种[5]。
从上表可以看出,同样尺寸的光伏组件,多晶硅与单晶硅组件标称峰值功率参数基本相同。同样的屋顶可利用面积,可认为选择多晶硅或单晶硅组件装机容量几乎没有差别。
在目前的市场售价情况来看,晶体硅光伏组件的售价主要以“瓦”为单位,而且每瓦单晶硅电池与多晶硅电池价格基本接近,但因多晶硅光伏组件大规模生产,价格稍低,所以本项目选择多晶硅光伏组件。
2.3 光伏组件角度选择
3 光伏发电系统电气方案选择
3.1 逆变器选择
从上表可知,带隔离变压器并网逆变器,具有更为安全的特点,根据现场布置特点,逆变器要求容量在50~500kW之间,要求容量较大,所以本项目选择工频隔离变压器并网逆变器。
3.2 并网方式选择
并网太阳能发电系统由光伏组件、逆变器、计量装置及配电系统组成。目前并网主要有两种形式,小容量及大中型容量:(1)小容量光伏发电对电网系统的影响可以忽略,其并网方式一般采取就近较低电压等级并网,此类并网方式一般注意两点,由于光伏上网电价一般与常规电价的差异较大,两者计量装置需分别设置,考虑并网线路首末电压差异,优先选择并网容量小于用电负荷的线路并网;(2)大中型光伏电站由于并网容量较大,对电网系统潮流影响较大,必须采取专线并网方式,具体并网方式有专线直接并网方式和多家光伏电站汇集后专线并网方式[10]。
由于本项目光伏方阵分布在两所大学校区,面积广,距离长,所以本项目采用分散发电、就地升压、集中控制、高压单点并网,低压就近并网的原则。总体将两所大学校区分为A、B两个站,根据距离长短,部分采用低压并网,其余汇流高压并网,既满足上网需求,也减少了线损,提高发电效率。
4 总结
通过以上方案合理选择,并注重在系统优化、设备优选,如电缆走向尽量选择最短路径、就近升压后集中输送、优先选择优质设备厂家等措施,本项目自2011年12月竣工至今,项目总体运行良好,发电容量达到预期发电目标,收到很好的社会及经济效益:
(1)与同容量的燃煤电厂相比较,每年可减少CO2排放量2195.77t,SOx排放量16.72t;NOx排放量4.61kg,有效保护了环境;
(2)项目建设于高校校内,使师生时刻感受到清洁能源的存在,起到很好的教育示范效用,提高项目示范意义;
(3)项目建设对高校太阳能研究,提供了广阔平台,加强了产学研结合,对光伏发电起到很好的推广作用。
【参考文献】
[1]赵春江,杨金焕,陈中华,等.太阳能光伏发应用的现状及发展[J].节能技术,2007,25(5):461-465.
[2]吴洲,郝国强,与宵童,等.光伏遮阳组件在光伏建筑一体化中的应用[J].现代建筑电气,2010(4):50-53.
[3]广东粤电大学光伏发电并网电站示范项目可行性研究报告[R].南京:中环光伏系统有限公司,2009.
[4]叶漫红.并网太阳能光伏电的特性及自动化技术应用[J].有色冶金设计与研究,2011,32(5):145-147.
[5]鹏飞.聚光光伏商业化应用迈出新步伐[J].太阳能,2011(10):20-23.
[6]杨洪兴,郑广富,文卓豪,等.太阳电池新材料新方法[J].太阳能学报,2002,23(3):301-307.
[7]肖建华,姚正毅,孙家欢,等.并网太阳能光伏电站选址研究述评[J].中国沙漠,2011,31(6):1598-1603.
[8]曹笃峰,窦伟,彭燕昌,等.30kW光伏并网逆变器研制[J].电力电子技术,2009,43(10):42-46.
我国处于经济发展的上升阶段,能源需求不断增长与常规能源匮乏成为了严重阻碍了我国经济持续发展的重要矛盾。为此,加速推进可再生能源的开发和利用成为了缓解我国能源供需矛盾,促进能源利用结构优化升级,保证我国经济社会科学发展的重要举措。根据国家制定的新能源发展振兴计划(讨论稿),至2020年我国光伏装机容量将达到20Gwp。预计今后10年内,光伏发电的年平均新增装机将达到2GWp。在今后10年,我国光伏发电将会迎来黄金发展时期。2009年财政部、住房和城乡建设部联合下发了《关于加快推进太阳能光电建筑应用的实施意见》(下简称《实施意见》),《实施意见》要求对光伏建筑项目给予政策支持。2011年3月的我国国民经济和社会发展十二五规划纲要指出,要“推动重点领域跨越式发展”。光伏发电是我国“十二五”期间重点发展领域。虽然光伏建筑项目有清洁、环境效益好,可再生、永不枯竭,基建周期短,装机规模灵活等众多优点。但是,我们也必须清楚的认识到,我国现阶段的光伏建筑开发技术与发达国家相比还存在很大差距,在开发过程中将会遇到诸多风险。本研究将以国际光伏产业市场及发展趋势为背景,通过对产业结构相关理论的梳理,结合投资风险及决策研究,旨在对过去几年太阳能光伏产业的投资及发展方式进行反思。
二、国内外研究动态
(一)国外研究现状
(1)国外风险评价的研究
在英美等发达国家,风险管理的实施分三个层次:由国家制订法规并进行监督;企业内部设置,专人负责,董事会决策;对人民群众进行教育,培养风险意识。已有不少国家以此模式来开展工作,并已取得了较好的效果。从现有情况看,已呈现出以下发展趋势。随着项目管理技术的发展,项目管理形成一套科学的方法体系,风险管理正式列入了项目管理的行列,构成了项目风险管理。
美国学者汉斯等在《风险管理与保险》中对风险管理进行了定义:风险管理是通过对风险的识别、管理和控制而以最小成本使风险所致损失达到最低程度的管理方法。巴格利尼在指出风险管理的目的是在保持企业财务稳定性的同时,是风险发生造成的成本损失降低到最低。Rerry和Hayes基于建设项目的主要风险源分析了风险因素。Wirbaetal将Tahetal和Cooper与Chapman的研究成果进行了综合,按照HRBS(Hierarchical Risk Breakdown Structure)方法对风险进行分类。Akintoyet和Macleod等先后归纳了工程项目风险管理的主要技术,如概率分析、敏感分析、随机控制等方法,对风险出现的后果和概率及分布进行定量分析。Terry Lyons和Martin Skitmore做了一份关于风险管理技术应用的高级管理调查,调查的研究结果认为项目生命周期的执行和规划阶段风险管理的应用多于项目的概念设计和结束阶段;在项目风险管理中,风险识别和评价尤为重要,风险应对和风险监控次之。
(2)国外光伏发电项目研究
目前国外对光伏发电项目的研究主要还集中在经济效益分析和产业发展政策研究等内容上,在光伏发电项目风险评价方面缺乏系统的研究。
John Byrne等基于需求管理的应用前景分析了光伏发电经济效益的多样性,并通过案例验证了需求侧管理系统可以为光伏发电项目使用者提供潜在的效益和功能。Kate DLatham对美国加利福尼亚州的屋顶光伏项目进行了成本-收益分析,论证了应用光伏发电替代非再生能源发电是非常可行的,并通过案例计算得出并网政策是促使州政府推广光伏发电的关键。
Lemer Ivan提出了光伏发电项目具有较好的市场前景,对美国的光伏产业发展趋势进行了分析,并且预测了到2020年世界光伏产业年收益将达到15亿美元。Jardim等分析了巴西南部地区建筑应用并网光伏系统的潜力,并将六种不同的商业光伏系统与完全屋顶安装的光伏系统进行比较,结果表明了建筑屋顶光伏系统具有优势。Masini等总结了欧洲五国推广光伏建筑一体化的实践经验,分析并设计了促进并网光伏发电项目发展的激励政策,并基于学习曲线研究光伏发电项目在四种不同政策下所表现出的不同宏观发展情景。
(二)国内研究现状
(1)关于风险评价的研究
国内在风险评价方面,主要结合不同的研究主体采用不同的评价方法进行综合研究。风险评价应用的研究主体,多集中于风险投资、财务风险管理、工程项目管理领域,评价的方法多集中于层次分析法、模糊综合评价法、灰色系统理论、神经元网络法等。汪忠、黄瑞华梳理了国外风险管理的研究状况,对风险内涵进行了深入解读,从纵向、横向、垂向对国外的风险管理研究进行了立体透视分析,进而从金融风险分析技术和项目管理风险分析技术两个大的方面阐述了风险评价的相关工具。陈建华将视角定位于风险投资项目,结合风险投资特性,阐述对风险的识别并分析了相关风险评估方法,包括客观风险评价法、蒙特卡罗模拟法、故障树分析法、Var方法、风险矩阵法等等,进而结合触发器原理、屏障分析、多层防御体系建立动态风险防范体系。吕海萌关注于高新技术风险投资项目,设计了风险投资项目综合动态评价模型,在对项目进行全面初评的基础上,结合项目的生命周期,利用风险矩阵法和层次分析法进行深层次评估。
(2)国内光伏发电项目风险评价研究
国内外学者对光伏发电项目的评价主要还集中在经济效益的分析上,对外部效益的研究还不全面,且缺乏具有普遍应用价值的评价模型和方法,对光伏发电项目投资可行性准确判断的缺失是制约光伏发电项目规模化化发展的重要原因。
国内学者对光伏技术发展也进行了相关研究,主要包括:一是从技术路线图的角度分析了特定区域内光伏产业的发展研究,耿亚新等人分析了我国光伏产业发展的技术路线图,李彦峰研究了保定光伏产业的技术路线图,二是从光伏产业的技术应用角度进行分析,张青虎对太阳能光伏发电系统和太阳能光伏照明系统的应用进行了介绍,李剑等从光伏技术应用的现实意义出发,分析了光伏技术与绿色照明在建筑领域的应用优势,张悦等从光伏技术的应用、价值链和成本分析来探讨光伏技术带来的社会效应、长期和外部的经济效应,黄鲁成等在梳理技术评价研究方法的基础上,构建了主客观相结合的组合评价模型来确定太阳能电池产业化过程中的关键技术。
三、结论
综上所述,近年来我国在光伏发电项目风险评价方面的研究已取得一定的成绩,但是我国光伏发电项目风险评价起步较晚,还未能有针对性的建立一套适合的风险评价体现,有效科学的发觉和评价风险。因此,将风险识别、评价与境外水电工程项目特点相互整合,构建一套适合我国光伏发电项目风险评价体系,显得尤为必要。
参考文献:
[1]许谨良.风险管理[M].北京:中国金融出版社,1998.
[2]王家远,刘春乐.建设项目风险管理[M].北京:中国水利水电出版社,知识产权出版社,2004,11~15.
在光伏业内,“金太阳”示范工程几乎成了一个负面形象的代名词,或曰质量不佳,或曰欺诈盛行。无论如何评价,它对中国光伏早期国内终端市场规模化发展所发挥的重要作用,以及对中国能源发展战略多种培育方式尝试的重要意义都不可否认。在“金太阳”正在走入历史的时候,对于这样一个巨大的国家扶持工程,无论是从对社会投入负责任的角度,还是从建立数据基础体系的角度,“金太阳”都到了需要梳理,并给社会一个交代的时候。
关于“金太阳”,已知和未知的情况是:国家“原则上按光伏发电系统及其配套输配电工程总投资的50%给予补助”的“金太阳”,始于2009年7月的《关于实施金太阳示范工程的通知》,终于2013年12月的《关于清算2012年金太阳和光电建筑应用示范项目的通知》,4期共计批准项目总量约为6GW,但实际完成情况未公开,实际并网发电情况未公开,国家总计补贴金额也未公开。对于补贴金额,有资料显示早期计划建设不低于500MW,补贴金额在百亿元。但在实际运行中,批准规模增加了十倍以上,补贴金额大幅增加也是势所必然。
站在今天的角度看“金太阳”,人们不难看到这样两点:
“金太阳”的积极意义在于把中国光伏推向了一个重要的发展阶段。2004年以前,中国光伏难言规模,当年组件产能仅为100MW。2004年以后,受欧洲市场需求突起拉动,生产规模迅速提升,2008年产量已经达到1780MW,产品99%出口,国内需求几乎为零。2009年“金太阳”开始实施,到2013年,组件产量约为30000多MW,国内外市场需求4:6,达到了一个必要的格局。之所以说“必要”,是因为出于能源长期发展战略考虑,人类选择了以早期承担巨额成本的方式发展光伏新能源,从2004年开始,以德国为代表的欧洲首先承担了起这份责任。从2009年“金太阳”开始,中国作为一个负责任的大国也承担起了这份责任。“金太阳”的实施,客观上达到了三方面的积极意义:逐步改变了中国光伏过去技术、市场、原材料“三头在外”的不合理产业格局;意外地为后来“双反”时保护中国光伏而开拓国内市场做了准备;维护了中国光伏强大的国际竞争力。
“金太阳”出现负面效果是必然的。国际上围绕光伏发电补贴,主要分为上世纪九十年代“日本新阳光计划”为代表的“事前补贴”,和2004年以后德国实行的固定电价为代表“事后补贴”两种形式,区别在于,前者以电站建设完成为补贴时间,是一次性的;后者以并网发电实现为补贴时间,是一般持续20年以上的。“金太阳”是典型的“事前补贴”方式,而其实施的前提之一是社会信用体系的完善和成熟。
毋庸讳言的是,中国社会信用体系基础一向薄弱,于是就有了“有相当一部分企业为了多得到财政补贴,采取‘低购高报’的办法,提高系统总造价,借此骗取补贴。更有甚者,直接使用不符合补贴质量要求的劣质产品,甚至国外退货的废次产品。”总之从根本上讲,事前补贴的作法不适合当前中国,事实上这种做法的比例在国际上也是递减的。基于此,“金太阳”出现这样或那样的问题是正常的事情,它是中国光伏发展必须的一种探索。
时至今日,“金太阳”正在成为过去时,正反面的评论也在逐渐淡化,总结“金太阳”这样重大社会事件的长远价值,也许时间更长效果更好。当前该做的事情,应是将“金太阳”的实施结果进行一个梳理,还原一个真实的过程。
梳理“金太阳”,给社会一个交代是建立社会监督机制的需要。在成熟的国家制度下,任何重大的政府行为,特别是需要巨额资金支持的政府行为,资金的支出应当获得社会的批准,资金的使用情况及其结果应当获得社会的认可,只有这样才能形成合理的政府管理机制。遗憾的是,中国的许多事情不是这样,于是就有了人们许多的抱怨。而这些抱怨,不是抱怨行为目的的对错,而是抱怨行为运作程序的问题,因为该项目花的是每一个纳税人的钱。花纳税人的钱不向纳税人请示,花钱的结果也不向纳税人报告,这是一个逻辑不通的事情,因此“金太阳”实施中出现的诸多欺诈行为也就不足为奇了。
事实上,这些现象不是行为的初衷,但却是行为的结果,改变这一异化结果的唯一办法就是政府管理改革。没有监督机制的国家体制不是合理的国家体制,缺少监督机制的政府行为是难免会出问题的行为。提倡政府管理改革,具体到“金太阳”就是对投资结果进行梳理并向社会汇报,能源管理改革请从“金太阳”开始。
梳理“金太阳”,给社会一个交代是不断积累数据、建立产业标准的需要。在笔者过去的研究过程中,能够找到的完整的“金太阳”数据甚少,而其对产业标准形成的相关作用的资料更少。标准的缺失既是中国光伏产业长期发展的软肋,更是当前光伏产业投融资的硬伤。标准不是臆造出来的,是在大量数据积累的基础之上分析、总结而来的,只有通过长时间完整数据的积累才有可能形成一个相对合理的产业标准。
关键词:BIPV;太阳能;干挂式幕墙;光伏幕墙
中图分类号:S611文献标识码:A文章编号:
一前言
2011年底财政部的《关于组织实施2012年度太阳能光电建筑应用示范的通知》,表明了国家在“十二五”期间力促光伏建筑一体化的信心和决心。目前中国有480亿平方米建筑面积,如果在其中的10%建立BIPV系统,光伏组件的市场将达到500GW。目前我国还处于起步阶段,在今后的时间里它将迎来高速的发展。
光伏建筑一体化(BIPV)与其他形式的光伏电站相比,结构要复杂得多,需要考虑的因素也要多得多。BIPV不仅要考虑到建筑设计,而且要同时考虑光伏电站设计。下面总结了在BIPV设计中几个最主要的方面。
二光伏幕墙设计要点
1 安装位置及形式
在建筑物上,有很多位置适合安装光伏电站,所以产生了很多的BIPV形式。比较常见BIPV形式主要有:光伏幕墙、整体光伏屋顶、嵌入式瓦片光伏屋顶、光伏采光顶、光伏遮阳、光伏雨篷、光伏车棚、光伏温室、光伏护栏、高速公路隔音障等。在这些形式中,每种形式均受到一定程度的限制,不如地面电站一样可以根据实际的地理位置设定最佳的角度来获得最大的发电量。对于每一种形式,在设计时需要充分挖掘其特点来平衡优势与不足,获得最佳的性价比。
2 光伏组件的选择
光伏组件的种类较多,总的来说分为晶硅组件和非晶硅组件。以下表格是市场上常见的组件类型及其特点:
目前晶硅组件和薄膜组件价格基本一样(约为5元),普通晶硅组件都转换率为平均在7%~10%左右,而多晶硅电池片的转化效率平均在17%~20%。因此,在有限都面积上,晶硅组件则意味着更大都装机容量和发电量。另外,这两种组件安装支架都成本基本相等,故晶硅组件将会给用户带来更多收益。
普通晶硅组件作为市场上最通用的光伏组件,凭借着市场供货充足、批量化生产的成本优势,非常有效地推动着BIPV达到光伏发电平价上网水平。
3 最佳倾角、方位角
倾斜角度和方位角直接决定了光伏组件能够获得的太阳辐射量。图1.1显示了这些因素对组件发电效率的影响。
图 1.1 方位角对辐射值的影响 图1.2 倾斜角对辐射值的影响
从图1.1中可以看出,在北半球光伏组件朝南时,获得最大的太阳辐射量。从图1.2中可以看出,倾斜角对于光伏组件获得太阳辐射量的差异非常大,以测试地点香港为例,倾斜角为90度时的太阳辐射值仅为最佳倾斜角度的一半。因此,在BIPV设计中,对于光伏屋顶、光伏采光顶、光伏遮阳等可以调节倾斜角度的项目,尽可能设计成最佳倾斜角度使光伏组件获得最大的光照辐射量。光伏组件也尽量安装于朝南(北半球)或朝北(南半球),对于东、西两个朝向的光伏系统,可以选用弱光性较强的非晶硅组件来确保延长发电时间,以提升发电量。
4 通风散热性能
温度对于光伏组件发电的效率影响也是巨大的,它随着温度的升高而降低。下图反应了这个温度对光伏组件发电效率的影响。
图1.3
从图1.3中可以看出,光伏组件的发电效率随着温度的升高而降低。因此,在BIPV项目中,一定要保证光伏组件的通风散热,降低组件的温度,提升发电效率。目前通风散热的方法较多,主要有以下几种方法:
a.开放式自然通风散热;
b.百叶窗散热;
c.抽风机抽风散热;
d.水冷管散热;
e.双层循环式散热。
5 避免阴影遮挡
在光伏组件中,被阴影遮蔽的部分将会变成负载,导致组件局部温度过高,严重的会烧坏组件,甚至引起重大火灾,这就是光伏组件的光斑效益。因此,光伏阵列上的任何部分遮蔽源都将在很大程度上导致其输出降低。据试验,遮挡10%的面积,发电效率最多将会下降90%。对于晶体硅太阳电池,小遮挡即可引起大功率损失,。非晶硅薄膜电池的电流密度较小,阴影遮挡的影响要比晶体硅电池小得多。
图1.4热成像仪显示的“热斑效应”图1.5异物在组件上的“热斑效应”
表1.1太阳能光伏系统受到部分遮蔽后的现场测试结果
所以,在BIPV设计时,要运用相关的阴影分析专业工具,充分考虑环境遮挡物和避免安装构件产生的阴影。另外,要充分考虑光伏组件的清理方案,及时清理组件表面的鸟粪、树叶、灰尘等。
6 符合国家建筑规范
为了规范建筑,现在国家的建筑法律法规也比较完善和齐全了。这些建筑和法规都为建筑设计人员提供了依据。在BIPV安装的地方,通常会是社会主要的活动地点,务必保证项目符合国家规范和安全性能。BIPV结构安全性涉及两方面:一是组件本身的结构安全,高层建筑屋顶的风荷载较地面大很多,要通过严格的计算光伏组件的强度、受风变形是否符合安全要求。二是组件安装固定的安全性。应对整个结构进行严格的结构计算,确保安全。
建筑的能耗高居不下,建筑规范也对建筑热工有相应的要求,若是不符合规范的话将会在验收时通不过。节能、绿色、环保设计将会成为未来建筑最显著的特点和发展方向。
另外还有防水、防火、防雷、地震、隔音、采光、材料、工艺、施工等都要符合国家规范要求。
7 符合建筑美学
BIPV说到底,其本质还是建筑为首,光伏为辅,美学效果很大部分决定了建筑的成功。要达到画龙点睛的效果和带来新的活力和创造力。具体体现在以下几点:
从室外看,要求材料、风格、颜色和建筑物协调统一,造型创新,避免光污染;
从室内看,室内明亮,光线柔和而不杂乱;符合人体工程学要求。
8 综合布线
光伏电站的电气设备对电压和电流都是有特定的要求,我们一般根据电气设备去布局组件方阵来满足要求。但在建筑上建立光伏电站,组件的排列不一定是整齐有序,很有可能是由一些大小、形式不一的几何图形组成,这样就会造成组件间的电压、电流不同。因此,组件布局和接线错综复杂,不能按照一般电站接线布局。
为保证每个方阵的电压、电流符合电气设备的要求,BIPV电缆布线大致有以下两点:a.对建筑立面进行分区及调整分格,经过计算,定制尺寸和功率符合建筑要求的光伏组件; b.将少数边角上多余的电池片不连接入电路。
另外,由于光伏组件与建筑主体的距离往往会非常小,并且光伏组件固定后基本很难再有操作空间接线,所以在设计时应同时与相关人员充分沟通和考虑接线方案,保证施工安装和接线调试顺利进行。
9 后期维护
目前大多建筑的使用年限是50年,而光伏组件是25年。对于寿命不同步,就意味着25年后可能要进行光伏组件的更换,或者在使用中组件异常。所以,在设计中应该考虑光伏组件坏掉之后的更换维护,力求操作方便,降低后期维护成本。
三帷盛光伏幕墙解决方案
帷盛自主研发的干挂式光伏幕墙VBF-1系统是帷盛BIPV光伏幕墙解决方案之一,目前已经成功申请专利。
图1.6VBP-1效果图 图1.7VBP-1结构图
该解决方案具有以下几大特点:
用矩形钢和角钢作为立柱和横梁(替代铝型材结构),大大降低建造成本;
采用普通晶硅光伏组件,提高了装机容量,提高建筑利用率;
各组件相互独立,使安装和后期维护方便快捷,节省安装和维护的费用;
开放式的结构,保持组件通风散热性能,提高组件发电效率;
仅5mm高的装饰条扣板,有效避免装饰条在阳光照下产生的阴影对组件的影响。
VBP-1系统应用说明:
适用于对采光无要求,并且有墙体作为维护结构的建筑立面;
这套系统最大的特点是采用了普通晶硅组件,具有装机容量大、发电效率高、性价比高等优势。大大降低了BIPV项目的成本,有效推动我国光伏产业平价上网。在力学性能上,普通晶硅组件一般能承受的载荷为2.4KN/㎡,更大承载力的普通晶硅光伏组件达到了5.4KN/㎡。根据玻璃幕墙规范JGJ102-2003第6.1.2条与第6.1.3条,进行玻璃强度和挠度的计算。风荷载设计值取2.4KN/㎡、玻璃的最短边按照990mm来算,允许最大的变形挠度为最短边的1/60,故df=990/60=16.5mm。由此可以得出玻璃厚度,此厚度即为光伏组件等效的钢化玻璃厚度。计算可以得出:当组件的最大承受荷载为2.4KN/㎡时,等效钢化玻璃的厚度为5.13mm;当组件的最大承受荷载为5.4KN/㎡时,等效钢化玻璃的厚度达到6.72mm。
由于墙角区进行结构计算时体型系数比较大,对组件的力学性能要求非常高,故此系统不建议应用于墙角区域。在墙角区域可以采用石材幕墙或铝板幕墙等形式来配合此系统。
三结语
政策的激励及BIPV的特有属性,决定了它巨大的发展空间。我们在设计和实现新能源绿色建筑时,一定注重成本控制、发电效率、节能环保、安全可靠,实现经济效益、环境效益、社会效益最大化。
参考文献
[1] 杨洪兴,周伟. 太阳能建筑一体化技术与应用. 北京:中国建筑工业出版社 2009.