首页 > 文章中心 > 金属加工工艺

金属加工工艺

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇金属加工工艺范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

金属加工工艺

金属加工工艺范文第1篇

关键词:金属机械;加工制造;工艺

金属加工制造对社会生产有着重要的影响,衡量一个国家综合国力的重要指标之一就是机械制造工艺,机械制造是国家工业发展的基础。不管是国家还是企业,都必须重视机械制造。要想提升我国的综合国力,大力发展经济,就必须积极创新机械制造工业,提高我们的机械制造水平。所以有必要对其加工工艺进行研究和分析,以不断促进金属加工工艺的改进和创新,推动我国机械加工技术和管理的进步。

1 金属机械制造工艺现状分析

1.1 缺乏对大局的认识

加强对金属加工工艺的研究,加深对金属机械加工工艺的多方面认识,不仅能够帮助企业获取更多的经济效益,还能够为新技术和产品的研发提供一定的数据支持,进而促进金属加工工艺的进步。但实际上,部分企业由于缺乏对这一关键的认识,只注重眼前的利益,忽视了对金属加工工艺的研究,使得企业的工艺水平难以得到提升。此外,部分企业仅仅站在自身的角度思考问题,忽略了消费者的感受,工艺产品难以得到消费者的认同,导致企业的经济利益降低。由于企业管理不够严格,在实际的生产中,还有可能出现材料的质量不合格、制造缺乏规范性等问题,这些都是导致加工工艺可靠性不高的因素。

1.2 缺乏科学的评估指标

科学的评估指标是保证机械加工工艺质量的重要保障,也是保证行业竞争良性发展的关键。但是,大多企业都按照国家的相关行业标准,而没有适合本企业的特定标准。由于缺乏适应的评估指标,使得企业难以对生产中的金属加工工艺品进行科学的衡量和评定,不利于企业对金属加工工艺的进一步管理。

2 工艺难点分析及解决措施

2.1 零件变形大,应力大

一般来说,我们使用的毛料都是自由锻件,不仅余量大,而且平面度很糟糕,使得零件在加工中容易产生变形,最终很难得到质量合格的零件。为了保证零件质量,通过试验,可以采取以下措施:增加铣基准工序,首先加工基准,松开压板,将零件翻个,同样的方法再加工另一面,这样不仅可以为磨加工工序打下良好基础,还能增加零件精度,而且释放了加工中的应力,使得零件变形情况大大减小。

2.2 毛坯选择

不同零件需要选择不同形状,大小的毛坯,如果是轴类零件一般有三种形状:棒料,锻件和铸件。零件强度的大小决定着选择哪种锻件,如果需要锻造的零件形状简单,会选择锻件进行加工,如果是大尺寸零件,常用自由锻,模锻一般采用于中小型零件。通常使用锻件作为零件毛坯,通过锻压钢材,可以得到均匀的纤维组织,提高零件的性能与力学硬度。

2.3 磨削难问题

2.3.1 砂轮的选择。我们一般用刚玉类的砂轮来磨削高温类的合金,这类砂轮具有自锐性好,磨粒韧性优良,均热稳定性、化学稳定性都比较好,因此采用这类砂轮,不仅成本低,而且磨削质量优良,效率还高。

2.3.2 磨削参数的选择。在开始试验加工中,当磨削深度超过0.03mm时,零件即会突然鼓起来变形,严重时表面有烧伤现象,再者GH163合金没有磁性,无法以其本身吸附在工作台表面,只能靠夹紧力,所以磨削时磨削深度必须严格控制,经过多次试验,我们选择了比较合适的磨削参数:砂轮直径φ350mm,切削深度0.01~0.02mm,进给速度1400r/min。

2.3.3 参数改进。由于加工参数的不合理,使得在加工典型安装边粗精铣时效率比较低下,也使得生产不能顺利进行,而且还增大了劳动者的工作强度。为了改善这一系列问题,通过不断的试验,终于确定了合适的参数,切削过程中,选择硬质合金刀,同时用较小的吃刀量,当主轴转速较高时,选择比较大的进给量进行切削,将粗铣左右耳背程序参数改为S=1800,F=450,精铣左右耳背程序的参数调整成S=2800,F=1200,这样就可以大大提高加工效率。

3 金属机械加工制造工艺研究分析方法

3.1 构建高效的研究制度,多方面考虑

加工技术、加工设备,以及加工人员是加工管理中的三个重要因素,对金属加工产品的质量和合格程度有着重要的直接影响。因此,高效的研究制度是必不可缺的一部分。而高效的研究体系中,应包含了对员工、技术以及设备的要求和管理。高效的研究制度的构建,需要提升员工的专业素质和工作能力、促进加工工艺技术的改进和创新,以及不断更新参与加工的设备等,实现全方位的强化,进而保证金属机械加工工艺的可靠性。

3.2 强化工艺加工制造的可靠性

强化工艺加工制造的可靠性,是指强化金属加工制造过程中的质量掌控和技术管理。为了实现长远发展,加快金属机械加工工艺的更新速度,进而提高加工工作的效率,提高工艺的可靠性是有效的方式。根据实际发展情况,企业可采取适合自身发展的战略,在目前的能力范围内进行技术和设备的更新,并加强对生产加工过程的管理和监督,以有效提高加工工艺的效率,保证企业的金属机械产品,能够实现长时间的有序进行。

3.3 加快新技术的推广与应用

在加强机械加工工艺和技术创新研究的同时,还应该重视对新技术的推广与应用转化工作,因地制宜,对不同区域经济发展现状进行综合分析,形成雪球式的推广局面。同时,在推广工作中应该结合实际,稳步发展,不冒进,可在有代表性的企业中开展新技术的试运行,发挥示范作用。在新技术引入过程中,企业要重视新技术和常规加工技术之间的相互配合,通过试运行对新生产工艺进行适当地调整优化,在形成比较成熟的工艺经验后再开始大规模市场推广。

4 机械制造过程中绿色制造技术的应用

随着机械制造业的发展,绿色制造技术已经成为时代的主流要求,这也是我国制造业未来的发展方向。绿色制造工艺,顾名思义,就是要在机械制造和加工中,要全面考虑到资源,能源的使用情况,对于环境的影响,同时还要兼顾企业本身的经济效益等等各方面的因素,再选择合理的制造技术来进行生产,最终实现国家的可持续发展的战略目标。在进行机械设计以及制造时,工作人员首先要关注材料的环保性能以及经济性,不仅要保证材料有很高的实用性,更要保证是环保材料,不会产生环境污染还有资源浪费等问题。要想保证机械制造业的长远与稳定,可持续发展,就必须选择科学合理的材料。

5 结束语

总的来说,随着我国经济的不断增长,金属制造业也在不断发展。与此同时,金属机械加工技术和管理方式也在不断创新和完善。但是,社会发展对金属机械加工工艺的要求也越来越高,其在实际加工和运用中也存在一定的问题。金属加工制造对社会生产有着重要的影响,所以有必要对其加工工艺进行研究和分析,以不断促进金属加工工艺的改进和创新,推动我国机械加工技术和管理的进步。

参考文献

[1]王秋莲.机械加工系统能量效率评价研究[D].重庆大学,2015.

[2]林梅.浅谈现代机械加工制造工艺[J].工程机械文摘,2015,05:83-84.

金属加工工艺范文第2篇

【关键词】 数控加工;加工工艺;设计

引言

随着科学技术的发展,先进的技术设备不断在机加工领域得到广泛的应用,推动着先进生产力的不断变革和更新特别是数控技术的应用起到了不可取代的作用。它为各复杂的加工技术和精度以及多样性提供了可能性。因此,从事数控专业者掌握数控技术的加工工艺设计过程,是做好切削加工的关键一步。下面就对设计过程的确定进行浅析和探讨。

1、数控机床加工与普通机床加工工艺的区别

数控机床加工工艺与普通机床加工工艺相比较,由于采凭数控机床加工具有加工工序少,所需专用工装数量少等特点克服了普通机床加工工艺方法的弱点。

1.1、从加工工序来看,数控加工的工序内容要比普通机床力工的工序内容复杂。

1.2、从编程来看,数控加工程序的编制要比普通机床编制艺规程项目多,而且复杂。

1.3、从工件装夹来看,采用数控加工的工件,工件在一次夹下就能完成撞、铣、铰、攻丝等多种加工,而普通机床则须要经过多次装夹才能实现各种加工。

因此,数控加工工艺具有复合性特点,它要求编程人员设计数控工艺方案、编制数控程序时必须做到“内容十分详具体,工艺设计严密、合理”。

2、零件数控加工的工艺设计原则

设计零件数控加工的工艺过程时应遵循以下原则:

2.1、工序最大限度集中、一次定位的原则

一般在数控机床上,特别是在加工中心上加工零件,工序可以最大限度集中,即零件在一次装夹中应尽可能完成本台数控机床所能加工的大部分或全部工序。数控加工倾向于工序集中,可以减少机床数量和工件装夹次数,减少不必要的定位误差,生产率高。对于同轴度要求很高的孔系加工,应在一次安装后,通过顺序连续换刀来完成该同轴孔系的全部加工,然后再加工其他坐标位置的孔,以消除重复定位误差的影响,提高孔系的同轴度。

2.2、先粗后精的原则

在进行数控加工时,根据零件的加工精度、刚度和变形等因素来划分工序时,应遵循粗、精加工分开原则来划分工序,即先粗加工全部完成之后再进行半精加工、精加工。对于某一加工表面,应按粗加工――半精加工――精加工顺序完成。粗加工时应当在保证加工质量、刀具耐用度和机床――夹具――刀具――工件工艺系统的刚性所允许的条件下,充分发挥机床的性能和刀具切削性能,尽量采用较大的切削深度、较少的切削次数得到精加工前的各部余量尽可能均匀的加工状况,即粗加工时可快速切除大部分加工余量、尽可能减少走刀次数,缩短粗加工时间。精加工时主要保证零件加工的精度和表面质量,故通常精加工时零件的最终轮廓应由最后一刀连续精加工而成。为保证加工质量,一般情况下,精加工余量以留0.2~0.6mm为宜。粗、精加工之间,最好隔一段时间,以使粗加工后零件的变形得到充分恢复,再进行精加工,以提高零件的加工精度。3.先近后远、先面后孔的原则。按加工部位相对于对刀点的距离大小而言,在一般情况下,离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。对于车削而言,先近后远还有利于保持坯件或半成品的刚性,改善其切削条件。对于既有铣平面又有镗孔的零件的加工中,可按先铣平面后镗孔顺序进行。因为铣平面时切削力较大,零件易发生变形,先铣面后镗孔,使其有一段时间恢复,待其恢复变形后再镗孔,有利于保证孔的加工精度,其次,若先镗孔后铣平面,孔口就会产生毛刺、飞边,影响孔的装配。

3、数控加工之中如何进行将加工工艺设计

3.1、确定数控加工方案

首先确定零件上由数控加工的表面,通过对零件图样的分析,选择最适合、最需要的内容进行数控加工。其次选择合适的机床,选择机床时应综合考虑数控机床的规格:包括坐标轴行程和主轴电机功率等内容,并且要考虑数控机床的精度,应该根据零件关键部位的加工精度的要求选择数控机床的精度等级。

3.2、确定加工工序内容

定位基准的选择定位基准是加工中用来使工件在机床或夹具上定位的所依据的工件上的点、线、面。按工件上用作定位的表面状况把定位基准分为粗基准、精基准和辅助基准。粗基准选择原则为:以不加工表面作为粗基准、选择要求加工余量均匀的表面作为粗基准、选择余量小的表面作为粗基准、选择平整、光洁、尺寸足够大的表面作为粗基准并且粗基准尽量避免重复使用。精基准选择原则为:基准重合原则、基准统一原则、自为基准原则和互为基准原则,并且要考虑到所选择的基准应能保证工件定位准确,装夹方便,夹具结构简单。

划分工序零件是由多个表面构成的,这些表面都有自己的精度要求,各表面之间也有相应的精度要求。为了达到零件精度要求,加工顺序安排应遵循一定的原则。先粗后精原则各加工表面的加工顺序按照粗加工、半精加工、精加工的顺序进行,目的是逐步提高零件加工表面的精度和表面质量。基准面先加工原则在加工一开始,总是先把用作精加工基准的表面加工出来,因为定位基准的表面精确,装夹误差就小。先内后外原则对于精密套筒,其外圆与孔的同轴度要求较高,一般采用先孔后外圆的原则,既先以外圆作为定位基准加工孔,再以精度较高的孔作为定位基准加工外圆,这样可以保证外圆和孔之间具有较高的同轴度要求。

3.3、对刀点与换刀点的确定

对刀点是数控加工中刀具相对工件运动的起点。巧妙选择不仅可以节省加工过程的执行时间,还能减少不必要的刀具损耗和机床运动部件的磨损。在编程时无论是刀具相对工件移动还是工件相对刀具移动都是把工件看成静止,刀具在运动。通常把对刀点称为程序原点启可以设在被加工零件上,也可以设在与零件定位基准有固定尺寸关系的夹具上的某一位置。其选择原则应该以找正容易、编程方便、对刀误差小、加工时方便可靠。多刀加工的机床编程而设置的,因为换刀点位置要适当,太远时调刀空行程太长,生产效率低汰近则可能在刀具转位时使刀具和工件发生碰撞。

3.4、切削用量的确定

切削用量包括切削深度、主轴转速、进给量。对于不同的加工方法,需要选择不同的切削用量,并应编入程序单内。合理选择切削用量的原则是:粗加工时一般以提高生产效率为主但应考虑经济性和加工成本岸精加工和精加工时应在保证加工质量的前提下兼顾切削效率、经济性和加工成本。具体数据应根据机床说明书、切削用量手册,并结合经验确定。

4、结语

现代数控加工与传统加工技术相比,无论在加工工艺,加工的自动控制,还是在加工设备与工装等诸多方面均有所不同。用数控机床加工零件比用普通机床加工零件更应重视加工之前的工艺分析。由于零件复杂多样,外形轮廓、毛坯材料、大小不尽相同,因此编程人员在拟定零件数控加工工艺时,应进行充分、全面的工艺分析,灵活、合理地设计工艺,向优质、高效、低耗的目标方向努力。

参考文献

[1]刘华.数控加工工艺标准化的研究[D].广州大学,2013.

金属加工工艺范文第3篇

关键词:紧凑型输电线路;架线施工工艺;高压输电;500kV输电线路;直流输电技术 文献标识码:A

中图分类号:TM72 文章编号:1009-2374(2015)34-0101-02 DOI:10.13535/ki.11-4406/n.2015.34.052

紧凑型输电工艺是在社会经济与科技高速发展的双重作用下发展起来的,这种输电工艺将输电线路和杆塔结构进行优化调整和设计,通过增加分导线技术,将导线进行优化排列,使得输电线周围的电场达到均衡,最终达到减小线路间距、提高功率的输电工艺设计作用。这项技术的应用给电力事业带来了突飞猛进的发展。紧凑型输电技术目前已经广泛应用到国家电网的输电线路工程中,以较低的波阻抗、高电容和大功率输送等优点受到电力公司的青睐。

紧凑型输电具有良好的经济效益,采用500kV同塔双回输电线路,节约了线路走廊,总体上工程造价比传统输电线路工程降低了10%;在某些环境下显示出了同塔双回线路的优势。例如,针对大功率输电和长距离输电中,紧凑型线路具有节省路径的优势;对多回线路送电时,比常规线路更具有同塔双回路线走廊、耐雷性质、安全性能高和降低成本的优势。

1 500kV紧凑型输电线路架设工艺的优点

何谓紧凑型输电线路,就是指对输电导线进行先进的排列方式,将三相导线采用等边倒三角结构排列,具有缩短相间距、缩减波阻抗、提高输电功率、增大电容、减少线路设计的占地面积等特点。常用的紧凑型输电线路主要运用于500kV输电线路,它较常规线路具有更多功能和经济优势,如高于常规线路自然功率输出的1/3,节省了线路走廊的横向距离,使导线附近的电场均衡,实现了带电操作的技术优势。

(1)导线的优化排列。它将导线的三相同置于杆塔内;(2)将导线进行倒三角等距离排列,缩短相间距,其距离可达6.7m;(3)增加了相导线的数量,将相导线由4根增加到6根,按照边长为375mm正六边形排列,外接圆半径为375mm。这种几何结构的安装工艺方便了以后对线路的维修和安装;(4)杆塔已采用大吨位的合成绝缘子,这种技术已经很成熟,其中V字形的绝缘子串将三相导线中的夹角进行区分。上两相的夹角是90°左右,下相夹角为l40°左右,将三相分开悬挂、相互间无联系。若相间档距较大时(超过800米),可以在中间安装绝缘间隔棒(在受到9级风力的考验后仍然安全),以保证相导线的安全运行,阻止电力事故;(5)通过带电操作的允许。500kV紧凑型线路处于带电作业时,其过电压水平小于1.72p.u,完全满足高压带电作业的安全性能。

2 500kV线路施工中的注意要点

500kV紧凑型输电线路较常规线路有较大的结构差别,在施工期间需要注意很多安装问题,为保障线路施工的质量与进程,遇到具体的施工问题应采用符合规定的措施与方案。

线路架设具有特殊性,这给附件安装工艺增加了难度。具体的注意要点有:(1)线路由传统的四根导线增加到六根导线,其排列方式是正六边形,若采用常规线路的张力进行放线方式和机具不能奏效,因此需要对施工工艺和机具进行新的研究与设计;(2)提高了输电线路的弧垂要求,紧凑型输电线路要求高精度的弧垂数据要求,这要求施工技术必须要有新的提高;(3)紧凑型线路要求六分裂结构,对直线电塔的绝缘子串有了新要求,对安装操作提出了新的安装工艺挑战。以往的杆塔横担上无挂孔,而现代安装技术中要求要有施工的挂孔设计,所以会增加塔线的安装程序和技术难度;(4)对相间档距超过800米的导线要使用新型材料制作的间隔棒,这需要对工艺进行重新研究;(5)三相导线采用线悬垂串工艺,无疑又增加了一项施工技术

难度。

3 500kV紧凑型输电线路架线施工的措施

3.1 线路的设计特点

紧凑型输电线路一般会用于地形复杂、海拔高的地区,因其较大的塔身几何结构与塔的重量,提高了相导线的间距要求。我国普遍应用的紧凑型线路施工方案为1牵6张力放线方式与“4+2”方式。

3.2 张力放线的施工方法

3.2.1 选择放线施工方法。根据线路布局的地形情况,复杂地形和高海拔地形需要采用张力要求高的“4+2”张力放线方法,这是由于该方法的牵张力大,对于高海拔中长距离的区段放线有优势。若地形平稳、地势良好,应采用1牵6的张力放线方法,因为1牵6的方法对牵张力的要求略低。

3.2.2 “4+2”放线方式。“4+2”放线方法中采用五轮放线滑车,总共需要2个滑车就可完成放线,牵张机具的设计是前面4根导线,后面2根导线,将导线通过前后两次牵引,以展放6根同相线。当滑车要悬挂时,应在已经安装了合成绝缘子处采用钢套滑车悬挂,之后在附件安装时再安装绝缘子,避免绝缘子受到损坏。在6相导线的张力展放中,两个放线滑车应合并轮子,以调节相线的张驰度,在此过程中,应尽量保持两个滑车的平衡性。直线塔和耐张塔中滑车的使用方式不一样,前者是实施临时性的挂架方式进行安装,后者是进行独立的悬挂。临时性挂架比较麻烦,为了使得放线后保持滑车的平衡性,要根据具体计算参数为准。放线中的牵张场应选在空间宽敞的地方,地势应平稳,最好在交通便利处,并且应位于无跨越档、导线接头内。因为临时挂架的臂长不均匀,同时放线会导致挂架发生倾斜引起碰撞,所以要将两线和四线先后按顺序展放。在紧线操作中,要注意紧线精度,要把不同顺序放线的导线长度伸长到同一水平范围。紧线操作时要严控弧垂精度,防止上相线和下相线因弧垂偏差而导致安全事故。提线时先将四导线用三线和单线提线机提,后将两导线用三线机提。需要注意的操作是单线机提线要在拆除滑车和挂架后置于两导线的三线机中。随后的工作程序与常规500kV线路施工程序相同。

3.2.3 “一牵六”放线方式。“一牵六”放线施工中应用7轮6线的放线滑车,在直线塔放线中,上两相线和下相线的滑车使用滑车的方式不同,前者是用金环与梭形垫板与V型的绝缘子串相连,后者使用一特定钢绞线吊具悬挂。耐张塔的滑车悬挂方式是均挂两滑车,滑车钢绳套应对折,两上相线端分别悬挂于对应的8形螺栓处,下相相线挂于跳线横担处的两个8形螺栓处。用撑铁将两滑车撑上。展放导线时,先用人工放导线,随后采用牵张机将牵引绳展放,同时将6导线进行牵引。六线同时牵引,需要和常规大牵引机与张力机同时工作,为满足放线需求,架空空间要求大于常规架空施工。对应导线的驰度方面,由于偏差要求较低,所以可采用地面设置经纬仪观察驰度精度,紧凑型500kV线路施工和常规500kV线路的施工对驰度及耐张挂线程序相同,紧凑型线路施工要求“收余线”应在紧线前,即预紧线。紧线时,首先要放平双滑车,使之并轮平衡;然后观察经纬仪的数据,调平滑车;最后再进行弛度精度的观测。

3.3 间隔棒的安装

子导线间的间隔棒能保障电场的安全性安装措施,它是在紧线工程后进行的间隔棒安装工序,它在“一牵六”放线方式中采用测距仪与6线飞车施工。

3.4 跳线安装

紧凑型500kV线路工程中的跳线通常采用常规500kV线路跳线方法,就是传统的“本线摸法”安装跳线。紧凑型线路安装跳线工序会比较复杂,但在没有受过新型跳线培训的施工员采用“本线摸法”将跳线进行精确制作与调整,同样会达到外观整齐、具有线条美感的跳线工艺。

金属加工工艺范文第4篇

关键词:金属;切削;加工工艺;方法

机械制造的发展对机械部件的精准度提出了新的要求,金属切削对于零部件的生产具有重要意义,可以说,零部件的质量是由金属切削所决定的,因此,金属切削技术的不合格会导致企业生产的零部件出现质量问题,进而会制约我国机械制造企业的进步和发展。但是我国的金属切削工艺还相对比较落后,制约了我国机械行业的发展。因此,企业在生产过程中要重视对金属切削技术人员的培养,与先进的国家进行经验交流,切实提高我国金属切削加工工艺水平。

1 金属切削工艺的原理和核心工艺

金属切削是利用刀具以及各种切削工具依据设计手稿或者是CAD图纸将一块金属材料上的多余部分切除,再进行打磨,使得最后的工件能够符合形状、质量要求的一种零部件加工工艺。在切削金属时,刀具和金属之间一定要发生相对运动,正是这种两者摩擦的过程,就会切掉一部分的材料,在切削的过程中都会产生切屑,切屑的存在会使表面粗糙,所以在切削的过程中要使这些切屑脱落。另外,在进行金属切削时一定要注重力度和角度问题,选择合适的角度能够提高切削的效率。

金属切削是为了得到形状、精确度都达到标准的零部件,因此金属切削中运用的刀具在切削加工工艺中具有重要的地位。切削所使用刀具的性能将会直接影响零部件的好坏,不合适的刀具会造成零部件的精密度达不到要求或者是表面粗糙等,这些会影响整个机器的制造。因此,在切削时,要根据切削工件的特点选择最适合的刀具。

2 切削中的要点

2.1 切削力

切削过程中包含好多的力,有摩擦力、法向力等,在切削过程中要运用测力仪进行测量,选择合适的施力角度和力度的大小。

2.2 切削加工的工具

金属切削的原理就是通过刀具和金属之间的相互运动,完成对工件的切削。刀具材料是切削工艺中的必备工具,刀具的性能和工件的质量密切相关,要想制作高水准的机械设备,首先要选择合适的金属切削工具。

切削工具一定要坚硬,才能完成切削运动。另外要依据不同的材料选择不同材料和坚硬程度的刀具,刀具并不是越坚硬越好。现在我国用来制造刀具的材料主要是高速钢、碳素工具钢和合金工具钢。其中碳素工具钢的使用促进了我国金属切削技术的发展,碳素工具钢硬度较大,而且耐热性优良,价格便宜,是理想中的刀具材料。因此,在一般的切削中我们就可以选择这种材料的刀具,对于那些硬度比较大,而且精细度要求很高的零部件,我们可以采用金刚石来进行切削,在提高切削效率和质量的同时,要兼顾效益问题。

刀具由于受热和相互摩擦会受到一些磨损,刀具的磨损就会影响部件的精确度,因此,在切削工程中要根据长期的经验总结刀具的寿命,以及时购买足量的刀具,保证切削的效率。

2.3 切削温度

切削过程中由于各种摩擦力的存在,导致工件各个部位的温度不同,温度的变化会影响切削过程中形成的积屑瘤的大小。另外,温度过高会影响刀具的寿命,过高的温度会使得刀具的磨损程度加重,因此,在切削的过程中要密切关注工件各个部位温度的变化。

3 金属切削的方法

3.1 按照切削工艺进行分类

切削工艺是通过刀具和工件之间的相对运动来实现切削过程的,切削的工艺方法有许多种,但是都是依据相同的原理进行的,金属切削中常见的方法有:刨、磨、超精加工、划线、据等,这些技艺在切削中的应用提高了零部件的精确度和质量。

3.2 按照表面形成方法进行分类

常见的方法有滚切法和成形法。滚切法是把刀具和工件的位置都进行了固定,这样,刀具和工件之间的相对运动的位置也就决定了。这种切削方法一般是用来生产精确度不高的工件,同时可以进行同规模的大规模生产,不利于进行小规模的生产,容易浪费时间。成形法又叫做仿形法,这种方法先是依据成型工件的表面形状和轮廓制作出模拟成形面。然后将相应的位置安上刀具,就可以进行金属切削,但是这种切削方法和切削力有限,因此,比较适合切削量较小和材质相对较软的工件。

4 提高切削工艺的方法

4.1 正确的选用刀具

刀具的性能决定着工件的质量,因此,我们在选用刀具时,在兼顾效益的同时,应该尽可能的选用耐高温和耐磨性能好的刀具,这样的刀具使用寿命一般也会长。另外,要根据不同的材料和加工方法选择不同类型的刀具,比如:工件进行打磨时,就应该选择精细、较硬磨粒的刀具,在进行锯切时,一般只要选用硬度较大的刀具就可以。另外,在选用刀具时,要选择寿命长、性能相对比较稳定的刀具,以避免在一次切削工具中由于刀具故障导致工时延迟现象的发生。

4.2 使用切削液

切削液又称为冷却液,金属切削的技术核心就是通过切削工具和工件之间的相对运动来完成切削过程,这个过程就会存在很大的摩擦力。将切削液倒在切削的位置,一方面可以起到降低摩擦,即滑的作用,同时,能够降低这个区域的温度,对于保护刀具和提高效率都具有重要的意义。另外,切削液中一般是油质的,倒在切削区,能够将刀具完全的包裹起来,避免刀具与空气进行直接接触,降低了刀具的氧化速度。

4.3 测量好刀具切削的角度

在进行切削时,要根据测量找好刀具切削的角度,这样既能够提高切削的效率,同时也能够提高工件的精密度。一些有经验的切削工人往往会被多家公司聘用,正是因为他们能够找好这种角度,既可以节约力气,又可以提高质量。

5 结束语

机械制造业的发展,对金属切削工艺提出了新的要求。金属切削的精确度越来越高,这就要求我国不断的提升我国金属切削的技术水平。我国的金属切削工艺历史悠久,但是,由于我国近现代的重工业起步比一些发达国家晚,因此,我国的金属切削工艺与外国的切削工艺还存在着一定的差距。因此,我国要科学合理的借鉴国外先进的经验,不断完善和发展我国的金属切削工艺。

参考文献

[1]孙滨琦.论述金属切削加工工艺的方法[J].民营科技,2014(9):3.

金属加工工艺范文第5篇

关键词:金属材料;工艺加工;方法研讨

1 关于金属工艺的类型

在当前的工业活动中,广泛的使用金属,它被大量的用来生产各种类型的产品。由于产品的使用方向是不一样的,因此其采取的工艺也完全不同,作者具体的分析了几类常见的工艺。

1.1 铸造工艺

所谓的铸造,具体的说是把金属物质在加高温之后变为液态,进而结合工作的规定将其制造成所需状态的一类工艺。在使用时必须结合金属物质的特点来分析,当前干扰铸造水平的要素非常多,比如材料是否能够很好的流动,是否有较高的收缩水平等。干扰铸造物质特性的关键要素是其成分,以及浇筑的气温等,通常来讲,当碳的含量非常高时,它的流动性就会降低,此时铸造工作也无法有效的开展。

1.2 锻压工艺

在使用锻压工艺时,必须要掌控好材料的特性,要确保它们有很好的抗冲能力,而且对于变形也有较高的规定,而材料的特点是由其构成要素以及制作条件决定的,假如变形差就会导致其在压力的干扰之下,出现缝隙,此时就会无法得到我们所需的形状。

1.3 焊接工艺

所谓的焊接工艺,具体的说是将材料制作为合乎规定的产品而展开的一类活动。我们在评判该种措施是不是合理时,常会分析焊接以后的金属是不是有缝隙,或是有气孔,以及它能否长久的使用。在运用时必须要确保焊接头的力学特征明显,而且要确保其不会明显收缩。

1.4 切削工艺

切削工艺指的是结合工作规定,对需处理的金属切割或是削切。在运用时会受到很多要素干扰,比如材料导热能力,结构以及硬度等等,通常来说,如果硬度很大,此项技术产生的效果就越弱,就越无法获取我们所需的效益。

1.5 热处理性能

具体来讲,它指的是金属在接受热处理时体现出来的特性。比如它的淬透能力等。

2 金属材料加工方法

结合物质的不同性质以及产品生产的规定,可以使用不一样的措施开展加工工作。当前行业使用较多的措施有如下的一些,接下来具体分析。

2.1 热处理加工方法

关于其原理以及特征。具体来讲,该措施是把金属物质放到特定的介质里面,借助加热或是冷却的措施,将金属本身的结构变化,此时我们就可以将物质的特性进行改变,最终能够控制好它的性能。该措施在当前的工业生产工作中的应用几率非常大,而且还是一个不可或缺的措施,经由热处理将材料的特性改变,以此来获取完全不一样的使用要求。关于工艺。该措施涵盖三个具体的步骤,即加热以及保温和冷却。接下来具体分析,在加热时,零件处在大气里面,此时其会被氧化,这对处理以后的零件来讲负面效益会十分明显。所以我们经常将其放在可保护的环境中对其加热,或是采用包装的措施对其处理。在处理时还必须控制好气温。对于处理工作来讲,它的气温高低非常关键,只有确定好温度,才能够开展后续的工作。在实际的工作中,加热的气温并不是固定的,它会因为材料的不同以及工作目的的不同而表现的不一样,不过通常都将其最少加热超过相变气温。同时转变会利用很多的时间,所以如果零件的满足温度的规定,还要在这个温度状态之下持续一些时间,确保里外的气温是完全一样的,此时组织就可以很好的变化。对于冷却来讲,它是当前工作中非常关键的内容,具体的冷却措施会因为工艺的差异而有所差别,最主要是要掌控好速率。

2.2 高速切削加工方法

关于其原理以及特征。对于高速切削活动来讲,它不像是常见的处理方式,由于它的速度非常快,因此碎屑等还没有时间接触零件就被吹走了,此时零件就可以始终处在一种冷却的情形之中,不会导致它因为受热而出现形状改变。它所需的费用不多,但是零件的精确性非常好。

选择好刀具。高速切削加工方法会产生较高的温度,对切削率要求也很高,所以对刀具的选择要求很高,刀具必须满足硬度高、热硬性好的要求,一般使用比较多的是PCBN刀具、陶瓷刀具和新型硬质合金及涂层硬质合金刀具。

关于工艺。高速切削加工工艺不同于一般的切削工艺,特别对硬质金属材料的切削,它要求充分考虑到每道工序的协调问题,记录前道工序加工后的材料剩余量,以便指导后续的加工操作。所以在进行切削任务前需要把粗加工、半精加工和精加工作为一个整体来规划,并设计出合理的加工方案。

2.3 温挤压成形加工方法

温挤压成形加工方法是指利用金属材料的塑性成形特性,将金属材料放入到挤压模具的型腔内,再通过增加外挤压力的方式来使金属材料形成具有一定尺寸规格和力学性能的形状。

设计挤压模具。模具的作用是用来控制金属材料的流动的,为提高金属材料的塑性,需要向变形区内施加强大的压力,因此设计出尺寸、形状、精度符合要求的模具是核心关键所在。挤压成形模具的设计环节一般包括分析零件的工艺性、选择工艺方案、设计工序、计算挤压压力的大小、选择压力机、设计模具结构以及绘制模具图纸。

控制挤压温度。在对金属材料进行挤压的过程中,当挤压的温度越高时,变形抗力就会变得越低,也即是说可以降低挤压力,减少施加机械能。当挤压温度升高到一定程度时,金属材料的表面就会由于撕裂造成组织粗大。从经验实践中发现当进行复合挤压时,温度加到150-200℃时,所需要施加的挤压力会减少10%。在冷挤压难以成型的材料在热挤压时,即使变形达到60%到70%时,挤压压力也不会有太大的变化,大量的实践数据表明,用于温挤压的温度以400-500℃为宜。

热挤压冷却方法。挤压模具连续在高温下作业,强度和硬度都会明显下降,从而影响到模具的使用寿命。在小批量生产作业时,可以通过压缩空气的方法来冷去凸凹模部分,如果在大批量生产时则需通过以下方法冷却模具:各一次行程才送一个毛坯,以保证有足够的时间给模具冷却;在模具内开孔冷却;对模具进行喷雾冷却。

3 结束语

金属材料由于化学成分不一样,其所具有的力学特性、物理特性都不一样,其所对应的加工方法也不一样。所以,在对金属材料进行加工时要根据其本身固有的特性和加工目的而采取合适的加工,从而实现对金属材料的使用。

参考文献

[1]涂黎明.浅谈金属材料工艺性能的维持措施[J].企业技术开发,2012(26):36.

[2]王建平.硬质金属材料高速切削加工研究[J].机床与液压,2013(15):21.

[3]张立君.脆性金属材料的数控车削技术[J].机床与液压,2013(16):41.

[4]郑峰.常用金属材料手册[M].化学工业出版社,2007.

[5]胡宏楠,董明.颗粒增强金属基复合材料切削加工工艺的新进展[J].金属材料与冶金工程,2009(1).