前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇开关稳压电源范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
与线性稳压电源相比,开关稳压电源更能满足现代电子设备的要求。开关电源的主要优点是:性能价格比效率高,可靠性和稳定性好,对供电电网电压的波动不敏感,在电网电压波动较大的情况下,任能维持较稳定的输出。这使其在线性电源的竞争中具有先导优势。本文要介绍的是一种PWM开关稳压电源系统的设计。该电源的特点是进一步降低电源输出波纹,实现输出可变并控制产品成本和体积。
1.主要技术指标及特点
(1)工作模式:脉宽调制(PWM)。
(2)工作频率:150kHz。
(3)2块500W功率模块并行工作,总输出功率为1000W。
(4)能对DC48V蓄电池充电。具有欠压、过放电报警功能。过放电时自动切断放电回路。
(5)当负载电流过大时,内置的电流分配系统将自动降低充电电流来保证负载的供电。
(6)具有过压保护功能,当电网电压高于AC265 V时,自动切断输入电源。
(7)具有过流保护功能,当负载电流过大甚至完全短路时,电源由恒压状态转为恒流状态, 恒流工作点连续可调。
(8)充电电流限流点和输出电压在一定范围内均连续可调。
(9)当电网掉电、过压、电池放电至43V时, 发出声光报警。
(10)人机界面:用三位半LCD及MODE键可选择地显示输出电压、负载电流、充电电流值。用LED显示包括蓄电池在内的各种工作状态。用RESET键消除报警状态,用POWER键软关断和接通电源输出。
2.系统结构
系统主要由电源整流部分、控制器、信号驱动模块和升压模块组成,如图1所示。系统输入为220V,50Hz交流电压,经电压变换,整流滤波后得到18V的直流电压,送入DC-DC变换电路,经滤波输出直流。控制器完成电压的AD变换并实现电压值的外部设置和实时显示,同时控制模块输出脉宽调制信号(PWM),从而控制Boost电路的输出电压。该输出电压可在30~36V范围内步进调节。最大输出电流达2A。设计中DC-DC变换的核心电路采用经典的Boost升压形式。
图1系统硬件总体框图
3.系统硬件设计
3.1MOS管驱动电路
由于单片机I/O口的驱动能力弱不足以驱动MOSFET,所以要增加专用的MOSFET电路。设计中采用采用美国IR公司推出的高压浮动驱动集成模块IR2110,从而减小了装置的体积,降低了成本,提高了系统的可靠性。IR2110是一款高低电平驱动器件具有独立的低端和高端输入通道;悬浮电源采用自举电路,其高端工作电压可达600V,在15V下静态功耗仅116mW;输出的电源端(脚3Vcc,即功率器件的栅极驱动电压)电压范围10~20V;其逻辑输入电压只需3.3~20V,可方便地与TTL或CMOS电平相匹配,输出电压最大可达20V,图腾柱输出驱动电流最大可达到2A;工作频率高,可达100kHz;开通、关断延迟小,分别为120ns和94ns;由于IR2110可同时驱动双MOS管,因而系统只涉及一个MOS管,故只使用一路驱动即可。
3.2 STC12C2052AD控制器
系统中控制器不断检测电源的输出电压,根据电源输出电压与设定值之差,调整DA的输出,控制PWM芯片,间接控制电源的工作。这种方式单片机已加入到电源的反馈环中,代替原来的比较放大环节。开关电源的控制芯片采用STC12C2052AD系列单片机,利用其内部PWM组件产生控制信号,经过放大后驱动boost升压电路。STC系列单片机为单时钟/机器周期(1T)的兼容8051内核单片机,是高速/低功耗的新一代8051单片机。具有两路PWM/PCA和8路8位精度的ADC,在本设计中充分利用这两个功能来构成整个控制系统。
3.3缓冲电路设计
当变换器的开关管在导通、截止后开关管的电压和电流的乘积几乎为零,但在导通和截止的变化过程中电压和电流都具有一定的幅值。因此变换器就会在开关过程中产生开关损耗。通常,变换器的开关损耗中,关断损耗比开通损耗大得多,因此大多数场合下只考虑关断过程的缓冲即可。最简单的缓冲电路就是附加缓冲电容,但在开关管导通时缓冲电容通过开关管放电,放电电流值非常大,开关关不能承受。限制放电电流可串联限流电阻但缓冲效果明显变差,此时可将二级管并联到电阻两端以减小时间常数,这就是常用的RC-D缓冲电路。
为了有效的将开关管的开关应力转移,缓冲电路作用的时间应大于开关管的电压上升时间与电流下降时间之和,通常可以选择为开关周期的1/100~1/200电容理论值大约为6.7nF。多次试验显示,保护吸收电路的电阻应取kΩ级,电容取nF级即可。
3.4采样电路设计
为了实现电压的反馈控制和过流保护,系统需要增加采样电路,采样电路共分成两部分:电压采样和电流采样。因为单片机ADC的参考电压为5V不能直接对输出电压进行变换,因此需要对输出电压分压后再采样。采用对输出的1/10分压,分压电路用简单的电阻分压器即可。课题要求系统具有过流保护的功能,这就要对电流进行采样,将电流变成电压后也进行ADC变换。采样电阻的选择十分重要,要求噪声小,温度特性好,所以最好选择低温度系数的高精度采样电阻。例如,锰铜线制成的电阻,温度系数约5ppm/℃。另外,由于采样电阻与负载串联时流过采样电阻的电流通常比较大,因而温度也会随之上升。另外采样电阻阻值取大一点,对稳定度有好处,但会使系统效率下降,折中考虑取R=0.5Ω。
4.系统软件设计
4.1单片机控制算法
为了通过反馈调节控制信号实现稳压,系统软件设计中加入了PID控制算法,即单片机中将给定电压值与采样反馈电压值比较,利用偏差的比例、积分、微分线性组合调整PWM信号的占空比,进而达到稳压。常用的PID算法形式为:
式中:Kp、Ki、Kd分别为比例系数、积分系数、微分系数;e(k)为偏差;u(k)为所需控制信号的调整值。为了简化程序该系统设计选择P算法(PID算法的一种简单形式),即令Ki、Kd为零,只考虑比例系数。因此,系统稳压控制的优劣取决于参数Kd。Kp越大,系统反应越灵敏,但Kp偏大会导致输出振荡大,调节时间延长。因STC单片机速度较快所以课题中Kp选择不必太大,可实现预期稳压功能即可。
4.2控制程序设计流程
根据课题要实现的功能及要求,单片机软件的控制部分程序的流程图2所示。
图2 控制流程图
4.3 过流保护设计
过流保护模块采用软件编程实现, 当电流超过系统最大工作电流时, 加大PWM 波占空比, 断开继电器,使电流降低, 起到过流保护作用。具体流程图3所示。
5.调试结果
测试当中输入电压为18V,开关管的控制脉冲(PWM波)频率为104kHz,占空比50%,组装时电容取1600μF,电感为820mH,电阻为30Ω。可看出,在不考虑损耗时电压可以升35V以上;在实际电路中因存在损耗,通过调整占空比达到了输出电压30~36V步进调整,最大输出电流2A。
改变电源的负载,对不同负载下的输出电压进行测试。
图3 过流保护子程序流程图
负载调整率SI=(36.01-35.38)/36.01≈1.7%对不同输入电压下的电流、电压进行测试并计算出变换器的效率,测试结果如表1所示。
表1变换器效率测试(不含单片机等控制电路)
6.结论
在本设计中,设计人员增加了电源的数控功能利用Boost电路实现了系统设计的升压转换,采用单片机完成数字控制,软件编程得到PWM信号,通过调整占空比实现输出电压数字调节,运用反馈算法实现可控的稳压输出。其稳定性和可靠性得到了很好的验证,有广阔的应用前景。
参考文献:
一、开关式稳压电源的基本工作原理
开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算,即Uo=Um×T1/T式中Um —矩形脉冲最大电压值;
T —矩形脉冲周期;
T1 —矩形脉冲宽度。
从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路
1、基本电路
开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源
单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
单端反激式开关电源使用的开关管VT1承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。
3.单端正激式开关电源
单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200W的功率。电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
4.自激式开关稳压电源
自激式开关稳压电源的典型电路如图五所示。这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。
当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2中感应出使VT1基极为正,发射极为负的正反馈电压,使VT1很快饱和。与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic开始减小,在L2中感应出使VT1基极为负、发射极为正的电压,使VT1迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。这里就像单端反激式开关电源那样,由变压器T的次级绕组向负载输出所需要的电压。
自激式开关电源中的开关管起着开关及振荡的双重作从,也省去了控制电路。电路中由于负载位于变压器的次级且工作在反激状态,具有输人和输出相互隔离的优点。这种电路不仅适用于大功率电源,亦适用于小功率电源
5.推挽式开关电源
推挽式开关电源的典型电路如图六所示。它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。电路的输出功率较大,一般在100-500W范围内。
6.降压式开关电源
降压式开关电源的典型电路如图七所示。当开关管VT1导通时,二极管VD1截止,输人的整流电压经VT1和L向C充电,这一电流使电感L中的储能增加。当开关管VT1截止时,电感L感应出左负右正的电压,经负载RL和续流二极管VD1释放电感L中存储的能量,维持输出直流电压不变。电路输出直流电压的高低由加在VT1基极上的脉冲宽度确定。
这种电路使用元件少,它同下面介绍的另外两种电路一样,只需要利用电感、电容和二极管即可实现。
7.升压式开关电源
升压式开关电源的稳压电路如图八所示。当开关管VT1导通时,电感L储存能量。当开关管VT1截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。
8.反转式开关电源
关键词:直流稳压电源 线性电源 开关电源 基本类型
一、线性直流稳压电源
(一)晶体管串联式直流稳压电源。其在线性放大状态工作,具备反应快,电压稳定度高,负载稳定度高,输出纹波电压小,噪声较小等特点。针对电路技术而言,其控制电路使用元件较少。针对调整管的开关特性,滤波器的高频性能等要求较少,因此可靠性较高。其最大缺点是工作效率较低。只能通过降低调整管上的压降,减少调整管上的损耗来提高效率。具体解决策略为:一是PNP和NPN晶体管互补:串联式稳压电源输出电源电流较大时,通常调整管都要接成共集电极的达林顿组合管。因为在晶体管电参数相同情况下在保持电流放大倍数相等的情况下,互补连接的组合调整管的集射极压降减少了,因而电源的效率得到提高;二是偏置法:一般共集电极组合管集射间的压降一定程度上取决偏置电流。采用偏置连接法当输出电流一定时可以有效的提高电源效率;三是开关稳压器作前置予调节:在输入-输出电压差比较大,输出电流也比较大的场合,采用开关稳压器作串联式稳压器的前置予调节也是提高电源效率的有效办法。开关予调节还可以设置在电源变压器的原边。
(二)集成线性稳压器。集成稳压器在早期市场上应用较多,产量较大,主要分为半导体单片式集成稳压器、混合式集成稳压器两类。两类集成稳压器的电路形式、封装、电压、电流规格各不相同。集成稳压器分为定电压、可调、跟踪、浮动集成稳压器多种。然而无论何种形式,其大都由基准电压源、比较放大器、调整元件即功率晶体三极管和某种形式的限流电路组成。部分集成稳压器内部还有逻辑关闭电路和热截止电路。集成稳压器与由分立元件组成的稳压器比较,集成稳压器的优点非常明显,成本低,体积小,使用方便,性能好,可靠性高。
(三)恒流源网络稳压电源。恒流网络稳压是串联稳压电源的基本特点之一,其能够有效提高电源稳定性,在集成稳压器中应用较为广泛。分立元件组成的串联稳压器大都应用了恒流技术。应用晶体管场效应管与恒流二极管等元件能够实现恒流。恒流二极管在分立元件的串联稳压器中应用较为便利。
二、开关直流稳压电源
开关直流稳压电源主要指功率调整元件以“开、关”方式工作的直流稳压电源。早期的磁放大器开关直流稳压电源是利用铁芯的“饱和”、“非饱和”两种状态进行“开、关”控制,是一种低频磁放大器。此期间出现的可控硅相控整流稳压电源也属于开关直流稳压电源。之后,高频开关功率变换技术得以迅猛发展,出现了变换器方式的高频开关直流稳压电源。
(一)去除工频变压器。去除工频电源变压器而采用直接从电网整流输入方式,是开关电源减少体积和重量的重要举措之一。去除工频变压器已成为当代先进开关电源的基本特点。无工频变压器的开关电源与各种有工频变压器的直流稳压电源相比,其具有体积小、重量轻、效率高等优点。开关电源的电路形式已实现多种多样。从调制技术来看,其包括脉宽调制型、频率调制型、混合调制型几类,其中脉宽调制占绝大多数。目前出现了完全无变压器的开关电源,即连高频变换器都不需要。这种电源的最大特点是体积还可比现在的无工频变压器开关电源小的多,而且没有绕制的变压器等器件,能够集成电路工艺制作。
(二)提高开关电源频率。现代开关电源的最显著特点是开关频率不断提高,无论是晶体管开关电源、可控硅开关电源、场效应管开关电源,均在实现向高频化方向发展。随着功率IGBT和MOSFET的出现,开关电源的工作频率已从早期典型的20KHz逐步提高到兆赫范围甚至G赫范围。
(三)控制电路实现集成。早期开关电源的控制电路由分立元件构成,电路设计和调试维修都较为复杂,不利于开关电源的推广应用。为了适应开关电源的迅速发展,集成化的开关电源控制电路被研制成功,而且功能日益完善。开关电源控制电路集成化,极大地简化了开关电源的设计,提高了开关电源的电性能和可靠性,并且具有体积小、成本低等优点。
(四)关键元器件高频化。为适应开关电源快速发展需要,开关电源应用的主要元器件也在快速发展,高频化是其基本目标。开关电源中的开关元件-功率晶体管、可控硅、场效应管等均在提高工作频率上发挥着重要作用。特别是功率管IGBT复合管,MOSFET场效应管的出现,最为引人注目,其不仅把开关频率提高到1MHz-lGHz,并且具有开关特性好、驱动功率小、不存在二次击穿、避免热奔等特殊优点。此外,大电流肖特基势垒的出现极大地改善了低电压电流开关电源的整流效率,其具有开关速度快、反向恢复时间短,正向压降地等优点。在滤波过程中,电容器等器件也要在材料、结构工艺诸方面进行研制,以适应开关电源高频化需求。
(五)实现全数字化控制。开关电源的控制已从模拟控制,模数混合控制,发展为全数字控制阶段。全数字控制是未来的发展趋势所在,并且已在许多功率变换设备中得到广泛应用。然而,过去数字控制在DC/DC变换器中应用较少。近年来,开关电源的高性能全数字控制芯片已经逐步开发应用,欧美已有多家公司开发并制造出开关变换器的数字控制芯片及软件。全数字控制数字信号与混合模数信号相比能够标定更小量,芯片价格较低;针对电流检测误差能够实现精确数字校正,电压检测更为精准;能够实现快速灵活的控制设计等。
参数型稳压电源,是利用器件的非线性实现稳压和稳流的。从电路图可以看出,参数型稳定电源的稳定作用是通过虚线框内的调整器件的等效内阻Rdx自动调节来实现的。就拿稳压电源来说吧,如果是因为负载电阻RL变大或输入电源电压Ui升高等原因使稳压电源输出偏高时,就会引起调整器件的等效内阻Rdx自动变小,使流过调整器件的电流Idx增大,借助于限流电阻R两端压降的增加,使输出电压UO趋近于原来的数值。相反,由于负载电阻RL减小或输入电源电压降低等原因致使稳压电源输出电压UO下降时,调整器件的等效内阻Rdx会自动变大,从而使得流过调整器件的电流Idx变小,流过限流电阻R上的电流减小,因此在R上的电流减小,因此在R两端的电压也减小,使UO又趋近于原来值。从线路连接方式上来看,因为调整器件与负载使是并联的,因此参数型稳定电源属于并联稳压电源。
2.串联反馈调整型直流稳压电源
我们再来看一下串联反馈调整型直流稳压电源,它比参数型稳压电源要复杂的多。它是一个闭环反馈系统,所以必须具有执行器件和反馈支路。一般情况下,它包括调整管、取样电路、基准电压源、误差比较放大器等主要部分。调整管是闭环调节系统的执行机构,其余部分都是反馈控制支路所必需的,从图可以看出,输入电压Ui经过调整器件调节之后,变成稳定的输出电压UO,其执行动作是在误差比较放大器的控制下进行的。取样电压和基准电压相比较,并把比较后的误差信号送入放大器,增强反馈控制效果。因为取样得来的是电压信号,所以这种电源实际上是一个以电压作为调节对象的自动调节系统,图中KO为调节系统开环时的电压传递函数,也就是系统开环稳压系数;KT为执行机构在系统闭环时的电压传递函数,也就是调整管电路的电压放大倍数;K是误差放大器开环电压放大倍数;n为取样电路的电压传递函数,也就是取样分压器的分压比。根据调节原理可知,该系统的调节函数为:F=1/1+KT×K×n由此可知,无论输入电压波动还是负载变化对输出电压的影响,反馈系统都只是开环系统的(1/1+KT×K×n)倍,更具体点说,就是反馈调整型稳压电源在电网电压调整率、负载调整率等主要技术性能方面,提高到参数型稳压电源的(1+KT×K×n)倍。
1.1欠压锁定电路与过电流保护电路
欠压锁定(UVLO)是指当输入电源电压低于欠压锁定电路的预设值时,电源芯片不工作,以保证芯片安全并降低不必要的功耗。LT3748通过连接在VIN和EN/UVLO引脚之间的分压电阻R1与R2设定芯片工作的阈值电压。当芯片EN/UVLO引脚上的电压达到1.223V时,LT3748芯片内部所有电路都将启动。过电流保护电路是指在电源过载或输出短路时保护电源装置,防止负载损坏。此芯片通过SENSE引脚端的电阻R5来设定过电流,SENSE引脚的电压VS需要在0.1V以下。
1.2开关变压器设定
单端反激式开关稳压电源在设计开关变压器参数时的计算极为关键,设计中应尽量使开关管导通期间变压器所储存能量等于功率开关管关闭期间变压器所释放的能量,提高开关变压器的利用率,从而提高电路的转化效率。开关变压器的设定主要取决于初级线圈电感量和线圈的饱和电流两方面。开关变压器初级绕组的电感值须大于临界电感值(即当功率开关管截止期结束时,功率开关变压器中存储的能量正好释放完毕时开关变压器初级绕组所对应的电感值)。此外,开关变压器还应满足其线圈中的电流不能超过线圈自身饱和电流,因为一旦造成线圈中电流饱和,能量将不能存储在变压器的铁芯中,进而传输到次级端,而会被消耗在铁芯中。本设计中开关变压器选取为VP-0047-R,它具有体积小、自身电阻低、低噪声和紧耦合性等优点。VP-0047-R有六个独立绕组,每个绕组的电感量和饱和电流分别为3.8μH和2.81A,并可以根据需求的不同而连接成初次级线圈比不同的变压器。设计中将此变压器设置为初、次级线圈比为4∶1。其中初级线圈为四个绕组的串联形式,则初级线圈的电感量是60.8μH。次级线圈为两个绕组的并联形式,这种连接可增大绕组的饱和电流,避免次级线圈在输出电流较大时饱和。
1.3功率开关管及钳位电路设计
开关管的选取主要由漏源之间的耐压值以及最大漏极电流决定。由于在开关管关断的瞬间,变压器产生的漏感将生成尖峰脉冲电压,并且在初级线圈上也会有感应电压生成,这些都会叠加在直流输入电压VIN上。而在开关管导通时,功率开关变压器初级绕组的充电电流将产生尖峰电流,所以功率开关管的漏极电流应大于该尖峰电流。设计中Q1选择Si7464DP。为了减少漏感对电路产生的影响,并吸收已经由漏感产生的尖峰电压,在开关管的漏极设计了钳位保护电路。通常钳位电路的形式有DZ、RCD以及RC等,考虑到电路的简单和小型化,本设计采用RC钳位电路,取值为66Ω和150pF。在Q1截止的瞬间,储存在漏感中的能量通过电容C6后,就被电阻R8消耗掉了。钳位电路的设计非常必要,尤其在输出电流较大的情况下,可通过钳位电路将漏感吸收,从而保证输出电压的稳定。
2测试结果与分析
由于输入电压为-48V,所以测试中将稳压电源的正端接在PCB电路板的地端,稳压电源的负端接到PCB上的电源输入端,此时在PCB的电源和地之间就能得到负的电压。测试前应注意以下两点:首先由于开关电源在供电初始会产生较大的浪涌电流,所以在测试时对稳压电源限流值的设定要比实际输出电流值稍大一些。其次单端隔离反激式开关电源测试时不能空载。从测试结果可以看出,此电源电路不仅实现了电源从负到正的极性变换,并且电路最大输出电流为3.245A,输出电压接近8V,证明本电路设计已经达到了最初要求输出8V/2A电源的目的。将电源的电压输出端接4Ω、50W的固定负载电阻,输入端接到可调稳压电源输出端。调整输入稳压电源在36V~54V之间变化时,测量输出端电压。根据电压调整率的公式,可计算出电路的电压调整率为0.7%。当输入电压变为20V时,输出电压有0.06V的变化,可看出输出电压波动不大。
3结论