首页 > 文章中心 > 动力系统分析

动力系统分析

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇动力系统分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

动力系统分析

动力系统分析范文第1篇

关键词:故障树 分析法 船舶动力

中图分类号:TK43 文献标识码:A 文章编号:1674-098X(2012)12(a)-00-01

1 故障树分析法简介

从20世纪60年代以来,在一些复杂系统的故障分析中,形成和发展了一种新的故障树分析法。这是一种从系统到部件再到零件的下降形式分析方法。它是从系统开始,通过逻辑符号与具体单元、零部件相联系;与失效的的状态事件相联系;构成一幅树状分支图,称为故障树。故障树分析法首先将分析的系统故障事件作为第一阶(即第一行―顶事件),再将导致该事件发生的直接原因(包括硬件故障、环境因素、人为差错等)并列为第二阶段。用适当的事件符号表示,用逻辑门把他们与系统故障事件联结起来。其次将导致第二阶段延长事件发生的原因列出为第三阶段。两阶之间同样用事件符号和逻辑门联系。这样逐段展开,直到把最基本的原因都分析出来为止,这样的逻辑图便是故障树。利用故障树去分析系统发生故障的各种途径和可靠性特征量,这就是故障树分析法。

2 故障树分析法主要特点

(1)它是一种直观的图形演绎法。把系统的故障与引起故障的因素,用图形比较形象的表现出来。用它来分析系统失效事件发生的概率,也可用来分析零、部件或子系统的失效事件对系统失效的影响。从故障树图由上往下看可知:系统的故障与那些单元有关系?有怎样的关系?多大关系。从图由下往上看:知道单元故障对系统故障的影响,什么影响?影响途径怎样?程度有多大?(2)故障树分析可作定性分析还可作定量分析;不仅可分析单一机件引起系统失效的影响,而且可以分析多机件构成的子系统对系统影响;不仅可反映系统内部单元与系统故障的关系,也能反映系统外部因素(环境因素和人为因素)对系统的影响。(3)故障树分析不仅可用于指导设计,也可用于指导正确的维修管理。(4)故障树的建造工作量十分繁重和复杂,需要较高的技术。

3 故障树的组成

(1)顶事件的选取。它是系统分析的目标和对象,要选择一个具有明确意义,可用概率度量,能够向下分解,最后找出失效原因的故障事件。(2)故障树的建造。这是故障树分析中的关键一步。要由多方技术人员通力合作,经过细致的综合分析,找出系统失效事件的逻辑关系。首先分析事故链确定主流程,然后确定边界条件,给出故障树的范围,最后利用事件符号和逻辑符号画出故障树。(3)故障树的图形符号。有两种图形符号,即:逻辑符号和事件符号。他们都有各自的具体图形符号和意义。(4)故障树的基本结构。

4 故障树的建造

4.1 确定顶事件和边界条件

顶事件是针对所研究对象的系统故障事件。是在各种可能的系统故障中筛选出来的最危险的事件,对于复杂的系统,顶事件不是唯一的,分析的目标、任务不同,应选择不同的顶事件。在很多情况下,顶事件就选定故障模式和影响分析中识别出来的致命度高的事件。必要时还可把大型复杂系统分解为若干相关的子系统,以典型的中间事件当作若干子故障树的顶事件进行建树分析,最后再加以综合。这样可使任务简单化,并可同时组织多人分工合作参与建树工作。

根据选定的顶事件,合理地确定建树的边界条件,以确定故障树的建树范围,故障树的边界条件包括:(1)初始状态。当系统中的部件有数种工作状态时,应指明与顶事件发生有关的部件的工作状态。(2)不容许事件。指在建树的过程中认为不容许发生的事件。(3)必然事件。指系统工作时在一定条件下必然发生在一定条件下必然发生的事件和必然不发生的事件。

4.2 逐层展开建树

从顶事件开始,逐级向下演绎分解展开,一直追踪至底事件,建立所研究的系统故障和导致该系统故障诸因素之间的逻辑关系,并将这种关系用故障树的图形符号表示,构成以顶事件为根,若干中间事件和底事件为干枝和分枝的倒树图形。要明确系统和部件的工作状态,是正态和故障状态;如果是故障状态,就应弄清是什么故障状态,发生某个特定故障事件的条件是什么。建树时不允许门―门直接相连。门的输出必须用一个结果事件清楚定义,不许门的输出不经结果事件符号便直接和另一门连接。在确定边界条件时,一般允许把小概率事件当作不容许事件,在建树时可不考虑。但是,允许忽略小概率事件并不等于可以忽略小部件的故障或小部件事件,这是两个不同的概念。有些小部件故障或多发性的小故障事件的出现,所造成的危害可能远大于一些大部件或重要设备的故障后果,因此,这事件不能忽略。

动力系统分析范文第2篇

关键词:传动系统 动力学 仿真 ADAMS 虚拟样机

中图分类号:TH132 文献标识码:A 文章编号:1007-9416(2011)12-0207-01

随着计算机图形学技术的迅速发展,系统仿真方法论和计算机仿真软件设计技术在交互性、生动性、直观性等方面取得了较大进展,它是以计算机和仿真系统软件为工具,对现实系统或未来系统进行动态实验仿真研究的理论和方法。

运动学仿真就是对已经添加了拓扑关系的运动系统,定义其驱动方式和驱动参数的数值,分析其系统其他零部件在驱动条件下的运动参数,如速度,加速度,角速度,角加速度等。对仿真结果进行分析的基础上,验证所建立模型的正确性,并得出结论。

本文中所用的动力学仿真软件是ADAMS软件。ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。虚拟样机就是在ADAMS软件中建的样机模型。

1、运动参数的设置

先在造型软件UG中将齿轮传动系统造型好,如下图所示。在已经设置好运动副的齿轮传动系统的第一级齿轮轴上绕地的旋转副上给传动系统添加一个角速度驱动。然后进行仿真。在进行仿真的过程中,单位时间内仿真步数越多,步长越短,越能真实反映系统的真实结果,但缺点是仿真时间也随之变长,占用的系统空间也就越大。所以应该在兼顾仿真真实性与所需物理资源和仿真时间的基础上,选择一个合适的仿真时间和仿真的步长。

在仿真之前先设置系统所用到的物理量的单位,在工程实际中,角速度一般使用的单位是r/min,所以在系统的基本单位中把时间的单位设为min,角度的单位设成rad,而在ADAMS中转速单位为rad/min。本过程仿真的运动过程为:系统从加速运动到额定转速,平稳运动一段时间后,再减速运动直到停止。运动过程用函数来模拟,输入的角速度驱动的函数表达式为:STEP( time ,0 ,0 ,2.5 ,9168.8)+ STEP(time ,7.5 ,0 ,10 ,-9168.8),此函数表达式的含义为:系统从开始加速运动一直到2.5s时达到了系统的额定转速9168.8rad/min(1460r/min),从2.5s到7.5s的时间段内,系统以额定转速运动,在7.5s到10s的时间段内,系统从额定转速减速行使,直到停止。打开ADAMS,选择Import a file,将测试数据输入到ADAMS/View中。

2、模型验证

为了保证仿真分析的顺利进行,在进行仿真分析之前,应该对样机模型进行最后的检验,排除建模过程中隐含的错误。一般样机模型容易出现的错误为:(1)检查不恰当的连接和约束、没有约束的构件、无质量构件、样机的自由度等。(2)进行检查所有的约束是否被破坏或者被错误定义,通过装配分析有助于纠正错误的约束。

对于这些潜在的错误,用户可以充分利用ADAMS/View提供的模型检查功能进行样机模型检测:(1)对于第一种可能的错误,用户可以利用模型自检工具。(2)对于第二种可能的错误,用户可以进行装配分析。

ADAMS/View提供了一个功能强大的样机模型自检工具,进入主菜,选择Model Verify命令,这时启动模型自检,完成自检后,程序显示自检对话框。

3、样机仿真

模型检验正确后,就可以进行仿真分析。仿真的分析过程如下:

在主工具箱选择仿真工具图标,显示交互仿真分析参数设置栏;选择仿真类型,ADAMS/View提供了4种仿真类型,即Default、Dynamic、Kinematic和Static。本文就用Default这种仿真类型;定义仿真分析时间,本次仿真时间为120秒;设置仿真过程中ADAMS/View输出仿真结果的频率,选取仿真步长数为1000步。

完成以上设置后,开始仿真分析。在仿真分析过程中,可实时显示样机的运动状况。

4、仿真结果及其分析

在仿真结束后,进入ADAMS/Postprocessor后处理模块,可以得到齿轮传动系统的动力学仿真结果曲线图,下图是齿轮1曲线图。

5、结语

以齿轮1和齿轮7为例(其它略),通过上表可以看到,各个啮合齿轮之间传递力的趋势与负载的趋势比较相似,都在14.1秒和73.95附近出现最大值,受力有很大的变化,最大力值为623050N,工作时所允许的范围之内。在表中,“-” 代表所受力的方向与系统默认的方向相反。仿真结果的平均值与通过计算所得的理论值之间的差别不大,说明仿真结果比较真实的反映了实际的工作状态。

参考文献

[1]郑楷,胡仁喜等.ADAMS2005机械设计高级应用实例.机械工业出版社,2006

动力系统分析范文第3篇

关键词:电力系统;信息安全;管理系统

DOI:10.16640/j.cnki.37-1222/t.2018.09.159

0引言

伴随着网络化对于社会的影响,电力系统管理中自动化技术安全管理的系统建设工作重要性不断提高,同时也是优化与改进电力系统信息安全技术的多项措施,电力信息的安全管理标准属于信息的安全管理基本标准、需求以及准则,是提高管理效果的基本措施,其中最为重要的便是构建一个关于电力系统的自动化技术安全管理。对此,探讨电力系统自动化技术安全管理具备显著现实意义。

1电力系统信息安全管理目标

强化与规范电力系统的网路安全行以及自动化管理效果,并保障自动化管理系统的整体稳定性、持续性、可靠性以及保障信息内容的完整性、可用性以及机密性,预防因为自动化管理系统本身的漏洞、故障而导致自动化管理系统无法正常的运行,在病毒、黑客以及多种恶意代码的影响攻击时及时起到行之有效的管理保护,对自动化管理系统内部的信息安全性实现较高的管理效果,预防信息内容和数据的丟失,预防有害信息在网络当中的传播,从而提高企业信息的整体管理效果[1]。

2自动化技术安全管理建设内容

2.1管理系统安全监测与风险评估管理

信息管理系统的建设必然需要管理部门的高度重视,要求管理部门以年度作为单位,对信息化的项目实行全面性、综合性的管理,并在每一年的综合计划实行之后,制定这一整年在相关工作方面的创新计划,保障系统在正式上线之前便可以有效的满足整个系统在安全方面的需求[2]。采用的系统在建设完成之后的1个月之内,必须根据相应的“上下线管理办法”实行申请,并通过信息管理部门专职人员进行上线申请,组织应用的系统专职和业务主管部门根据相应的标准或指南对系统进行安全性的评估,同时需要将评估的结果博鳌高发放到业务部门中。对于系统中存在的不足,业务部门在接收到报告之后需要在短时间内进行改进,并在改进之后进行复查,确保其可以满足上线要求。

2.2信息安全专项检查与治理

信息管理部门在管理方面的具体实施必然是借助专职人员而实现,在每一年的年初均需要根据企业的实际情况具体的检查计划以及年度性的检查目标,检查的具体内容必须按照企业中每一个部门的工作特性而决定,例如网络设备的安全性、终端设备的稳定性以及系统版本的及时更新等[3]。对于重大隐患而言,信息安全管理人员需要及时录入到系统当中,并组织制定重大隐患的安全防治计划,各个部门需要在接收到反馈之后及时对问题提出整治方案,并在限期内处理。信息管理部门的安全专职人员需要对隐患库当中所存在的隐患进行跟踪性治理,并组织相应人员进行复查,对于没有及时按期整改的部门,信息安全专职人员需要在短时间内上报给信息负责人,并由人力资源部门对其进行绩效考核。每一个部门的信息安全专职人员需要根据计划组织该部门的人员制定相应预案,每一份预案在制定之后需要在5天之内交到本部门负责人审批,并在审批通过之后上报信息管理部门。

2.3安全事件统计、调查及组装整改

信息管理部门的安全专职人员必须在每一个月月初时对基层部门的信息安全事件进行统计分析。每一个系统的安全管理人员需要根据部门所发生的安全事件实行记录记录,并根据发生问题的原因进行针对性的分析,每一个月以书面的形式将所记录的内容提供给管理部门,由管理部门实现工作状况的改进与完善。如果后续查出存在漏报现象,则需要由人力资源部门进行绩效考核。在发生安全事件之后,需要在5个工作日之内对事件进行分析、统计并上报,调查过程中必须根据事故调查和统计的相关规定执行,及时分析问题发生的主要原因,并坚持“四不放”的基本原则,在调查之后编制事件的调查报告,调查与分析完成之后需要组织相关人员落实具体的整改改进措施,信息安全事件的每一项调查任务都必须严格根据电力企业的通报制度进行,务必保障每一个行为的合理性。

3评估与改进

借助开展提高管理与标准理念以及管理标准,明确每一项工作的5W1H,在目的、对象、地点、时间、人员、方法等方面实行管理系统,促使信息管理部门与各个部门之间的接口、职责划分清晰,达到协调性的分工合作,并借助ITMIS系统实行流程化的固定管理,严格执行企业各项安全管理标准,构建信息化的安全管理建设工作,实现信息化的安全管理系统建设,在标准的PDCA阶段循环周期借助管理目标、职责分工、管理方法、管理流程、文档记录、考核要求等多个方面的管理提高整体安全性,在信息安全管理的建设中确保基础结构的搭建效果,借助行之有效的评估方式,对自动化管理系统安全检测与风险评估管理等多个方面进行评估,并逐渐完善自动化技术安全管理的建设任务,保障安全管理系统的持续改进。

4结语

综上所述,信息安全工作是系统性的工程,“防范”与“攻击”、“脆弱”与“威胁”是相互成长不断发展的。对此,在新时代之下,电力系统的自动化技术安全管理,务必从管理与技术两个角度着手,确保网络安全、系统安全、应用安全、物理安全、数据安全,从而实行多种管理措施,达到多层面、多角度的安全管理保障,提高电力系统自动化技术安全管理系统的整体建设效益,从而提高电网安全性。

参考文献: 

[1]魏勇军,黎炼,张弛等.电力系统自动化运行状态监控云平台研究[J].现代电子技术,2017,40(15):153-158. 

[2]朱泽宇,ZhuZe-yu.基于电气工程自动化技术在电力系统运行中的应用探析[J].自动化与仪器仪表,2015,14(06):233-234. 

动力系统分析范文第4篇

关键词:电力系统;配电自动化;故障处理;电力行业;电力需求 文献标识码:A

中图分类号:TM76 文章编号:1009-2374(2017)10-0208-02 DOI:10.13535/ki.11-4406/n.2017.10.105

经济的不断发展带动了社会的进步,同时也增加了人们对电力的需求。电力行业的不断发展,扩大了配电技术的应用范围,同时也提升了配电标准。前些年所使用的供电技术虽然稳定,但是其一成不变的特点也导致相关技术难以满足当前我国社会发展的需求,所以需要对传统电力系统配电自动化与故障处理方式进行优化,以此来带动电力系统行业的发展,下文将对相关问题进行阐述。

1 当前电力系统配电自动化发展态势

1.1 配电自动化定义发展

配电自动化属于当前国内电力系统发展中比较典型的一种表现形式,主要体现于调度自动化、变电站综合自动化以及配网、配电网自动化这些方面。在配电自动化方面,大力发扬配电自动化可以有效提升配电整体运行稳定性,并提升目标项目配电工作质量。可以通过配电运行的方式来提升配电稳定性,并在故障发生之前先预知故障,通过计算机系统等系统模式来进行配电。

科学技术的发展带动了配电自动化的发展,且发展速度明显提升。配电自动化系统已经被广泛的应用到各种医疗项目、建筑工程项目以及石油化工等领域。而配电自动化系统的主要构成要素是系统管理层、系统通讯层以及系统项目现场监控层等诸多层次。系统的管理层组成要素一般会是一个服务器与一个客户端,由这两种结构来构成单机运行系统。使用一个服务器来对不同的客户端进行处理,构建专业化的项目主机系统,并利用主机系统来发送目标工作指令,实现配电控制。通讯的接口层主要任务就是对项目系统的管理层进行控制,起到了沟通桥梁的作用。其内容包含系统管理层、项目系统监控层等多个方面的信息转换、信息传输内容,可以提升项目设备与项目线路的运行质量。不论是光纤传感器还是通讯电缆,都可以收益。而项目现场施工监控层起到的主要作用,就是对项目施工现场的情况进行全方位的测量,提升项目测控仪表以及项目功率控制器的工作质量。

1.2 当前配电自动化发展遇到的阻碍阐述

虽然国内近年来在不断的发展电力系统配电自动化产业,但是在该产业发展的过程中却会经常遇到一些问题,影响配电自动化的运行质量,主要集中在配电网项目建设质量较差、配电网项目智能化水平较低以及没有与之相配套的制度等。对电网项目进行建设的过程中,会遇到大量的变电设施以及项目输电设备等,不能忽视配电。从当前国内电力系统配电建设发展的情况来看,许多地区的配W主干线都比较长,而且长度远超过标准的长度,还有的地区配网主干线规格不符合要求,导致配电设备陈旧,有的时候还会出现线路和项目建设主干线相互脱离等问题。

在对智能化技术应用问题进行研究时,可以综合参考国外发达国家的发展情况。发达国家电网自动化覆盖率比较高,许多国家都已经超过80%,这一覆盖率远超中国等发展中国家。想要从根本上对这些问题进行优化,不仅要提升项目技术研发程度,同时还要不断拓展自动化技术的发展以及自动化技术使用路径,让自动化技术的使用范围可以更加广泛。除此之外,还要关注网架结构稳定性,避免网架结构出现变动,为变电项目运行带来负面影响。在对配电网进行管理的过程中,没有切实可行的自动化管理规章制度,而且也缺少专业化的配电自动化管理工作依据,导致配电自动化发展进程受阻。而且对配电系统进行自动化处理时,因为不论是技术水平还是应用,都不如发达国家,所以在系统运行时经常会出现故障。如果线路出现短路的问题,会导致出现强电流冲击的问题。如果不能在最短的时间内对故障发生部分进行隔离处理,会导致线路开关与变电站的开关不能正常使用。如果处理故障所花费的时间比较长,也会影响到配电的正常运行。上述所有故障都在一定程度上影响了配电自动化产业的发展,导致相关技术难以发挥出自身所具备的优势。

2 配电自动化故障处理方式

2.1 强化信息管理

在对配电网进行自动化改造的全过程中,项目管理工作人员都要时刻关注计算机应用能力与相应信息管理能力的提升,同时也对工作人员这些方面的能力有了更高的要求。为了从根本上提升电力系统故障处理工作效果,电力企业必须要不断强化自身信息管理工作力度。配电项目运行需要有数据库搭配,而数据库的资源也会不间断的更新,保证所有资源都时刻处在更新的状态下。在最短的时间内对所有目标项目的信息进行处理,提升自动化信息系统指令的科学性,提升变电运行过程控制质量。

工作人员在对自动化系统信息进行采集的过程中,会对各种数据信息进行扫描,并将这些数据信息全部输入到对应的数据库当中。随着当前我国社会的不断发展,所有的目标数据实效性都会随着时间的不断推移而降低,最终完全失去其实效性。所以工作人员在对目标信息数据进行储存后,需要在最短的时间内对各种数据信息进行分析,并明确所有项目节点以及所有目标配电运行状态。这样就可以在设备非正常运行之前,先预知设备的运行状态,发出故障警报信号,做好故障处理。

2.2 提升安全管理强度

全面提升配电自动化安全管理工作强度,并提前预知到设备运行可能会发生的各种故障,在故障发生之前先通过各种防护措施来规避,如果故障不可逆转的发生,要在第一时间采取相应的措施来对故障进行处理,降低负面影响。如果配电系统项目运行产生故障,则自动化系统需要在第一时间先对故障的类型进行全面识别,并切断故障设备与其余设备之间的联系,隔绝目标故障设备,避免对其余的配电项目产生负面影响。

2.3 加强电网改造

国内电力系统建设还存在重视度不均衡的问题,比较关注变电建设与项目输电建设,但是对配电的建设不够重视,这也是导致国内配电系统运行经常发生各种意外安全事故的主要原因。为了从根本上解决该问题,国内电力行业必须要多关注电网系统,并对电网系统的内容加以改造。不同地区社会、企业与人民的用电量不同,所以输电线路需要承载的压力也不同。不同地区、不同长度、不同类别的输电线路输电过程中出现的线损量不同,所以可以适当地提升一些供电网络总输电量,以此来保证电能的正常供应。和乡村地区相比,城市对电能的要求更高,对总电量的需求量也比较大。可以对配电网进行改造,将城市的配电网转变成为环状结构的配电网,并分别在不同的环节与不同的节点上来安装对应的自动化控制设备,对设备故障进行监测,提升配电网整体输变电水平。

3 结语

电力系统配电自动化与故障是影响我国社会发展、影响供配电工作正常开展的关键要素,同时也是供电企业日常工作的难处理环节之一。上文分别从多个角度论述了应当如何提升电力系统配电自动化与故障处理工作质量。

参考文献

[1] 刘志慧.电力系统配电自动化及其对故障的处理分析[J].黑龙江科技信息,2017,(2).

[2] 洪建林.电力自动化系统中调度故障与处理措施分析[J].企业技术开发,2015,(36).

[3] 杨娇娇,赵剑飞,丁诗洋.电力系统配电变压器的故障分析与处理措施探讨[J].山东工业技术,2016,(22).

动力系统分析范文第5篇

关键词:同步电动机;电力拖动;变频调速;功率因数补偿

在同步电动机使用过程中,其稳定性的控制是关键。而电力拖动是影响其稳定性的主要因素,如何实现同步电动机的转速与同步转速相同是本文讨论的重点。

一、同步电动机的起动

正常运行状态下的同步电动机,其转子转速保持不变,确保定子与转子磁场因电磁作用所产生的旋转磁场处于相对静止状态,从而使其产生稳定的电磁转矩。因此同步电动机可以带动负载在同步速度下稳定运行。但由于能够处于稳定状态,直接起动将影响其机械性能。由于其使用电源为50Hz交流电源,加大了其起动难度。同时,三相定子绕组连接三相对称电源后,如定子磁场N极与转子磁极的S极接触,虽受到异性磁极的吸引,但由于转子自身的惯性较大,并不能使静止的转子发生转动。如此状态循环下,转子无法运转而只能在原处摆动。这使得因此同步电动机的起动问题成为难题,要确保其起动过程中稳定性不受到影响,可采取以下措施:

(一)辅助电动机起动

为了实现对同步电动机的牵引,可选一台异步电动机,并要求其极数与同步电动机一致。若同步电动机在起动时转子未加入励磁,需要将转子借助辅助电动机牵引以接近或达到同步转速,完成之后将直流励磁电流通入到同步电动机的转子励磁绕组中,将同步电动机利用整步转矩将接入电网。实际上,在完成定子的同步运行后,辅助电动机已失效。要降低不必要的电能损耗,应停止辅助电动机的运转。辅助电动机起动法主要应用于同步调相机起动和空载起动,但其需要较多的设备,且操作相对较为复杂。

(二)异步起动

异步起动主要靠安装在同步电动机上的异步电动机绕组实现。其操作原理为:将定子通电,靠起动绕组中所产生的异步电磁转矩实现电动机起动。在其转速接近同步转速时,通入励磁电流,通过同步电磁转矩实现电动机的同步运转。异步起动主要靠安装在电动机上的绕组实现,所需设备较少,操作方便。需要注意的是,要避免异步起动时励磁绕组的开路状态。这是由于开路状态下,过多的励磁绕组匝数将造成定子的感应电压升高,从而导致其绝缘性能下降甚至消失,容易造成安全事故,这是异步起动最大的缺点。同时,这种起动方式过程不能使磁绕组直接短路。否则将造成励磁绕组的单相电流过大,并且在旋转气隙磁场的共同作用下, 附加转矩增大。根据异步起动的转矩特点,在其起动时,可选择实阻值约为励磁绕组10倍的起动电阻,并将其与转子励磁绕组连接。这样可以减小励磁绕组的感应电流,降低单轴转矩对电动机起动的影响。

二、同步电动机的变频调速

同步电动机的转速与供电电源频率之间始终保持同步并处于稳定运行状态,也就是说,电动机的转速只与电源频率有关,与负载之间无必要联系。也就是说,要实现其转速的改变,变频调速是唯一的方法。目前,变频调速系统主要为自控式调控系统和他控式调试系统。

(一)自控式同步电动机变频调速系统

自控式同步电动机的变频调速的优势在于消除了其转子振荡和失步而出现的安全问题,自控式同步电动机的变频调速系统由安装在电动机轴端的检测器为主, 该检测器的主要作用就是通过信号的发出电力电子器件的频率和导通顺序,实现定子转速与转子转速保持同步,消除了负载对设备运转的冲击。目前,该变频装置可采用交-交型或交-直-交型。自控式同步电动机变频调速系统不再使用旋转接触式换向器,而是采用了电力电子逆变器与转子位置检测器。自控式变频同步电动机的变频装置具有差异,这要影响无换向器电动机的电流使用交流还是直流。

(二)他控式同步电动机变频调速

交-直-交变频器是他控式同步电动机变频调速系统的主要应用装置,其变频系统的结构与自控式变频系统相比较为简单,通常只有一台中变频器供电,因此操作较为简单,但相对来说,变频效率不高。但能够作为变频起动装置,确保同步电动机的软起动,或将其应用于多台同步电动机的同时调速。但他控式同步电动机变频调速性能较差,结构简单,存在转子振荡和失步等安全问题,因此应用并不多。

三、总结

同步电动机只有在转速等于同步速度时才能产生恒定不变的同步电磁转矩。该电动机的结构较为简单,主要问题在于其起动。如何保持转子与定子速度的一致是保证其稳定运行的关键。目前,同步电动机所用电源多为50Hz的交流电源,这使得其从静止状态到运转状态的转变较为困难。随着电力系统的快速发展,运行在系统上的主要负载为异步电动机和变压器。这使电网必须要担负电感性的无功功率,从而造成线路损耗,因此同步电动机的起动是其运行中最重要的问题。(作者单位:海南师范大学)

参考文献: