首页 > 文章中心 > 纤维素水解

纤维素水解

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇纤维素水解范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

纤维素水解

纤维素水解范文第1篇

关键词:木质纤维素水解液;抑制物;酿酒酵母

引言

我国每年产生数量庞大的固体废弃物,焚烧已成为最常见的固废处置方式,该方式不仅浪费资源,还严重影响空气质量。报道显示微生物可将生物质转化为液态、气态的燃料,具有能耗低、转化效率高和不产生二次污染等优点,因此,以生物质材料作为原材料开发新能源已受到世界范围的关注[1]。

农作物秸秆和木材废弃物在固体废弃物中占重要地位,其主要成分是木质纤维素。木质纤维素是一种典型的生物质,利用微生物代谢木质纤维素产生清洁能源已成为研究热点之一。目前,酿酒酵母产乙醇被广泛应用于木质纤维素的资源化处理工艺,其具有成本低、原料丰富等优点。在酿酒酵母利用木质纤维素发酵之前,需对木质纤维素进行预处理和糖化,此时木质纤维素中的纤维素与半纤维素等转化为可发酵糖,在纤维素与半纤维素等大分子物质的分解过程中,引入了一些小分子化合物,这些物质对发酵有抑制作用,统称为抑制物。

1 抑制物的种类及抑制作用

木质纤维素水解液中的抑制物大致分为三类:弱酸类、呋喃类和酚类化合物。弱酸类主要包括甲酸、乙酸和乙酰丙酸,弱酸会破坏细胞内外的渗透压平衡,并进入细胞内部,这部分弱酸在细胞内部进一步解离,使得细胞内环境酸化,影响细胞内部的酶促反应,最终抑制细胞的生长[2]。呋喃类抑制物主要是糠醛和HMF,这类物质对微生物中的乙醇脱氢酶、丙酮酸脱氢酶和醛脱氢酶产生抑制,减缓酿酒酵母的生长;醛类抑制物会产生细胞内活性氧,导致DNA分解,进而阻碍RNA和蛋白质的合成[3、4]。相对于其他类型抑制物,酚类抑制物的毒性更强,低浓度的酚类就可以抑制酿酒酵母的生长,研究表明,低分子量的酚类化合物对酿酒酵母生长具有更高的抑制作用[5]。

2 降低抑制物对酿酒酵母抑制作用的措施

2.1 木质纤维素水解液脱毒

发酵前对木质纤维素水解液进行脱毒是降低抑制物抑制作用的有效途径。脱毒方法主要分为物理法、化学法和生物法,物理方法包括真空干燥浓缩、蒸煮、活性炭吸附、离子交换吸附和溶剂萃取等,这些方法可将水解液中的有毒物质在不改变分子结构的前提下去除,不同处理方法的去除效率具有差异[6]。化学方法是利用各种碱性物质(如NH4OH、NaOH、Ca(OH)2等)及过量石灰法对水解液进行处理,通过化学反应改变水解液中的成分以降低抑制物毒性[7]。生物方法是利用特定酶或微生物脱毒,其中,漆酶是一种常用的脱毒酶,通过氧化聚合反应将毒性较高的小分子量酚类化合物转化为毒性较低的大分子量酚类化合物[8]。

2.2 提高酿酒酵母对抑制物的耐受性

除了减少木质纤维素水解液中的有毒物质,还可提高酿酒酵母对抑制物的耐受性,目前比较常用的方法是基因工程方法、诱变方法和驯化育种方法。基因工程方法是通过添加、敲除或高表达某一种或几种与抑制物代谢相关的基因以提高酿酒酵母对抑制物的耐受性的方法。改造基因可以直接、快速地使酿酒酵母表现出我们所期望的特性,但木质纤维素水解液中的抑制物种类繁多,基因工程方法难以使得酿酒酵母同时具有多种抑制物耐受性,且酿酒酵母的新陈代谢途径复杂,改造基因可能使得酿酒酵母失去原本的优良特性[9]。诱变方法以自然突变为依据,利用诱变剂加快酿酒酵母细胞基因突变的速度,在短时间内产生大量突型酿酒酵母,经过进一步的筛选,可获得具有抑制物耐受性的酿酒酵母,而诱变方法具有不确定性和诱变范围广等缺陷,因此需大量的诱变型细胞增加获得目标菌株的几率,且诱变剂可能损坏出发菌株原始基因,丢失优良特性。驯化育种是一种模拟自然选择的过程,根据生物和环境共同进化的规律,对微生物施与一定的选择压力,使得微生物在自然突变的基础上定向进化。驯化方法中存在的环境压力使得微生物突变具有明确方向,可在短时间内富集突变子,在长期的驯化过程中,菌株的优良性质可以在代际之间传递,增加了优良性质的稳定性[10];驯化育种的不足之处在于菌株的突变机理尚未明确,难以通过其他手段获得该菌株。

3 结束语

木质纤维素水解液中的抑制物会影响酿酒酵母的发酵效率,降低代谢产物乙醇的浓度,因此需采取措施降低抑制物对酿酒酵母的抑制作用。将水解液脱毒与酿酒酵母改进进行对比,水解液的脱毒成本较高,不利于木质纤维素资源化利用的工业化发展,因此有必要提高酿酒酵母对抑制物的耐受性。木质纤维素水解液中抑制物的组分与原材料种类和预处理方式密切相关,不同改良酿酒酵母的方法各有其优缺点,在实际应用中可将多种方式有效结合,有利于获得具有较高耐受性的酿酒酵母。

参考文献

[1]钱伯章.生物质能技术与应用[M].北京:科学出版社,2010.

[2]Palmqvist,E.,Hahn-H gerdal,B.Fermentation of lignocellulosic hydrolysates.II:Inhibitors and mechanisms of inhibition. Bioresour[J].Technol,2000(74):25-33.

[3]Almeida J R M,Modig T,Petersson A, et al.Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J].Journal of chemical technology and biotechnology,2007,82(4):340-349.

[4]Ma M,Liu Z parative transcriptome profiling analyses during the lag phase uncover YAP1,PDR1,PDR3,RPN4,and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae [J].BMC genomics,2010,11(1):660.

[5]Palmqvist E,Hahn-H gerdal B.Fermentation of lignocellulosic hydrolysates.II:inhibitors and mechanisms of inhibition[J].Bioresour Technol,2000,74(1):25-33.

[6]Almeida JRM,Bertilsson M,Gorwa-Grauslund MF,et al. Metabolic effects of furaldehydes and impacts on biotechnological processes[J].Appl Microbiol Biotechnol,2009,82(4):625-638.

[7]Palmqvist E,Hahn-Hagerdal B.Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification[J].Bioresour Technol,2000,74(1):17-24.

[8]Larsson S,Cassland P,Jonsson LJ.Development of a Saccharomycescerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase[J].Appl Environ Microbiol,2001,67(3):1163-1170.

纤维素水解范文第2篇

关键词:木质纤维;预处理;进展

作为世界经济支柱的石油资源预计在数十年左右将会枯竭,因此,石油替代品的开发研究迫在眉睫。目前有很多国家在研究以木质生物资源为原料用生物转化法制备燃料乙醇,以替代或部分替代储量有限的石油。

木质生物资源的主要成分是纤维素、半纤维素和木素。其中,纤维素、 半纤维素是可发酵糖的来源,含量占66%~75%(纤维质原料的绝干重量)[1]。由己糖通过酿酒酵母发酵生成乙醇是很成熟的工艺,当采用纤维素酶水解木质生物资源制造乙醇时,纤维素酶必须接触吸附到纤维素底物上才能使反应进行,因此,纤维素对纤维素酶的可及性是决定水解速度的关键因素。木素的存在阻碍了纤维素对酶的可及性,且纤维素的结晶结构以及木质生物资源的表面状态、木质生物资源的多组分结构、木素对纤维素的保护作用以及纤维素被半纤维素覆盖等结构与化学成分的因素致使木质生物资源难以水解。木质生物资源随着种类的不同,结构与化学成分存在差异,对酶的可及性也有所差异。总的来讲,未经预处理的天然状态的木质生物资源的酶解率小于20%,而经预处理后的水解率可达理论值的90%以上。预处理方法的选择主要从提高效率、降低成本、缩短处理时间和简化工序等方面考虑。理想的预处理应能满足下列要求:产生活性较高的纤维,其中戊糖较少降解;反应产物对发酵无明显抑制作用;设备尺寸不宜过大,成本较低;固体残余物较少,容易纯化;分离出的木素和半纤维素纯度较高,可以制备相应的其他化学品,实现生物质的全利用。

目前,木质纤维原料预处理的方法主要有物理法,化学法,物理化学法,生物法等。

1 物理方法

常用的物理方法有剪切和研磨,高温液态法,高温分解,微波处理,蒸汽爆破和高能辐射等。

1.1 剪切和研磨

Stuart等[2,3]发明了一种特殊的纤维素浆的高速剪切装置,可有效破坏纤维素与木质素和半纤维素的物理、化学结合,并显著降低纤维素大分子的结晶度,提高比表面积。研磨的方法有球磨、锤磨等,比较有效的是球磨。1946年有人用球磨制得了完全无定形结构的纤维素,但这种结构很不稳定,很快又重新形成晶态结构,这也是机械物理方法常有的弊端。球磨可使纤维素的结构松散和使微纤中和微纤间晶区间存在的氢键断裂[5,6]。使用三轮球磨处理木质纤维素,对糖化反应极为有效。但存在的问题是,机械处理方法的能耗很高,这无疑增加了生产成本。

1.2 高温液态法

液态热水法是指将物料置于高压状态的热水中,温度为200~230℃,处理物料2~15min使物料的40%~60%溶解,可除去4%~22%的纤维素,35%~60%的木素以及所有的半纤维素[3]。用酸水解生成的糖液,可使以单糖形式存在的半纤维素的回收率高于90%,并且,可使活性纤维转化率高达90%,但只能在较低固体含量(20%)下对物料进行处理,因此能耗较大,生产效率较低[7]。

1.3 高温分解

当原料在300℃以上的高温条件下处理时,纤维素快速分解成为气体和残留固体[8]。如果温度降低,分解速度就会减慢,而且还会产生挥发性的副产物。高温分解后的木质纤维经0.5mol/L H2SO4、97℃、2.5h水解可使80%~85%的纤维素生成糖,其中葡萄糖占50%以上[1]。在热解过程中加入氧会加快分解过程,当用氯化锌或碳酸钠作催化剂时,可以在较低温下实现对纯纤维素的分解。

1.4 微波处理

微波是频率在300MHz到300GHz的电磁波(波长1m~1mm)。微波处理能使纤维素的分子间氢键发生变化,处理后的粉末纤维素类物质没有胀润性,能提高纤维素的可及性和反应活性,可以提高基质浓度,得到较高浓度的糖化液,处理时间短,操作简单,但由于处理费用较高而难以得到工业化应用。

1.5 高能辐射

利用高能射线如电子射线、γ射线来对纤维素原料进行预处理,以获得所期望的纤维素聚合度和增加纤维素的活性,以减少溶解用或反应用化学药品造成的废水、环境等污染。文献[7]指出,电离辐射的作用,一方面是使纤维素聚合度下降,分子量的分布特性改变,使其分子量分布比普通纤维素更集中;另一方面是使纤维素的结构松散,并影响到纤维素的晶体结构,从而使纤维素的活性增加,可及度提高。但是辐射处理的成本较高,目前还很难用于大规模的生产。

2 化学预处理法

常用的化学法有臭氧法、酸水解法、碱法、氧化脱木素法、有机溶剂法等。

2.1 臭氧分解法

臭氧可以用来降解麦草、甘蔗渣、干草、花生、松木、棉杆和杨木锯末等许多木质纤维原料的木素和半纤维素。该法中木素受到很大程度的降解,而半纤维素只受到轻微攻击,纤维素几乎不受影响。臭氧预处理的杨木锯末酶法水解得率为0~57%,木素含量从29%降低为8%。臭氧分解有下列优点:(1)高效脱除木素;(2)不产生有毒的阻碍生物过程的化合物;(3)反应在室温、常压下进行。缺点是预处理需要大量的臭氧,生产成本昂贵[8]。

2.2 酸水解

主要有浓酸水解和稀酸水解两种。稀酸处理的优点在于半纤维素水解得到的糖量大,催化剂成本低,易于中和。但半纤维素水解产物五碳糖易在催化下进一步降解(糠醛)。稀酸水解过程为多相水解反应,硫酸浓度一般0.5%~2%,温度为180~240℃,时间为几分钟到几小时。Brink[9]为天然纤维素转化为葡萄糖提出了一个两步法过程。第一步,把半纤维素解聚为木糖和其他糖类。第二步,把纤维素解聚为葡萄糖。由于酸的浓度低,可以不必进行酸的回收。但葡萄糖的最大产率仅占纤维素的55%,并且有较多的解聚产物会阻止酵母发酵生成乙醇[10]。法国在1856年即开始进行了浓硫酸水解法进行乙醇生产。浓酸水解过程为单相水解反应,纤维素在浓酸作用下首先溶解,然后在溶液中进行水解反应。浓酸能够迅速溶解纤维素,但并不是发生了水解反应。浓酸处理后成为纤维素糊精,变得易于水解,(纤维素经浓酸溶液生成单糖,由于水分不足,浓酸吸收水分,单糖又生成为多糖,但这时的多糖不同于纤维素,它比纤维素易于水解)但水解在浓酸中进行得很慢,一般是在浓酸处理之后再与酸分离,使用稀酸进行水解。传统的酸水解流程包括固定水解法、分段水解法和渗滤水解法。一般采用连续渗滤反应器,固体物料充填其中,酸液连续流过。这样水解所产的糖可连续流出,减少了在床内停留时间,相应也减少了糖的进一步反应。也有人提出了两步法稀酸水解。首先原材料用0.5~2.5 mol/L的稀硫酸处理,约有50%的半纤维素转化为可溶性的低聚糖或单糖, 然后在62.5%~87.5%的液体乙醇中,用2mol/LH2SO4处理,脱除木素。通过以上两步,总纤维素得率>60%[11]。近年来,人们还研究了助催化剂的作用。即用某些无机盐(如ZnCl2,FeCl3等)来进一步促进酸的催化作用[11]。加电解液NaCl溶液可观察到非均相稀酸水解速率的提高,酸解速率与添加的电解液的浓度成线性关系。还有人尝试在渗滤反应器酸解过程中添加非水溶剂。如在稀硫酸中使用丙酮,葡萄糖产率为83.4%,不用丙酮,产量为65%。这表明,在适合的糖化条件下,可用丙酮、酸、水混合体系[12]。酸解法已有近一百年的历史,发展至今,仍存在许多问题,如酸回收问题、设备腐蚀、工程造价等。另外,酸水解产生大量的副产物如甲酸、乙酸、糠醛、5-HMF(5-羧甲基糠醛)和苯系化合物,对后续发酵有相当的抑制作用。使得乙醇的产量和产率都不是太理想,因此酸法水解正逐渐被生物法所取代。

2.3 碱水解

某些碱可以用来预处理木质纤维原料,处理效果主要取决于原料中的木素含量。碱水解的机理是基于连接木聚糖半纤维素和其他组分内部分子之间(比如木素和其他半纤维素之间)酯键的皂化作用。连接键的脱除增加了木质纤维原料的多孔性。稀 NaOH 处理引起木质纤维原料润胀,结果导致内部表面积增加,聚合度降低, 结晶度下降,木素和碳水化合物之间化学键断裂, 木素结构受到破坏。 随着木素含量从24%~55%降低到20%, NaOH处理的阔叶木消化性从14%增加到55%。 但是稀NaOH预处理对于木素含量超过26%的针叶木没有效果。 对于木素含量低(10%~18%)的草类原料,稀 NaOH预处理是有效的[13]。

2.4 氧化脱木素

在过氧化氢存在的情况下木素可被过氧化物酶催化降解。采用过氧化氢预处理甘蔗渣可以增强其对酶水解的敏感度。在2%过氧化氢、 30℃条件下预处理8h,后续糖化作用中(45℃条件下经过纤维素酶水解 24h)大约 50%的木素和大部分半纤维素溶解,纤维素转化成葡萄糖的转化率为95%。Bjerre等[14]研究发现(20g/L麦草,170℃,5~10min)经氧化和碱预处理后水解,麦草纤维素转化成葡萄糖的转化率可达85%。

2.5 有机溶剂法

在有机溶剂法中,有机溶剂或水性有机溶剂和无机酸催化剂混合物可用来断裂木素和半纤维素内在的化学键。使用的有机溶剂包括甲醇、乙醇、丙酮、 乙烯基乙二醇、三甘醇及四氢化糠基乙醇。有机酸比如草酸、乙酰水杨酸和水杨酸可作为有机溶剂法的催化剂。在高温条件下无需添加催化剂即可获得满意的脱木素度。使用的溶剂经过排放、蒸发、浓缩和回收处理,既可降低成本又避免了阻碍微生物生长、酶法水解和发酵的化合物生成。

3 物理化学法

常用的物理化学法有蒸汽爆裂法、氨纤维爆裂、CO2爆破法、蒸汽爆裂与乙醇抽提结合法、氨冷冻爆破法等。

3.1 蒸汽爆裂法

这一方法主要指蒸汽爆破技术。蒸汽爆破是将木质纤维原料先用高温水蒸气处理适当时间,然后连同水蒸气一起从反应釜中急速放出而爆破,由于木质素、半纤维素结合层被破坏,并造成纤维素晶体和纤维束的爆裂,使得纤维素易于被降解利用。但蒸汽爆理后可能会提高纤维素的结晶指数[15]。最初的蒸汽爆破由Mason于1927年提出并取得专利[16]。此后各国的研究者进一步结合化学处理,使蒸汽爆破技术更加完善。蒸汽爆破与酸结合,分两步预处理。

软木质纤维,糖的回收率可大大提高,并可降低后续酶解过程的酶的用量[17]。蒸汽爆破杨木时加入NaOH,随碱浓度的增加,木质素脱除率可提高到90%[18]。蒸汽爆破的处理效果不仅与使用的化学试剂有关,而且与纤维材料的粒度大小有关。采用较大的粒度(8~12mm)不仅可节约能耗,而且可采用较剧烈的操作条件,具有较高的纤维素保留度,较少的半纤维素水解糖类损失,提高纤维素酶的酶解率[19]。

3.2 氨纤维爆裂

氨纤维爆破法比较相似于蒸汽爆破法,氨纤维爆破是指将物料置于高温高压状态的液态氨中,保持一段时间,然后将压力骤然释放,使物料爆破。

氨纤维爆破法适合于木素含量低的草本科植物、 阔材和农作物的剩余物的预处理,氨纤维爆破法可有效提高各种木素含量低的草本科植物、阔叶材和农作物剩余物的糖化率[20]。Yoon等以氨的水溶液在连续式反应器中对木质纤维原料进行预处理,把5%~15%的氨的水溶液注入有木质纤维原料的柱式反应器,使木质纤维原料被氨浸泡,反应温度为160℃~180℃,氨的水溶液的流速为1ml/cm2min,反应时间为14min。结果显示,脱除木素效果好,并且木素脱除的程度可以控制。木素是影响酶解的主要因素之一,因此,脱除木素可以降低酶的量。氨纤维爆破法对半纤维素的去除程度不高,避免了半纤维素损失; 破坏纤维素的结晶结构提高纤维素的酶解可及性;同时处理过程中产生的抑制性降解产物少。由于氨的成本高,为了降低成本,避免对环境造成污染,在预处理结束后,需对氨进行回收再用。对氨的回收是在温度高达200℃的高温下进行的,用氨的过热蒸汽来蒸发和剥离残留在处理过的木质纤维原料上的氨,然后,通过调节压力,将气态氨从反应器里排出,再回用。氨回收的设备成本及能耗高,并且氨本身的成本高,使得氨纤维爆破法的成本高,无法推广。

3.3 CO2爆破法

与蒸汽和氨爆破法一样,CO2爆破法也是对木质纤维原料预处理的方法。所不同的是该方法处理过程中CO2必须形成碳酸以增加水解率。Walsum[21]等使用CO2爆破法对玉米秸秆进行预处理,结果表明:CO2爆破法处理后的玉米秸秆比水蒸汽爆破后的玉米秸秆水解后木糖和呋喃糖得率明显提高,处理的效果与CO2的压力有关,同时也证实了碳酸可以作为后续水解的催化剂。比较甘蔗渣和废纸的蒸汽爆破、氨爆破和CO2爆破预处理,发现CO2爆破法比氨爆破法更加有效,而且不产生抑制后续水解的副产物。

3.4 蒸汽爆裂与乙醇抽提结合法

蒸汽爆裂与乙醇抽提结合法是用高压饱和蒸汽处理生物质原料,然后突然减压,使原料爆裂降解,然后通过原料洗涤再进行乙醇抽提。Hongzhang, Chen[22]等用该方法对小麦秸秆进行了预处理,工艺为:先用压力为1.5MPa, 湿度34.01%,处理时间4.5min(无酸无碱),突然减压爆裂降解。接着对原料进行洗涤,再用乙醇进行抽提,工艺为:乙醇40%,纤维/抽提液1:50(w/v), 温度180℃ ,抽提时间20min, 0.1% NaOH。结果表明:通过该法处理后的原料中半纤维素、木质素含量明显降低。

3.5 氨冷冻爆破法

氨冷冻爆破[23]是利用液态氨相对较低的压力(1.5MPa左右)和温度(50~80℃)下将原料处理一定时间,然后通过突然释放压力爆破原料。在此过程中由于液态氨的迅速汽化而产生的骤冷作用不但有助于纤维素表面积增加,同时还可以避免高温条件下糖的变性以及有毒物质的产生。氨冷冻爆破中采用的液态氨可以通过回收循环利用,整个过程能耗较低,被认为是一种较有发展前途的预处理技术。

4 生物预处理

在生物预处理法中,褐腐菌、白腐菌和软腐菌等微生物被用来降解木素和半纤维素。褐腐菌主要攻击纤维素,白腐菌和软腐菌攻击纤维素和木素。生物预处理法中最有效的白腐菌是担子菌类。Azzam A M[24]研究了19种白腐菌预处理麦草效果,发现在5星期内35%的麦草被糙皮侧耳菌(Pleurotus ostreatus)转化成还原糖。为了降低纤维素的损失,可采用较少纤维素酶变种的侧孢霉属白腐菌 Pulverulentum 来降解木片中的木素。据报道[25]两种白腐菌对百慕大草有降解作用,用白腐菌 Ceriporiopsis subvermispora 和 Cyathus stercoreus 预处理6周,生物降解率分别提高到29%~32%和 63%~77%。

白腐菌黄孢原毛平革菌( P.chrysosporium )在二次代谢过程中产生木素降解酶、木素氧化酶和依赖锰过氧化物酶。其它酶,包括多酚氧化酶、漆酶、H2O2产生酶和醌还原酶也能降解木素[26]。生物预处理的优点是能耗低,所需环境条件温和。但是生物预处理后水解率很低。

5 结 语

木质纤维生产燃料酒精已成为一个热门研究课题,预处理技术作为木质纤维转化为能源的关键步骤,也成为科研工作者关注的焦点。传统的化学处理、机械处理技术等耗能较多,且不同程度地存在环境污染;蒸汽爆破具有处理时间短、减少化学药品用量、无污染、能耗低等优点,是很有发展前途的预处理新技术;生物处理技术从成本和设备角度考虑,占有独特的优势,但处理效率较低,利用基因工程和传统的生物技术对菌种和酶进行改造,提高酶活力,降低酶成本,也有望应用于大规模工业生产;利用多种预处理方法相结合,开发更加高效、无污染且成本低的预处理手段,将是今后木质纤维原料预处理的发展趋势。木质纤维原料预处理问题的解决,将为今后以木质纤维为原料的燃料酒精工业化生产打下坚实的基础。

参考文献

[1] Stuart Earnest D,et al. Treatment method for fibrous lignocellulosicbiomass using fixed stator device having nozzle tool with opposingcoaxial toothed rings to make the biomass more susceptible tohydrolysis[P]. US 5498766,1996.

[2] Stuart Earnest D. Treatment of fibrous lignocellulosic biomass byhigh shear forces in a turbulent couette flow to make the biomassmore susceptible to hydrolysis[P]. US 5370999,1994.

[3] Mosier N,Wyman C, Dale B,etal. Features of promising technologies for pretreatment of lignocellulosic biomass[J].Bioresource Technology,2005,96:673-686

[4] Shafizadeh F, Bradbury A G W. Thermal degradation of cellulose in air and nitrogen at lowtemperatures[J]. Appl. Poly. Sci., 1979(23): 1431-1442.

[5] Tossinari T,Macy C,Spano L Energy [J]. Biotechnology andBioengineering,1980,22:1689-1705.

[6] Koshijiima T,Yuka F,Muraki E,et al. [J]. Journal Applied PolymerSynposium,1983,37:671-683.

[7] Hacking A J. Electron treatment of cellulose for viscose fiber[J]. Chemical Fiber International,1995, 45(6): 454-459.

[8] Grethlein. [J]. J. Applied Chemistry Biotechnology,1978,28:296-308.

[9] Brink. Method of treating biomass material[P]. US 5536325,1998.

[10] Papatheofanous M G,et al. [J]. Bioresource Technology,1995,54(3):305-310.

[11] Zaranyika MF. [J]. Polymer Chemistry,1990,28(13):3365-3374.

[12] Ye Sun, JiayangCheng. Hydrolysis of lignocellosic materials for ethanol production:a rewiew[J].Bioresource Technology,2002,83:1-11

[13] Chosdu R, Hilmy N, Erizal Erlinda TB, et al. Radiation and chemical pretreatment of cellulosicwaste[J]. Radiat Phys Chem, 1993, 42: 695-698.

[14] Bjerre AB, Olesen A B, Fernqvist T. Pretreatment of wheat straw using combined wet oxidationand alkaline hydrolysis resulting in convertible cellulose and hemicellulose[J]. BiotechnologyBioeng, 1996, 49: 568-577.

[15] Morjanoff , P.J. , et al1 , 1987.Optimization of steam explosion as method for increasing

susceptibility of sugarcane bagasse to enzymatic saccharification.Biotechnol.Bioeng.29 ,733-741

[16] Mosier , N1 , et al1 , 2005.Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology96 , 673-686

[17] Nunes , A1p1 , J.Pourquie.1996.Steam Explosion Pretreatment And Enzymatic Hydrolysis of EucalyptusWood.Bioresource Technology 57 : 107-110

[18] Heitz M,et al. [J]. Bioresource Technology,1991,35:23-32.

[19] Ballestcros I,et al. [J]. Applied Biochemistry and Biotechnology,2000,84-86:97-110.

[20] Yoon H H,Wu Z W, Lee Y Y. Ammonia-recycled percolation process for pretreatment of biomass feedstock[j].Applied Biochemistry and Biotechnology,1995,51/52:5-19

[21] 许凤, 孙润仓, 詹怀宇. 木质纤维原料生物转化燃料乙醇的研究进展[J]. 纤维素科学与技术,2004, 12(1): 45-54.

[22] Hongzhang, Chen Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresource Technology; Feb2007, Vol. 98 Issue 3, p666-676

[23] Ward John Patrick,Grethelein Hans. [J]. Biomass, 1988, 17(3):153-163.

[24] Azzam A M. [J]. Biomass,1987,12(1):71-77.

纤维素水解范文第3篇

关键词:糠醛渣;乙酰丙酸;产率

我国每年能生产约数百万吨含有大量纤维素的糠醛渣,在提倡节约资源的今天,应充分利用糠醛渣中的纤维素来生产高附加值的化工产品。乙酰丙酸可用来制取各种各样的化工产品,用途极为广泛。因此,研究将废弃糠醛渣水解转化制取乙酰丙酸具有重要意义[1]。

本文通过考察各反应条件对乙酰丙酸产率的影响,寻求最优工艺条件,为糠醛渣酸水解制乙酰丙酸工艺的优化与放大研究奠定基础。

1 实验部分

1.1 实验原料与设备

糠醛渣取自本实验室玉米芯制糠醛所得,98%H2SO4、乙酰丙酸均为市售分析纯。实验使用100ml间歇式高压反应釜(巩义市英峪玉华仪器厂);DZ-2BC 型真空干燥箱(天津市泰斯特仪器有限公司);FA2004 电子天平(上海上平仪器公司);GC-14B型气相色谱(日本岛津制作所)。

1.2 实验原理与步骤

糠醛渣中主要成分为纤维素,糠醛渣中的纤维素在高温下催化水解可生成葡萄糖,葡萄糖再脱水生成5-羟甲基糠醛,最后5-羟甲基糠醛脱羧可生成乙酰丙酸[2]。

将一定量干燥后的糠醛渣和一定比例的硫酸水溶液与磁力转子加入到100ml高压反应釜中,加热反应一定时间后冷却。冷却后抽虑分离得到反应液和固体残渣,用气相色谱分析反应液中乙酰丙酸的量。残渣清洗干燥后称量固相残渣的质量。用Van Soest法[3]分析糠醛渣及乙酰丙酸渣的组成。

1.3 分析方法

采用气相色谱分析法来分析反应后的液体中乙酰丙酸的含量。气相色谱条件设定为:毛细管柱, 氢火焰离子化检测器;程序升温:初始柱温柱温100℃, 保持3 min,然后以10 ℃/min速度升至210 ℃,再保持10 min;汽化室的温度为240 ℃; 检测器的温度为250 ℃;进样量1 μL,分流进样;载气为高纯氮气。

乙酰丙酸产率(mol%)=;

失重率(%)= 。

2 结果与讨论

经Van Soest法测定糠醛渣中纤维素含量为54.4%,为了将糠醛渣中的纤维素最大程度的转化为乙酰丙酸,对硫酸浓度、温度、反应时间等因素进行考察,结果如下:

2.1 硫酸浓度对乙酰丙酸产率的影响

由文献[4]可知酸料比对纤维素的水解影响很大,在固液比1:20,温度200℃、时间40min的条件下,改变水溶液中硫酸浓度,结果如下:

由图1可以看出随着硫酸浓度的增加,失重率逐渐增加,纤维素水解率逐渐增加。在硫酸浓度由2%增大到6%的过程中,水解液中乙酰丙酸的摩尔收率也逐渐增加,再增加硫酸浓度,乙酰丙酸的收率基本趋于稳定,这是由于当无定形区内的纤维素链分子水解完毕后,酸分子较难进入结晶区,故水解速度变得缓慢而逐渐趋于稳定,所以乙酰丙酸的收率也趋于稳定。

2.2 温度对乙酰丙酸产量的影响

在固液比1:20、水溶液中硫酸浓度6%、时间40min的条件下,改变反应温度,结果如下:

由图2可以看出当温度升高时,乙酰丙酸的产率与原料失重率逐渐增加,反应温度为200℃时,乙酰丙酸产率最高为51.97mol%;继续增加反应温度乙酰丙酸的产率略有下降,而失重率基本不变。这是因为在一定温度范围内温度越高,反应体系中电子转移越快,反应速度越快,水解所需时间越短。而继续升高温度,糠醛渣中的纤维素已几乎完全分解,反应中的中间产物则在高温下生成其他聚合副产物,生成的乙酰丙酸也会在高温下分解,使乙酰丙酸的产率下降[5]。

2.3 反应时间对乙酰丙酸产量的影响

在反应温度200℃,固液质量比1:20,酸质量浓度6%,改变反应时间,结果如下:

由图3可以看出反应时间增加,乙酰丙酸产率增加,而失重率基本保持稳定,此反应时间范围内纤维素几乎已完全分解。反应时间40min时,乙酰丙酸产率最高为51.977mol%;继续增加反应时间乙酰丙酸的产率略有下降。这可能是因为反应时间过短,反应未达到平衡,乙酰丙酸的生成量较少,而反应时间过长,副产物逐渐增多,使乙酰丙酸收率下降。

2.4 固液比对乙酰丙酸产量的影响

在酸度6%、温度200℃,反应40min条件下,改变固液比,结果如下:

由图4中可以看出,固液比增加时,失重率减少,乙酰丙酸产率下降,说明在较稀的固相浓度的反应体系中,硫酸水解的氢离子与纤维素及5-羟甲基糠醛等中间产物的接触机率大大增加,从而能更好地催化纤维素水解且能够快速的将中间产物在催化作用下转化为乙酰丙酸。

3 总结

本文对糠醛渣酸水解制乙酰丙酸的实验进行了研究,考察反应条件对乙酰丙酸产率的影响,可得出在反应温度200℃,硫酸浓度6%,反应时间为40min,固液比1:20时,乙酰丙酸的产率最高,为51.9mol%。

参考文献:

[1]阳瑞.糠醛渣综合利用新探索[D].华南理工大学,2005.

[2]刘凯.稻草高压酸水解制备乙酰丙酸的研究[D].东北林业大学,2007.

[3]陈贤情,商晋,宋慧芳等.秸秆中纤维素/半纤维素和木质素的几种测定方法对比[J].中国农业工程学会2011年学术年会论文集,2011.

[4]张建立.以淀粉和木屑为原料制备乙酰丙酸的工艺研究[D].郑州大学,2006.

纤维素水解范文第4篇

1发酵抑制物解除策

抑制物解除的基本策略按照处理对象的不同,可以分为3种:木质纤维素物料脱毒、抑制物耐受菌筛选和过程控制优化。

1.1木质纤维素物料脱毒木质纤维素物料脱毒是指针对酸解、碱解、汽爆等预处理后的物料,通过一定手段,去除抑制物的过程。目前木质纤维素物料脱毒策略大体上可以分为物理法、化学法和生物法预处理3大类。物理法是直接去除水解液中的有毒物质,而化学法和生物法在于将有毒物质转化为无毒物质。目前,文献已报道的物理法包括水洗法、蒸发法、吸附法、萃取法、离子交换法、电渗析法等。水洗法常用于去除汽爆预处理产生的可溶性发酵抑制物[9]。蒸发法是一种简单地去除预处理水解液中乙酸和糠醛等挥发性抑制物的方法[10]。萃取法则是利用糖类与抑制物在萃取剂中溶解性的不同,用溶剂将抑制物从发酵溶液中分离出来,如采用乙酸乙酯萃取可以去除木质纤维素水解液中56%的乙酸和所有的糠醛、香草醛和4-羟苯甲酸[11]。吸附法主要利用树脂和活性炭具有的较强的吸附能力,去除水解液中的抑制物。一般地,脱毒的效果依次为阴离子交换树脂>中性树脂>阳离子交换树脂[12]。在碱性条件下,阴离子交换树脂能有效地去除阴离子和中性抑制物。活性炭对抑制物的去除效果受抑制物性质、水解液pH、处理温度和时间以及活性炭浓度的影响[13]。电渗析是将阴阳离子交换膜交替排列于正负电极之间,用特质的隔板将其隔开,组成淡化和浓缩两个系统,在直流电源的作用下,以电位差为推动力,利用膜材料的选择透过性,把电解质从溶液中分离出来,从而实现溶质的分离、浓缩、精制和提纯。双极性膜是一种新型的离子交换复合膜。它由阳离子交换层(N型膜)和阴离子交换层(P型膜)复合而成,在直流电场的作用下将水离解,在膜两层分别得到氢离子和氢氧根离子。双极性膜电渗技术目前已经应用于酸的生产和回收工艺[14-15]。化学法主要是通过加入化学试剂使水解液中的抑制物形成沉淀或者通过调节pH使抑制物解离以去除毒性化合物的方法。目前应用最广泛的是1945年Leonard和Hajny[16]报道的过量碱法(Overliming),即先向预水解液中加入Ca(OH)2,调节pH到9−12,使抑制物沉淀,经过离心后再向得到的上清水解液中加入稀硫酸,调节pH到5.5。生物法是指利用酶或者微生物的降解作用以达到改变抑制物结构、降低毒性的方法[17]。生物法可分为酶处理和微生物处理。由于酶具有专一性,所以酶处理只能去除特定的抑制物。漆酶对酚类化合物的去除作用是明显的,但对于乙酸、糠醛和羟甲基糠醛无去除作用[18]。灰盖鬼伞担子菌CoprinuscinereusIFO8371生产的过氧化物酶在H2O2存在的情况下,可以将香豆酸、阿魏酸、4-羟基苯甲酸、香草醛、紫丁香醛、香草酸6种化合物转化成高分子量化合物,从而提高拜氏梭菌Clostridiumbeijerinckii利用木质纤维素水解液发酵丁醇的性能[19]。微生物脱毒指的是利用丝状软腐菌Trichodermareesei等微生物,去除水解液中乙酸、糠醛和安息香酸衍生物等的方法。例如,利用丝状软腐菌处理蒸汽爆破预处理过的柳树半纤维素水解液,乙醇的产率可以提升3−4倍[20]。不同抑制物去除方法的优缺点对比见表1。

1.2抑制物耐受菌选育物理、化学或生物等脱毒方法只能部分去除纤维素水解液中的抑制物,无法完全克服抑制物对宿主细胞的毒害作用,并且生物脱毒的费用一般占到总投入的30%−40%,几乎是木质纤维素生物转化过程中投入最大的一项工序,使得诸如丁醇等发酵产物进一步降低了自己在同类产品中的竞争力[21]。因此,从发酵微生物本身出发选育高耐受的菌株,则成为解决底物抑制物问题的另一种有效方法。根据育种方式的不同,可以分为传统诱变、代谢工程和合成生物学。传统诱变是指通过一些强烈的化学诱变因子,如甲基磺酸乙酯(EMS)、亚硝基胍(NTC)、丙烯醇等,以及紫外线等物理诱变条件对出发菌进行诱变以获取抑制物耐受菌株的方法。由于单一的诱变方法具有菌种性状不稳定、突变方向随机等缺点,最近几年的研究多集中于复合诱变和菌种驯化。复合诱变是指利用多种诱变剂同时或者依次对出发菌进行处理。诱变剂的复合处理有一定的协同诱变效应,能增强诱变效果,并能将多种优良性状集中于同一菌株[22]。驯化是指让细胞长期在某一环境下生长,使其能够适应并具有良好性状的进化过程。驯化是在对机理知识理解不足的情况下获得具有目标特性菌株的有效方法。丁明珠等以酿酒酵母为出发菌种,通过紫外诱变结合驯化的方法筛选出1株对于糠醛、苯酚和乙酸都有很强耐受能力的菌株[23]。Keating等[24]利用糠醛、5-羟甲基糠醛和乙酸溶液对酿酒酵母进行驯化,得到了一株在纤维素水解液中具有良好发酵效果的酵母菌株。Liu等[25]也利用驯化的方法得到了能耐受糠醛的酵母菌株,从而实现了对纤维素水解液中糠醛抑制物的原位脱毒。分子生物学技术的发展,使得产溶剂梭菌代谢工程改造成为了可能,外源基因和调控因子的引入,使代谢工程有别与传统意义上的菌种改造。利用重组技术调控细胞中酶反应、优化代谢物的转化与转运,可以有效增强宿主细胞对于抑制物的耐受能力。杨雪雪[26]对酿酒酵母同源二倍体单基因缺失株文库进行筛选,经过初筛、复筛、验证等步骤,得到了163个糠醛抗性相关基因,并成功构造出双倍体单基因缺失株siz1/siz1,dep1/dep1,sap30/sap30和单倍体单基因缺失株siz1,dep1,sap30菌株,其对10mmol/L糠醛的抗性比各自相应的野生型菌株要高出100倍。Li等[27]利用酵母全基因组表达谱芯片,研究了酿酒酵母在转录组水平上对糠醛和醋酸的代谢响应,发现增强HMG1基因可以提高胞内糠醛的转化效率,从而增强菌体的耐受能力。Gorsich等[28]通过对酿酒酵母单基因突变体库的筛选找到62种与糠醛耐受性相关的基因。过表达其中的葡萄糖-6-磷酸脱氢酶基因ZWF1后,酿酒酵母可以在高浓度的糠醛下生长,这可能是因为过表达ZWF1使得葡萄糖-6-磷酸脱氢酶的活性增加,为糠醛还原酶或依赖NADPH的胁迫应激酶类提供了更多的还原动力(NADPH),进而提高了菌体耐受性。目前为止,所得到的各种抑制物耐受菌大多是通过驯化或者传统诱变筛选得到的。由于抑制物对于宿主细胞的抑制机理还不明确,很难通过定向设计获得具有高耐受性的菌种。因此,深入了解水解液中抑制物与细胞的相互作用关系,揭示细胞的脱毒机制,进而定向改造菌株,是当前代谢工程亟待解决的问题。

2新型抑制物解除工艺传统预处理方法

[29-31]、菌种改造[24]等方法,对于突破木质纤维素抑制物瓶颈、实现木质素产业化生产是必不可少的[32]。但它们只专注于单一的技术突破,忽略了木质纤维素本身所具有的结构特点[33]。实际上,木质纤维素独特的组成特点,可以为我们提供新的研究思路[34];基于此,陈洪章课题组提出了“源头降低抑制物——纤维素木质素分级转化”炼制模式,为木质纤维素的开发和利用,探索出了一条全新的工艺路线;并在此基础上,进一步提出了“原位脱毒——发酵促进剂设计技术”,它们共同组成了当前最新型的抑制物解除工艺。

2.1源头降低木质纤维素抑制物的分级转化炼制工艺木质纤维素原料具有结构复杂、不均一的多级结构。从细胞组成上,可以分为纤维状的纤维细胞和杂细胞(包括导管、薄壁细胞、表皮细胞等)。纤维细胞木质素含量较高,具有较发达的次生壁,因此厚度较大。薄壁细胞腔大、壁薄、长度短,其成分主要为纤维素[35]。由于结构和形态上的差异,这两类细胞所要求的预处理条件也是不同的[21]。纤维细胞,细胞壁木质化程度高,结构致密,受热过程中传质热阻力大,且不易被撕裂;薄壁细胞,壁薄而腔大,即有利于传质传热,有利于水蒸气闪蒸对其物理撕裂。因此,针对不同组织细胞分别优化处理条件,开发出了二段汽爆分梳技术。其具体的工艺过程如下:1)将汽爆压力控制在0.5−1.0MPa、维压1−10min,对秸秆原料进行第一段蒸汽爆理。2)通过气流分级装置,将第一段汽爆物料进行分级,得到薄壁组织和纤维组织。薄壁组织可以直接用于纤维素发酵。3)将分梳得到的纤维组织在压力为1−1.5MPa、维压时间为1−10min条件下进行二段蒸汽爆理。二段汽爆分梳工艺,不同于传统所指的二段汽爆工艺,前者采用较温和的汽爆条件进行第一段汽爆,通过气流分梳装置将第一段物料(薄壁细胞)分级,得到薄壁组织和纤维组织,再将纤维组织在适当的条件下进行第二段汽爆。该工艺可以实现纤维素组分的有效分离,即能保证纤维组织达到较好的预处理效果,提高纤维原料的酶解效果,又能避免薄壁细胞的过度降解,从源头控制了抑制物的产生,减少了脱毒单元操作的引入,简化了工艺。在二段汽爆以后,将汽爆后的秸秆渣送入1.2m3酸水解罐中,同时加入0.3%−0.5%的稀硫酸,物料和稀硫酸的体积比控制在1∶5−1∶7,在110−120℃的温度下水解0.5−1.0h,然后利用螺旋挤压机将水解液中的液体和固体分开,分别得到水解液和水解渣。水解液主要成分为非半纤维素,水解渣中主要为木质素和纤维素。继而采用2%的碱液提取残渣中的木质素,提取率可达96%,随后利用逐级酸性沉淀(pH5−2)分级木质素的方法,可以制得小于6kDa,6−10kDa,10−20kDa和大于20kDa等不同分子量范围的木质素,用于不同功能原料的开发。本课题组的研究发现,汽爆秸秆酶解液中并不存在糠醛、5-羟甲基糠醛与乙酸的抑制问题,而汽爆秸秆木质素降解物才是抑制丁醇发酵的主要原因[36]。由于从源头去除了木质素对于半纤维素和纤维素发酵的干扰,发酵液中的抑制物种类较少,浓度较低,经过简单脱毒(5%−10%的活性炭吸附室温下处理8−12h),即可用于正常的丁醇发酵。基于以上重大技术突破,组建出与其技术相配套的自主加工的工业化装置系统,完成了年产600t秸秆丁醇中试实验。所建立的技术工艺在中国吉林省松原市成功用于“30万t/年秸秆炼制”产业化生产。该生产线将为秸秆作为工业原料生产能源、材料和化学品提供新的思路和产业化示范。该工艺有以下几个特点:1)可以从源头降低抑制物的产生,简化了操作工序,降低了预处理的成本。2)通过组分分离,保证了发酵底物的纯度,提高了溶质的传质速率和酶的接触面积,提高了发酵效率。3)实现了秸秆全组分高价化经济全利用,通过经济分摊,增加了木质纤维素的经济竞争力。本实验室所提出的“源头降低抑制物——纤维素木质素分级转化”炼制模式,为木质纤维素发酵抑制物的解除及木质纤维素开发利用提供了全新的技术路线。

2.2基于木质纤维素发酵特点的过程强化工艺从发酵微生物本身出发,通过增加发酵液殊的物质,来提高微生物细胞对抑制物的耐受能力;或者选育出能够耐受木质纤维素水解液中各种抑制物,并具有较高发酵性能的微生物,以达到脱毒的目的,这种方法通常被称为抑制物的原位脱毒。在木质纤维素发酵过程中,往往微量级别(mg/L)的“特殊物质”,就可以实现目标产物发酵效率的成倍增长,具有巨大的开发价值。这些“特殊物质”称为发酵促进剂,大多数属于电子穿梭化合物,即具有多种氧化态和还原态的物质。它们在细菌代谢过程中扮演着重要的角色。外源添加这种电子穿梭化合物,可以改变胞内的电子流向,提高电子传递速率,进而理性调控生物胞内的能量状态和生理状态,提高菌体的耐受性和目标产物的合成能力。常见的电子穿梭化合物,包括中性红、亚甲基蓝、联苄吡啶、二磺酸蒽醌、Fe(OH)3和甲基紫精等。二磺酸蒽醌常用作腐殖酸的类似物,用于研究醌类物质在电子传递中的作用。外源添加还原性的二黄酸蒽醌可以改变Clostridiumbeijerinckii的代谢模式,提高H2的产量。Fe(OH)3是最常用的氢氧化物,在厌氧发酵中是良好的电子载体;甲基紫精同铁氧化还原蛋白的电势相似,可以参与一系列生化反应过程中的电子传递过程,通过铁氧化还原蛋白-NAD还原酶增强NAD(P)+的电子流。1979年,Hongo等[37]首次提出了“电子能方法”(Electroenergizing)的概念,他们向黄色短杆菌Brevibacteriumflavum菌发酵液中添加中性红(电子载体),发现谷氨酸的产量明显提高,而且从阴极传递的电子几乎全部被宿主细胞吸收。遗憾的是,他们并没有深入研究这些电子如何进入生化代谢途径。Yarlagadda等[38]通过外源添加甲基紫精,使得Clostridiumsp.BC1的乙醇和丁醇产量分别提高了28倍和12倍,同时菌体对于丁醇等物质的耐受性明显提升。Liu等[39]认为这些物质与胞内的NADPH/NADP+和NADH/NAD+总比例有着直接的联系,NADPH/NADP+和NADH/NAD+总比例是主导胞内代谢状态的最主要因素。生物信息数据库KEGG中包括855和1064个氧化还原反应,分别有106和88种以NAD+和NADP+为辅因子的酶催化反应(到2012年10月为止),几乎涉及所有细胞骨架类化合物的构建(如氨基酸、脂类和核酸)。通过改变胞内NADH的水平可以实现胞内代谢流的调控,提高目标产物的产量,增强菌体的抑制物耐受性。遗憾的是,目前对于发酵促进剂的研究,主要集中于抑制物耐受机理的阐明,实验过程中多采用合成培养基,而实际生产方面的应用几乎没有开展。基于此,我们率先开展了电子载体物质、氧化还原物质与木质纤维素抑制物原位脱毒关联性的研究,利用秸秆水解液进行了实验验证,取得了良好的发酵结果;首次提出了“发酵促进剂设计技术”理念,综合运用前体工程、理论化学、计算化学和计算机辅助模拟等手段,构建出促进剂开发平台技术,为传统的发酵工艺提出了新的研究思路。其主要内容为:首先,运用组合化学手段,对已有的发酵促进剂进行归类分析,获取其决定作用的“母核”,然后运用虚拟组合库进行大通量筛选。虚拟组合库主要出自3个来源:一种是基于分子片段的直接枚举而产生的新的分子库;一种是基于反合成分析原理的片段化及重组而产生的新分子库;另一种是基于分子构象叠合和遗传算法中的杂交原理的分子重组而产生的新的分子。目前,已经成功完成了系列产品的研发,即将进行实际发酵的生产验证。

3展望

纤维素水解范文第5篇

关键词:生物能源,生物酒精,生物质,纤维素,生产过程

0 引言

由于温室气温排放导致全球气温变暖,自然石化资源短缺。生物能源成为世界上研究热点。中国是世界上消耗石油第二的国家,大约占全世界总量的6%。国际能源中心(IEA)估计中国到2030年每天消耗1.4×107桶汽油;随着汽车工业的发展和普及,2020年,汽车的使用量从2004年大约2.4×107台增加到90-140×107台,运输所需的能源从现在比例约33%发展到57%左右,每天的所需量从目前的1.6×107桶到5.0×107桶。因此,到2030年,温室排放气体将增长至7.14Gt/年。对石油的需求导致中国更加依赖进口石油,2030年,75%的石油将依靠进口。因此,中国面临能源需求、国家能源安全和环境污染的挑战。中国作为发展中发展最快,世界上人口最多的国家,在经济快速发展和国际地位大幅提升的基础,应该发挥其主导作用,制定研究政策和目标,开发利用可持续“中性碳”能源,其中包括生物酒精的生产和使用。

纤维素生物质转化成生物酒精是世界上生物能源发展的热点研究之一。纤维素生物质主要包括农业残渣(水稻、玉米等秸秆)、森林残渣(树枝、锯末)、废弃物(废纸)、草本植物(芦竹)和木质植物(麻疯树、杨树),资源非常丰富,中国仅秸秆一年约有8.4亿吨,林木废弃物约2亿吨;到2030年,每年农作物残渣量达5.53EJ;森林残渣达0.9EJ(3/4来自木材加工,1/4来自森林残枝残叶);加上生物质能源种植(每公顷平均产量15吨干,10%的土地可以作为种植面积),统计计算,每年可以提供约23EJ的能源,相当于6000亿升的石油。而根据IEA的预测,2030年中国需要12.4EJ的交通运输液体能源。如果能够充分利用木质纤维素生物质,提高转化技术,生成酒精,中国可以足够满足运输能源的需求。通过转化生成生物酒精使用是中性碳排放过程,减少温室气体排放,有利于环境和资源的平衡利用。

世界上纤维素生物质转化生物酒精的技术基本上处于研究阶段。我国在纤维素生物质转化生物酒精的技术方面起步较晚,还是处于初步研究阶段。本文主要对纤维素生物质生物酒精生产过程中关键技术进行简要分析,指出存在的难点和可能性的解决方法以便进一步深入研究。

1 纤维素生物酒精生产

1.1 纤维素生物质作为生物酒精原料的特征

糖类和淀粉转化酒精的工程通过发酵,在世界上已经实用化;草本纤维素和木材纤维素转化酒精正处于实用化过程研究阶段。从生物质转化为生物酒精的容易程度来比较可以得出:糖类>淀粉>草本纤维素>木材纤维素。

淀粉和纤维素都是由葡萄糖组成的多分子高聚体。但是淀粉和纤维素的葡萄糖分子的结构不相同,如图1所示。淀粉容易生物化学分解,但是纤维素大分子是由葡萄糖脱水,通过B-1,4葡萄糖苷键连接而成的直链结晶性聚合体。在常温下不发生水解,高温下水解也很缓慢。另外,纤维素生物质中半纤维素由不同类型的单糖构成的异质多聚体,包括木糖、阿伯糖、甘露糖和半乳糖等。半纤维素木聚糖在木质组织中约占总量的20%~40%,它结合在纤维素微纤维的表面,并且相互连接(如图2)。其三,草本和木质纤维素表面因为酚类聚合物木质素的存在,更加难以分解。因此从纤维素生物质转化为酒精,由于半纤维素和木质素的存在,普通的发酵法不能够顺利完成生物酒精的生成。

1.2 纤维素生物酒精生产过程及有待解决的问题

从纤维素生物质转化为生物酒精的整个加工过程,如图3所示,大致可以分为六个过程。

首先是生物质的收集、水分调节和粉碎;然后是生物酒精生成过程,包括前处理、糖化、发酵和脱水;比如采用进行水热处理、碱化或微生物处理等的前处理措施来使纤维素易于糖化分解;其次,纤维素和半纤维素的糖化处理;接着采用酵母等微生物作用,产生酒精的过程,即发酵过程;然后,进行酒精和水分离,蒸馏脱水过程,完成生物酒精的生成;最后,废水和废弃物处理。

12.1 生物质利用

世界上对生物质的种类开发和数量估算等研究比较多,但关于生物质利用收集运输等相关研究不是太多。很多研究者提出了生物质收集的问题,但没有进行较深入的研究。主要存在以下问题:1)季节性和地域性强;2)能量密度低;3)输送成本高。

1.2.2 前处理、糖化技术开发

现在研究集中在生物酒精的转化过程中前处理分离木质素、纤维素糖化技术的开发和提高发酵效率。按前处理技术分类,可以分为:1)物理方法(粉碎、爆碎和水热处理等);2)化学方法(酸处理、碱化处理);3)微生物方法(酵素、微生物菌类利用)。同样按糖化技术可以分为三类:1)物理方法(水热处理等);2)化学方法(酸处理);3)微生物方法(酵素、微生物菌类利用)。

按照前处理和糖化综合技术可分成6大类,对比结果如表1。其中前5种方法,基本完成实验研究,处于应用初试阶段,但可以看出各种方法各有优点和缺点,在现有的工艺条件下,还没有最佳的生产工艺;微生物菌处理+微粉碎+酵素法是虽然处理速度慢,但能量效益和转化效果有望比较理想,环境负荷特低,所以前景最好,但各阶段都处于开发中。总体上,尚未有最佳的纤维素生物酒精的加工工艺。

1.2.3 发酵过程

如图4所示,三种转化过程。

1)传统方法:即纤维素酶法水解与乙醇发酵分步进行,水解和发酵都在最合适的温度下进行,但在酶解过程中分解糖没有利用反而反馈抑制酶的活性。

2)同时糖化和发酵:同时糖化和发酵即纤维素酶解与葡萄糖的乙醇发酵在同一个反应器中进行,酶解过程中产生的葡萄糖被微生物所迅速利用,解除了葡萄糖对纤维素酶的反馈抑制作用,提高了酶解效率。要求纤维素酶生产成本和周期的降低,能同时发酵五碳糖和六碳糖的转基因酵母,优化的预处理手段以及连续工艺的开发和使用:但存在水解和发酵所需的最佳温度不能匹配。

3)基因转化微生物直接生成:通过某些微生物的直接发酵可以转换为酒精。要求微生物既能产生纤维素酶系水解纤维素又能发酵糖产生乙醇。此方法不需添加 额外的酶,但后者需要酶基因的转入,是一种有前景的方法。

1.2.4 蒸馏、脱水

在这个环节主要要提取高度酒精,去水化;在此过程中主要要注意减少能源消耗。

1.2.5 废水、废物处理

减少环境污染,提高废弃物利用,开发肥料、饲料和燃料利用,并力求低能源消耗和低成本。

2 关键技术讨论

2.1 生物质收集区域规划和机械化开发

要使生物酒精工业工厂化生产,首先保证充足的生物质原料;将分散性、季节性和区域性强的生物质进行收集,各个地区的生物质种类及数量、质量都是不相同的,因此进行区域规划,来有效实现区域作业。如美国NREL研究得出50Km范围内所消耗的能量和成本是比较合适的。

其次是大力开发生物质收集机械自动化,可以提高生产率,减少成本和解决季节性强等要求。如图5,稻杆作业机械。

2.2 酒精转化新研究技术分析

综合前处理糖化和发酵三种转化过程,酸化转化过程比较简单,但生成后的废物、废水处理造成的环境负担并不符合未来的发展方向;如图6所示理想的纤维素生产生物酒精的过程。

在此过程中,主要是前处理加热或酸化处理中,容易产生芳香族化合物等抑制物质;纤维素酶的利用率低等主要问题,主要解决办法包括:

1)试图从其他物种中寻找更符合工业应用以及更具有应用前景的纤维素酶,提高酶的适应性,加快水解效率和增强耐热性能。

2)应用微生物酶工程技术,通过分子演化和设计来提高酶的功能性;通过强化的低成本发酵来生产酶制剂;通过基因工程途径构建生产纤维素酶提高酶活性。主要包含三个研究方向:(a)根据对纤维素结构和催化机理的研究,合理地设计每一种纤维素酶;(b)对纤维素酶的定向进化,根据随机突变或分子重组的方法筛选改造后的纤维素酶;(c)重组纤维素酶体系,提高纤维素对不溶性纤维素的水解速率或程度。

3)通过智能控制技术对酶解/发酵过程进行智能化在线监控,可以实时精确地优化动态反应条件,提高酶解/发酵效率。

4)研究开发适合该体系的高效生物反应器和建立描述反应动力学的数学模型对提高效率、掌握过程的机理及指导过程放大都将有重要的意义。

5)开发节能浓缩、脱水装置,开发膜分离精馏技术。

2.3 废水、废物处理

完成酒精转化后,废水、废物处理是容易忽视的研究内容;为了不增加二次环境污染,这个环节必须而且要对纤维素生物酒精的生命周期评价起较重要的作用,因此,必须考虑作为燃料能源利用,肥料开发和排水处理。

相关期刊更多

合成纤维

统计源期刊 审核时间1-3个月

上海市纺织控股(集团)公司

玻璃纤维

省级期刊 审核时间1个月内

南京市玻璃纤维研究设计院有限公司

纤维复合材料

省级期刊 审核时间1个月内

哈尔滨玻璃钢研究所;国家树脂基复合材料工程技术研究中心