首页 > 文章中心 > 机械手论文

机械手论文

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇机械手论文范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

机械手论文

机械手论文范文第1篇

简单的测定方法是人在稻田里能自由行走,且脚印深度不超过1cm,在这样的条件下,才能保证收获质量,减少机器负荷,控制籽粒含水率,稻谷在收获期的籽粒含水率要求控制在15%~25%,这样有利于机械发挥最大的效率,所以要正确掌握好收获时机。水稻叶面干燥,无露水,含水率越低越易于收获;但是太低易造成落地粮增多,增加损失。因此,先期收获要控制好含水率,尽量避免早晨收获;后期收获越迅速越好,尽量减少损失。

作业前机械技术要求

根据实际情况选择收获机型。目前大多都是机械化插秧,采用有规律的栽植方式,所以选用半喂入式收获机械为佳。新购入的机械要按照使用说明书的要求进行调试:一是清选装置风量的选择。应在实际生产中随时观察掌握,设定适宜的风量,以达到将杂余清除干净且不夹带籽粒的目的,保证粮食质量,减少损失。二是夹持链张紧度的调整。将夹持链张紧度调整到最佳程度,保证喂入顺利。刚开始使用新机器时要注意磨合,选择条件好的地块,用低功率工作一段时间后,再加大功率。对于正常使用中的机械,在按使用说明书的要求进行保养的同时,也要随时注意清选装置风量和夹持链张紧度的调整,还要注意清除所有输送装置中的杂余,保证输送装置的畅通,尤其是输送二次脱粒的输送装置,极易被使用者忽视。每个输送装置都有一个或几个杂余清除口,将其打开把杂余清除干净即可。定时查看动、定刀片的锋利程度和间隙是否达到要求,以免造成切割秸秆困难,引起收获损失。对于割刀的检查和修理要在收获前进行,如果使用者不熟练可到维修网点进行维护。使用多年闲置的机械前,要对脱离装置等易磨损部位进行检查,如磨损严重要及时维修和更换。机械在使用中要按说明书的要求做好日常保养工作,确保机械正常使用。

机械手论文范文第2篇

如何实现我国农业的现代化进程,其根本需要解决的问题就是如何利用农业的机械化逐渐代替手工劳作的现状。随着农村产业结构的调整,粮食生产以及其他畜牧业的不断发展,将对农业机械化装备与技术产生更新的需求。为了满足农村产业结构的新需求,就要大面积的普及和推广成熟的农业机械化技术。就现阶段而言,农业现代化的核心问题就是利用科学技术与农业相结合的方法来实现我们的目标,以科技为核心的农业现代化要与农业机械化协调稳定的发展,农业机械化的发展会随着农业科技的进步而不断变化,它是我国农业现代化的手段和载体,在提高农民的劳动生产率,提高粮食产量等方面有着不可替代的作用。

二、农业机械化与农民增收的关系

要想把生产效率提高并获得更高的经济收入,利用农业机械化是很有效的方法。我国的农业只有真正的转型,才能解放劳动生产力,提高农民的收入。现在技术含量较高的农业机械已初步形成了,不仅更加容易操作,还有配套装置,设备经济适用,成本低,实际操作的效益很高,而且还在不断的创新。这不仅开阔了广大农民的眼界,提高了农民的素质,而且还能学到很多农业现代化知识。不仅提高了农民的整体水平,还能培养一些肯去钻研技术的农机人才,成为带动农村经济发展的领头人。从而使农业机械化发展成为构建人与自然、人与社会和谐发展的技术保证,来适应农业现代化的发展需求。

我国现阶段的农业增长主要依靠对资源的大量开发和过度利用来实现,我国的耕地面积不到世界的1/10,但氮肥和磷肥使用量却分别为世界的30%和26%,农业污染量已占全国总污染量的1/3~1/2。农业机械的广泛使用,使农民更快的创造财富,同时也可以加强村与村的合作建设,提高土地的利用率和产出率,同样能提高广大农民的收入。

三、结语

机械手论文范文第3篇

关键词:上肢康复训练机器人 青岛大学硕士开题报告范文 青岛论文 开题报告

一、 选题的目的和意义

据统计,我国60 岁以上的老年人已有1.12 亿。伴随老龄化过程中明显的生理衰退就是老年人四肢的灵活性不断下降,进而对日常的生活产生了种种不利的影响。此外,由于各种疾病而引起的肢体运动性障碍的病人也在显著增加,与之相对的是通过人工或简单的医疗设备进行的康复理疗已经远不能满足患者的要求。随着国民经济的发展,这个特殊群体已得到更多人的关注,治疗康复和服务于他们的产品技术和质量也在相应地提高,因此服务于四肢的康复机器人的研究和应用有着广阔的发展前景。

目前世界上手功能康复机器人的研究出于刚起步状态,各种机器人产品更是少之又少,在国内该领域中尚处于空白状态,临床应用任重而道远,因此对手功能康复机器人的研究有广阔的应用前景和重要的科学意义。

目前大多数手功能康复设备存在以下一些问题:康复训练过程中,缺乏对关节位置、关节速度的观测和康复力的柔顺控制,安全性能有待提高;大多数手功能康复设备没有拇指的参与;感知功能差,对康复治疗过程的力位信息和康复效果不能建立起有效地评价。本课题针对以上问题,采用气动人工肌肉驱动的手指康复训练机器人实现手指康复训练的多自由度运动,不仅降低了设备成本,更重要的是提高了系统对人类自身的安全性和柔顺性,且具有体积小,运动的强度和速度易调整等特点。

课题的研究思想符合实际国情和康复机器人对系统柔顺性、安全性、轻巧性的高要求 。它将机器人技术应用于患者的手部运动功能康复,研究一种柔顺舒适、可穿戴的手功能康复机器人,辅助患者完成手部运动功能的重复训练,其轻便经济、穿卸方便,尤其适于家庭使用,既可为患者提供有效的康复训练,又不增加临床医疗人员的负担和卫生保健。

综上所述,气动人工肌肉驱动手指康复训练机器人的设计是气压驱动与机器人技术相结合在康复医学领域内的新应用,具有重要的科学意义。

二、 国内外研究动态

2.1 国外研究动态

美国是研究气动肌肉机构最多的国家,主要集中在大学。

华盛顿大学的生物机器人实验室从生物学角度对气动肌肉的特性作了深入研究,从等效做功角度建模,并进行失效机理分析,制作力假肢和仿人手臂用于脊椎反射运动控制研究。

vanderbilt 大学认知机器人实验室(cognitive robotics lab, crl)研制了首个采用气动肌肉驱动的爬墙机器人,并应用于驱动智能机器人(intelligent soft-arm control, isac)的手臂。

伊利诺伊大学香槟分校的贝克曼研究所对图像定位的5自由度soft arm 机械手采用神经网络进行高精度位置控制和轨迹规划。亚利桑那州立大学设计了并联弹簧的新结构气动肌肉驱动器,可以同时得到收缩力和推力,并与工业界合作开发了多种用于不同部位肌肉康复训练的小型医疗设备。

英国salford 大学高级机器人研究中心对气动肌肉的应用作了长期的系统研究,开发了用于核工业的操作手、灵巧手、仿人手臂以及便携式气源和集成化气动肌肉,目前正在研究10 自由度的下肢外骨骼以及仿人手的远程控制。

法国国立应用科学学院(instituted national dissidences appliqués, insa)研究了气动肌肉的动静态性能和多种控制策略,目前正在研制新型驱动源的人工肌肉以及在远程医疗上的应用。

比利时布鲁塞尔自由大学制作了新型的折叠式气动肌肉用于驱动两足步行机器人,实现了运动控制。

日本bridgestone 公司在rubber tauter 之后又发明了多种不同结构的气动肌肉。德国festoon 公司发明了适合工业应用的气动肌腱fluidic muscle,寿命可达1000万次以上,同时还对气动肌肉的应用作了许多令人耳目一新的工作。英国shadow 公司研制了目前世界上最先进的仿人手。美国的kinetic muscles 公司与亚利桑那州立大学合作开发了多种用于肌肉康复训练的小型医疗设备。

lilly采用基于滑动模的参数自适应控制策略,实现了单气动肌肉驱动的关节位置控制。

2.2 国内研究动态

自20 世纪90 年代以来,我国陆续开始了气动肌肉的研究。

北京航空航天大学的宗光华较早开始气动肌肉的研究,分析了其非线性特性、橡胶管弹性及其自身摩擦对驱动模型的影响,并应用于五连杆并联机构,通过刚度调节实现柔顺控制。

上海交通大学的田社平等运用零极点配置自适应预测控制、非线性逆系统控制以及基于神经网络方法,实现单自由度关节的快速、高精度位置控制。

哈尔滨工业大学的王祖温等分析了气动肌肉结构参数对性能的影响、气动肌肉的静动态刚度特性以及与生物肌肉的比较,提出将气动肌肉等效为变刚度弹簧,设计了气动肌肉驱动的具有4 自由度的仿人手臂、外骨骼式力反馈数据手套和6 足机器人,采用输入整形法解决关节阶跃响应残余震荡问题。

北京理工大学的彭光正等先后进行了单根人工肌肉、单个运动关节以及3 自由度球面并联机器人的位置及力控制,采用了模糊控制、神经网络等多种智能控制算法,并设计了6 足爬行机器人和17 自由度仿人五指灵巧手。

哈尔滨工业大学气动中心的隋立明博士也通过实验得到了气动人工肌肉的一个更简洁的修正模型和经验公式并对两根气动人工肌肉组成的一个简单关节系统进行实验建模和采用位置闭环的控制方法进一步验证气动人工肌肉的模型。

上海交通大学的林良明也对气动人工肌肉的轨迹学习控制进行了仿真研究给出了学习的收敛性的初步结论为下一步的学习控制奠定了基础。其中田社平通过对气动人工肌肉收缩在频率域上的数学模型并对它的结构及其静动态特性进行了理论分析建立了相应的静态力学方程。

2003年付大鹏等,以机械手抓取物体为分析对象,采用矩阵法来描述机械手的运动学和动力学问题,以四阶方阵变换三维空间点的齐次坐标为基础,将运动、变换和映射与矩阵计算联系起来建立了机械手的运动数学模型,并提出了机械手运动系统优化设计的新方法,这种方法对机械手的精密设计和计算具有普遍适用意义。

2005年车仁炜,吕广明,陆念力对5自由度的康复机械手进行了动力学分析,将等效有限元的方法应用到开式的5自由度的康复机械手的动力分析中,这种方法比传统的分析方法建模效率高、简单快捷,极其适合现代计算机的发展,的除了机械臂的动力响应曲线,为机械手的优化设计及控制提供理论依据。

2008年北京联合大学张丽霞,杨成志根据拿取非规则物品的任务要求,采用转动机构和连杆机构相结合,设计了五指型机器手,手指弯曲电机与指间平衡电机耦合驱动,实现了机器手的多角度张开、抓握运动方式,对实用型仿人机器手的机构设计有参考意义。

2009年杨玉维等人对轮式悬架移动2连杆柔性机械手进行了动力学研究与仿真,。采用经典瑞利.里兹法和浮动坐标法描述机械手弹性变形与参考运动间的动力学耦合问题, 综合利用拉格朗日原理和牛顿.欧拉方程并在笛卡尔坐标系下,以矩阵、矢量简洁的形式构建了该移动柔性机械手系统的完整动力学模型并进行仿真。

2009年罗志增,顾培民研究设计了一种单电机驱动多指多关节机械手,能够很好的实现灵巧、稳妥的抓取物体,这个机械手共有4指12个关节。每个手指有3个指节,由两个平行四边形的指节结构确保手指末端做平移运动,这种设计方案很好的实现了控制简单、抓握可靠的目的。

从目前来看,国内对气动人工肌肉的研究仍处于刚起步的阶段。有关气动人工肌肉的研究与国外还有相当的差距对气动人工肌肉中的许多问题,还没有进行深入的研究。此外,采用气动人工肌肉作为机器人驱动器的研究还不成熟。

三、 主要研究内容和解决的主要问题

目前大多数手功能康复设备存在以下一些问题:康复训练过程中,缺乏对关节位置、关节速度的观测和康复力的柔顺控制,安全性能有待提高;大多数手功能康复设备没有拇指的参与;感知功能差,对康复治疗过程的力位信息和康复效果不能建立起有效地评价。为此,课题主要研究内容:设计一种结构简单,易于穿戴,并且安全、柔顺、低成本,使用方便的气动手功能康复设备。对气动手指康复系统进行机构运动学分析、用mat lab软件对康复训练机器人的康复治疗过程的力位信息进行仿真分析。

要实现上述的目标,系统中需要着重解决的关键技术有:

(1)基于已有上肢康复训练机器人外骨骼机械手机械结构部分的设计,对手指康复训练方法分析和提炼。 主要包括:人手部的手指弯曲抓握动作分析,气压驱动关节机构自由度的优化配置。使机械手能够实现手指的弯曲、物体的抓握等手部瘫痪患者不能实现的动作。

(2)对机器人机械机构的运动学分析。主要包括:气压驱动的手指关节外骨骼机械机构的运动学分析。

(3)机器人机构的力位信息仿真。主要包括:用mat lab软件进行机器人气压驱动终端的力位信息 仿真。

根据总体方案设计以及工作量的要求,外附骨骼机械手系统是上肢康复训练机器人的一部分,本文主要是研究手指康复机械系统运动学、动力学分析工作。

四、论文工作计划与方案

论文工作计划安排:

2010年9月——2011年6月准备课题阶段:

主要工作:学习当今最先进的机器人设计技术;学习用matlab软件进行计算仿真及优化,查阅国内外的资料,对康复机械手作初步了解。

2011年7月——2011年9月课题前期阶段

主要工作:课题方案设计,拟写开题报告,开题。

2011年10月——2012年7月课题中期阶段

主要工作:开始具体课题研究工作,根据已有上肢康复训练机器人外骨骼机械手机械结构部分设计,对手指康复训练方法分析和提炼。研究手指康复机械系统运动学、动力学分析工作。

2012年8月——2012年12月课题后期阶段

主要工作:对手指康复机器人进行模拟仿真,对设计进行优化,并在此基础上进一步完善课题。

2013年1月——2013年4月结束课题阶段

主要工作:整理相关资料,撰写论文,准备进行毕业论文答辩。

2013年5月——2013年6月论文答辩阶段

主要工作方案:

1. 完成学位课与非学位课学习的同时,进行市场调研,对手指康复机械手作初步了解。

2. 查阅资料,了解气动手指康复机器人的国内外发展现状。

3. 分析已有上肢康复训练机器人外骨骼机械手机械结构的部分设计。

4. 对现有手指康复训练方法设计进行分析和提炼,分析其优缺点。

5. 开始具体设计工作。

机械手论文范文第4篇

论文关键词:PLC,三维机械手,步进控制

随着自动化控制领域的不断发展,智能机械手的不断推新,机器人手臂的智能化程度不断提升,连续多角度控制的机器人手臂的出现,给机械手的教学带来了新的挑战。原来的教学机械手均以两维空间模拟仿真教学为主。自2007年全国电工电子技能大赛以来,三维空间的机械手的教学需求尤为突出。

一、三维机械手的硬件结构

图1所示是该三维机械手的实物图。整个三维机械手能完成八个自由度动作,手臂伸缩、手臂旋转、手爪上下、手爪紧松。手爪提升气缸采用双向电控气阀控制,气缸伸出或缩回可任意定位。磁性传感器用来检测手爪提升气缸处于伸出或缩回位置。手爪抓取物料由单向电控气阀控制,当单向电控气阀得电,手爪夹紧磁性传感器有信号输出,指示灯亮,单向电控气阀断电,手爪松开。旋转气缸用来控制机械手臂的正反转,由双向电控气阀控制。接近传感器用来判断机械手臂正转和反转到位后,接近传感器信号输出。双杆气缸用来控制机械手臂伸出、缩回,由双向电控气阀控制。气缸上装有两个磁性传感器,检测气缸伸出或缩回位置。缓冲器对旋转气缸高速正转和反转到位时,起缓冲减速作用。

二、三维机械手的动作过程

图2所示是该三维机械手的动作示意图。当需将工件有右工作台搬至左工作台时,在按下启动的时候,右工作台传感器判断有无工作,若有机械手动作,若无,机械手停止。当机械手左旋并前伸到位准备下降时,为了确保安全,必须在左工作台上无工件时才允许机械手下降。也就是说,若上一次搬运到左工作台上的工件尚未搬走时,机械手应自动停止下降。

图1 三维机械手实物图 图2三维机械手动作示意图

三维机械手的工作过程为:(1)从原点开始前伸;(原点位置为机械手右旋到限位,手臂缩回,手爪上升到上限位,手爪放松)(2)到前限位后开始下降;(3)倒下限位后,机械手加紧工件,延时2s;(4)上升;(5)到上限位后,缩回;(6)到后限位后,左旋;(7)到左限位后,前伸;(8)到前限位后,下降;(9)到下限位后,机械手松开,延时2s;(10)上升;(11)到上限位后,缩回;(12)到后限位后,右旋,返回原点。

根据三维机械手的工作过程及要求,可以画出机械手的动作流程图,如图3所示。

图3 机械手动作流程图 图4机械手状态转移图

三、PLC硬件的选择和I/O点分配

PLC的种类非常多,根据三维机械手的控制要求,由于其输入、输出节点少,要求电气控制部分体积较小,成本低,并能够用计算机对PLC进行监控和管理,故选用日本三菱(MITSUBISHI)公司生产的多功能小型FX1N-40MR-001主机。该机型合计有输入输出点40个,其中24个输入点和16个输出点,采用继电器方式有触点输出,能交流、直流负载两用。内部主要有:辅助继电器1280个,其殊功能辅助继电器256个,断电保持辅助继电器1152个;状态继电器1000个;定时继电器256个;计数继电器256个;数据寄存器8256个。

根据图3所示的三维机械手动作流程图,确定电气控制系统的I/O点分配,如表1所示。

根据图3流程图和表1的I/O分配表,可以编制出机械手的状态转移图,如图4所示。

四、控制程序的设计方法及编程运行

常用的PLC程序设计方法有经验法和顺序功能法。根据图4状态转移图,编制的步进梯形图程序如图5所示。

表1 三维机械手控制I/O分配表

输入

输出

名称

输入点

名称

输出点

停止

SB1

X0

手爪紧/松气缸阀

YV1

Y1

启动

SB2

X1

手臂气缸伸出阀

YV2

Y2

物品检测传感器

SQ0

X2

手臂气缸缩回阀

YV3

Y3

气动手爪传感器

SQ1

X3

提升气缸下降阀

YV4

Y4

旋转左限位接近传感器

SQ2

X4

提升气缸上升阀

YV5

Y5

旋转右限位接近传感器

SQ3

X5

旋转气缸左移阀

YV6

Y6

伸出臂前点限位传感器

SQ4

X6

旋转气缸右移阀

YV7

Y7

缩回臂后点限位传感器

SQ5

X7

提升气缸上限位传感器

SQ6

X10

提升气缸下限位传感器

SQ7

X11

图5 步进控制梯形图

图5中,M8044是用作原点条件,判断机械手是否在原点开始工作。

如果要实现断电保护,在图5的步进控制梯形图中,将普通辅助/计时/状态继电器均换成断电保护型。

上电后,直接初始状态继电器S0,在满足原点条件继电器M8044下,按下启动按钮SB2,X1得电,进入等待状态继电器S20;此时物品检测传感器SQ0检测到上料端有料,X2得电,进入机械手臂伸出状态S21;机械手伸出Y2得电,机械手前伸到前限位时,进入机械手下降状态;机械手下降Y4得电,机械手下降到下限位时,进入机械手抓料延时状态;机械手抓紧并延时,延时时间到,进入机械手上升状态…………如此,每当该步动作到位,限位条件满足时,状态转移进入下一工作步,进行动作。

需要停止时,按下停止按钮SB1,X0得电,停止标志继电器M0得电并自锁,当机械手右旋到有限位时,如果停止标志有信号,则机械手回到初始状态,如果停止标志没有信号,则机械手进行下一周期的搬运工作。

五、结束语

本文以三维机械手为例介绍了日本三菱MITSUBISHI公司生产的FX1N系列微型可编程控制器在步进控制中的设计应用。阐述了三维机械手的动作原理,设计要求,程序设计方法等。本文介绍的程序在实际生产和各届各级电工电子技能大赛中获得成功的应用。

参考文献

[1] FX1N series Programmable Controllers Hardware Manual,Mitsubishi electric corporation,1999

[2] MITSUBISHI ELECTRIC CORPORATION 三菱微型可编程控制器MELSEC-F FX1N使用手册 2007.11.

[3] 亚龙YL-235A型光机电一体化实训考核装置实训指导书.亚龙科技集团.2008.

机械手论文范文第5篇

关键词:三菱M60S;加工中心;盘式刀库;机械手;大直径刀;换刀

1 圆盘式刀库大端面刀换刀问题分析和设计

首先,圆盘式刀库换刀只需要将目标刀与主轴到交换,它不同与斗笠式刀库必须处理还刀,所以为缩短换刀找刀时间可用T码命令先让刀库备好刀,程序执行到换刀名令时直接就可以进行换刀动作。程序T码控制刀盘将目标刀找到并将到套倒下来。当程序遇到M06命令时,Z轴回到第二参考点主轴准停定位->机械手刀臂旋转抓刀->气缸松刀->刀臂旋转换刀->汽缸紧刀->刀臂回原点->换刀完成。

其次,随机找刀、机械手换刀控制基本原理:Txx代码激活刀库控制。PLC根据编程刀具号计算出该刀具所在的刀套位置,以及就近找刀的方向。位置通过PLC指令[S.ATC K1]方向寻找,通过指令[S.ROT K1]寻找。由PLC程序控制刀库按就近方向转动到编程刀具所在的位置,等待换刀。最后,M06启动PLC换刀,换刀过程说明:步骤一:刀套倒刀;步骤二:机械手扣刀;步骤三:主轴松刀;步骤四:机械手交换刀具;步骤五:主轴紧刀;步骤六:机械手回原点;步骤七:刀套回刀,换刀步骤通过PLC程序控制,刀具交换通过[S.ATC K4]指令。

2 大小刀的换刀控制的分析研究

由于用户在使用机床时常会用到端面飞刀等大直径的刀具(简称大刀),这些刀具装入刀库后左右相临的刀套内就无法放入刀具。圆盘式(机械手)刀库采用的是随机换刀,刀具所在的刀套并不固定,如果换大直径的刀就有可能和相临的刀具发生碰撞,所以PLC需要对此种情况进行处理。PLC程序设计思路和解决方法:要解决此问题最关键的就是要让大刀两侧的刀位空出来,当换刀时首先把大刀放入两侧是空刀的刀套里。本次设计的刀库为24把刀的圆盘式刀库,由于大刀要占用左右的刀套位,极限情况下24位可以装下11把刀,但由于实际使用中几乎不会要使用到如此多的大刀,故本次设计最大大刀容量为9九把(可修改成11把)刀库容量也可以增加。PLC定义T0~T24为小刀刀号,T51~T59为大刀刀号,刀套空位为99。刀号的设定须在刀库登录表里,刀库登录表根据实际使用情况设置。特别注意:允许的大刀最大直径必须小于刀库允许普通刀具直径的的两倍(目前使用的刀具都小于允许直径的两倍),否则大刀与大刀之间交换会发生碰撞,刀具重量不能超过刀库允许重量。大刀交换规则:小刀可放进大刀的刀套内,大刀不可放进小刀刀套内。换刀情况分析有以下四种:主轴小刀和刀库小刀交换,一次性换刀;主轴小刀和刀库大刀交换,一次性换刀,主轴小刀放进大刀刀套中;主轴大刀和刀库小刀交换,先将原大刀刀套中的小刀换到主轴上,在将小刀与小刀交换;主轴大刀和刀库大刀交换,一次性换刀。换刀相关保护和报警①换刀前判断刀臂是否在原点,否则报警不执行换刀。②刀套和打刀缸的动作受到PLC监控,超出时间会发出报警,终止换刀。③检查刀库表中刀号与主轴刀号是否重复,发出报警信号。④大刀换刀时检查大刀刀套两侧是否为空刀位,如果不是则发出报警,终止换刀。⑤检查当前刀套内的刀号是否是空刀位,是则不进行换刀,发出报警。换刀刀号判断PLC说明。通过D60中的T码与K实数进行比较,把比较的结果送入M1000~M1008。利用比较的结果M1000~M1008判断目前换刀的状态,将结果送入M600~M603。M600:T码小刀与主轴小刀交换;M601:T码小刀与主轴大刀交换;M602:T码大刀与主轴小刀交换;M604:T码大刀与主轴大刀交换;通过判断的换刀状态按照PLC程序框图的方式执行。

3 结语

用户在使用机床时常会用到端面飞刀等大直径的刀具,这些刀具装入刀库后左右相临的刀套内就无法放入刀具。根据公司项目要求并兼顾成本和机床功能,通过系统控制解决了大端面刀等大直径刀具的换刀问题,为客户提高生产效率,从而提高其经济效益做出了一定的贡献。圆盘式(机械手)刀库采用的是随机换刀,刀具所在的刀套并不固定,如果换大直径的刀就有可能和相临的刀具发生碰撞,所以PLC需要对此种情况进行处理。要解决此问题最关键的就是要让大刀两侧的刀位空出来,当换刀时首先把大刀放入两侧是空刀的刀套里,然后再进行换刀。在此设计中还为客户完善了使用过程中的一些辅助功能,使客户使用更方便、更安全,得到了客户的认可。通过三菱圆盘式(机械手)刀库加工中心开发过程,使我收获颇多,为了让更多人分享享我的经验所得,特写这篇论文,供大家参考学习。

[参考文献]

[1]张俊勇,赵小刚.刀库合理布置在加工中心的应用[J].装备制造技术. 2009(06).