首页 > 文章中心 > 化学工程师

化学工程师

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇化学工程师范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

化学工程师

化学工程师范文第1篇

教学资源建设是有中国特色卓越工程师教育培养计划实现的关键问题,也是长期以来中国卓越工程师教育培养计划实施的重点和难点问题。我国教学资源建设仍然存在总量不足、分布不均、共享困难、不能有效服务专业设置、课程建设、顶岗实习和学生就业等诸方面的不足。《国家中长期教育改革和发展规划纲要(2010-2020年)》明确要求把加快教育信息化进程作为推动教育改革发展的保障措施。卓越计划结合自身规律开发数字化资源,加强以优质视频、教学素材、特色专题为主要内容的专业教学资源库建设,有利于推动卓越计划相关专业建设、课程改革和教学方法手段的不断创新,并直接关系到卓越计划培养出来的人才质量。同时,《教育部关于全面提高高等教育质量的若干意见(教高(2012)4号)》提出“通过多种方式整合校园资源,优化办学空间,提高办学效益,确保高校办学条件不低于国家基本标准。因此,建立开放灵活的教育资源共享平台、提高资源建设的规范性和利用效率、降低建设成本和促进优质教育资源的普及和共享已成为亟待解决的重要问题。

2卓越计划化学工程与工艺专业教学资源建设的思路

卓越工程师背景下的化学工程与工艺专业需要根据行业对化工工程师知识、素质和能力的要求,确定相关课程和实践教学环节,将涉及工程意识、工程素质、工程实践能力、工程综合能力培养、企业以及工程项目管理知识的课程纳入培养方案中,增加工程教育相关课程,因此,必须按照新的人才培养方案,以教材建设和精品课程建设为手段,改革教学内容,加强教材建设,自主编写和完善系列专业教材,使教学内容充分反映新世纪化工实际生产和化工行业可持续发展的新要求。总体建设思路如下:

2.1构建“新体系”

构建以培养工程意识、工程素质、工程实践能力、工程综合能力为目标的实践教学新体系。按照基本技能层、知识应用能力与工程实践能力层、创新能力与工程综合能力层等“三层次”,循序渐进地培养学生的工程综合能力和创新能力。在基本技能层,主要通过课程实验、上机操作等实践环节加深对理论课程基本概念、基础知识和基本理论的理解和基本技能的培养;在知识应用能力与工程实践能力层,主要通过课程设计、专业实习、社会实践等环节实现对学生知识应用能力的培养;在创新能力与工程综合能力层,主要通过化工企业轮岗实习、化工企业项目设计与研究、毕业设计(论文)、大学生“挑战杯”竞赛、大学生科技创新活动、产学研合作开发等方式实现对学生的工程综合能力与创新能力的培养。

2.2突出“厚基础”

本专业卓越工程师教育专业培养方案课程设置分为通识教育,专业基础课和专业课三大模块。通识教育包括数学与自然科学、人文与社会科学、体育、素质教育公共选修课等,其课程学时占总学时的47.7%,课程学分占总学分的47.5%;专业基础课包括相关学科基础课和专业基础课,其课程学时占总学时的34.9%,课程学分占总学分的34.3%;专业课包括基本专业课和专业方向课,其课程学时占总学时的17.4%,课程学分占总学分的18.2%。突出了卓越工程师培养的厚基础,为卓越工程师的培养奠定坚实的基础。

2.3强化“宽口径”

本专业卓越工程师教育专业培养方案设置了精细化工、能源化工和生物化工三个专业方向课程模块。其中,精细化工方向课程模块开设了精细化学品化学、精细化工工艺学、精细化工过程与设备、精细化工及分离实验等课程;能源化工方向课程模块中开设了煤化学、煤化工工艺学、洁净煤技术、煤化工实验等课程;生物化工方向课程模块中开设了工业微生物学、生物化工工艺学、生化分离技术、生物化工实验等课程。强化了卓越工程师培养的宽口径,以满足大化工行业对工程技术人才的要求。

2.4体现“重创新”

教材建设也是教学资源建设不可缺少的内容。在化学工程与工艺专业的专业基础课和专业课教材的选用上,以“加强基础、精选内容、有所创新、有利教学”为原则,尽量选用国家规划教材或者比较权威的高水平教材。同时,组织教师立项编写或参编高质量教材,如普通高等教育国家规划教材或精品教材;自编配套辅导教材和讲义,制作和充实各类声像教学资料,积极开发具有专业特色的CAI课件,录制网络教学视频。重点开展精品课程建设,争取获得1门国家级精品课程、2~3门省级精品课程、4~5门校级精品课程,通过改革与建设,不断提高教育质量和人才培养质量,努力培养学生的创新精神和实践能力,打造出有扎实理论功底、掌握化工专门技能、有很强事业心和吃苦耐劳精神的应用型专业人才,以满足现代化工业发展对化工专业高素质人才的需求。我们将不断完善卓越背景下化学工程与工艺专业的教学资源建设,确保学校教学质量不断提高,确保专业建设项目绩效。

3卓越计划化学工程与工艺专业教学资源建设存在的困难

卓越计划化学工程与工艺专业教学资源建设的内容相当丰富,在实际操作过程中需要突破重重难关,其中最为突出的有校企合作、人才需求的个性化和多样化以及师资队伍建设三个方面。

3.1校企合作是首先要解决的问题

近年来,我院不断探索和完善校企合作的长效运行机制,努力通过各种渠道与企业沟通,先后在多家大中型企业设立了教学实习基地并成立了一个工程实训中心,为学生营造了在企业进行实践学习的良好机会。但有些企业为了兼顾安全生产、产品质量和生产效益,不能为学生提供在相应的技术岗位上动手操作的机会,这样一来学生的动手能力就得不到真正的锻炼。

3.2人才需求的个性化和多样化

不同的公司对技术应用型人才的需求均存在差异,如同样是培养化学工程与工艺卓越工程师,有些公司需要学生具有精细化工或生物化工方面的知识,而有些公司则需要学生具有能源化工方面的知识。因此,我们必须有的放矢地进行化学工程与工艺专业卓越工程师教学资源的建设,以满足不同公司对技术应用型人才的多样化需求。

3.3师资队伍的建设

化学工程与工艺专业卓越工程师培养必须摆脱传统的大学生培养模式,为了实现卓越工程师的培养目标和落实卓越工程师的培养标准,形成具有良好的学缘结构、知识结构和以中青年为主体的双师结构教学团队是顺利、高效进行教学资源建设的必要条件。而要改变目前师资水平不足,知识结构单一和学缘结构不合理的现状将是一个长期而艰巨的过程。

4结论

化学工程师范文第2篇

关键词:能源化学工程专业;应用型本科人才;培养模式

能源化学工程专业是研究利用化学与化工的理论和技术来解决能量转换、能量储存及能量传输问题的战略性专业。能源的高效、清洁利用将是21世纪化学科学与工程的前沿性课题,也是当前社会急需的具有广泛发展前景的新兴产业。我国于2010年开始设置了能源化学工程战略新型专业,并于2011年进行试点招生。目前针对能源化学工程专业并结合学校实际情况,对能源化学工程专业的培养模式进行了有益的探索。例如:

(1)东北石油大学对能源化学工程专业课程体系进行了构建,专业按照“通识教育+学科专业基础+专业教育+实践教学”四个层面对课程体系进行了设置[1];

(2)沈阳工程学院对能源化学工程专业学生的实践能力的培养进行了教学探讨,制定了一系列实践教学的相关规章制度,如《实验室开放制度》《实验室守则》《校内外实习管理办法》《课程设计、毕业设计管理办法》等实践教学的规章制度[2];

(3)北京化工大学对能源化学工程专业人才的培养注重学科发展的国际化交流与合作。每年邀请国际上著名的学者到能源化学工程实验室进行访问和交流,通过学术报告和互动交流,拓宽学生的国际化视野。并与多所国际著名大学建立了密切的科研合作关系和联合培养学生机制,为学生搭建了国际交流平台[3];

(4)哈尔滨工业大学能源化学工程专业教学主要侧重于学科研究方向的改革,主要包括太阳能电池材料的制备及性能研究,功能晶体材料的制备,生物质能源的开发,生物质能源与化工原料的转化研究,多晶硅高效回收新技术,发光二极管(LED)用荧光粉的研制,LED新型散热器材料的合成及LED封装材料等研究方向[4]。菏泽学院是一个应用型的地方本科院校,2012年菏泽学院化学化工系紧扣菏泽市煤炭石油资源丰富和能源化工基地建设的需要,成功地申请了能源化学工程专业,并于2013年开始招生。构建一个适应社会发展需求、具有地方特色的人才培养模式,是能源化学工程专业健康发展的基础。在高等教育大众化的背景下,应用型本科人才成为高等教育的重要对象,并占据了主导地位[5]。近年来,菏泽学院根据地方资源特点、经济发展需求和学校的师资结构特点对应用型本科能源化工专业的人才培养模式进行了构建。主要从人才培养规格、理论课程体系构建、教学方式方法革新、实践教学和学生科技创新体系的完善、考核评价方式的改进、师资队伍建设等方面进行了探索。

1人才培养规格的建构

人才培养规格是教学的前提和基础。《国家中长期教育改革和发展规划纲要(2010-2020)》明确提出:要遵循教育规律和人才成长规律,深化教育教学改革,创新教育教学方法,探索多种培养方式,形成各类人才辈出、拔尖创新人才不断涌现的局面[6]。为此应构建以学生为主体、以创新应用人才为核心,以学生全面发展为中心的多规格本科人才培养模式。为制定切合实际的应用型人才培养规格,我系深入菏泽市及周边地市各个能源化工企业进行调研,与人力资源招聘部门进行接触、对已毕业的学生进行调查反馈等,多方收集相关信息,并结合菏泽学院化学化工系师资结构特点,对我们的人才培养规格进行了定位。在调查过程中,我们发现:社会对能源化工专业的人才需求有三种类型:科研创新性,动手操作技术性和管理经营性人才。考虑到我系师资力量和学校发展目标,我们把能源化学工程的人才培养目标定为培养动手操作技术性和能源化工企业管理经营性人才。采用“一个专业两个方向”进行培养,实行“5+3”分流培养方式,即前5个学期在一起上通识课和专业基础课,后3个学期按照学生的意愿进行分开培养,主要开设专业课。同时对经营管理型的学生聘请经济系的老师开设经济管理型方面的课程。

2课程培养体系的构建

课程体系直接关系到培养人才的质量。能源化学工程是一门内容丰富而又广泛的科学,是涵盖能源、化工、环境和材料的交叉学科。课程体系按照“通识教育+学科专业基础+专业教育+实践课”四个模块设置,注意学科前沿和知识体系的完整性,构建具有地方特色的厚基础、宽口径、重视学科交叉的课程体系。应用型人才培养必须重视实践课的建设。在课程体系构建中,我们十分重视实践课的比例,规定不少于总课时的20%。课程除了基础课程实验、专业课程实验、暑假实习、毕业实习、生产实习,毕业论文设计外,还应增加大学生挑战杯竞赛、大学生科研基金项目、大学生创业计划项目、开放实验室等项目。教学是基础,是传授知识;科研是创造知识,是教学的延伸和发展[7]。组织学生积极参加全国大学生化工设计竞赛、数学建模竞赛、机械设计竞赛、结构设计竞赛、大学生挑战杯赛等竞赛项目。其目的是以竞赛为载体,把探索精神、创新技能、动手能力、合作能力、针对具体实际问题提出解决方案的能力作为培养目标。这些竞赛对于培养我国本科生的科研实践能力和创新精神起到了积极作用[18],加强了学生应用型能力的培养。

3教学方式方法的革新

紧密结合人才培养目标,构建全方位的教学改革模式。在教学方法上,根据“多元智力理论”和应用创新型人才成长规律,进行教学方式的改革,结合企业生产实例,采用范例教学改革模式,使学生在实践体验中感受应用创新型人才成长的过程,倡导“做中学”,使学生在小组合作比赛中体会自己的成长。在教学实践中可采用“项目活动法”,在项目设计过程中,教师仅起指导作用,学生可以自主查阅资料并开展与项目有关的研究性活动和合作学习。

4实践教学和科技创新体系的完善

实践教学和学生科技创新是培养应用创新型人才的重要环节。构建多层次的包括校内实验、实训、课程设计、参加科技创新竞赛、毕业设计,校外工厂见习、项目合作导师制、校外实习的“双导师”制以及校企合作协同培养制度,切实加强学生实践能力和科技创新能力的培养[9]。“双导师”制是指学生的实习过程中,由学校教师和企业老师共同指导,使学生对工厂实际生产的流程和工艺有一个全面清楚的认识,培养学生运用所学知识分析工程问题和工程实践应用能力。现在我们已与菏泽市的玉皇化工集团、洪业化工集团、多友科技等企业合作建立了10多处校外实习基地。双导师制的实行,加强了校企结合,有力地培养了学生解决工程问题的能力,避免了学生“所学”和企业“所需”脱节的问题,实现了学校培养和企业所需人才的对接。

5考核评价方式的改进

评价是学科教学的指挥棒。在能源化学工程专业课程评价过程中,采用过程评价与终结性评价相结合的评价方式[8]。对于通识课和专业基础课程,采取以闭卷考试(70%)和平时成绩(作业、小论文、实践报告)相结合为主;对于专业课,可采用闭卷考试、开卷考试和设计(论文)相结合的方式进行考核;对于选修课,采取教师自主考核与院系抽查相结合的方式;对于实习和实践课程,结合“双导师制”,采用化学化工系与企业共同考核的方式;对于实践课程,采取小组提交实践报告并答辩的方式进行评价。变单一评价为多元评价,从而调动学生的学习积极性。

6“双师型”师资队伍的建设

教师的“复合”能力(高深的专业理论和丰富的工业实践操作技能)是培养学生应用创新能力的前提和基础。为培养学生的实践创新能力,结合专业发展实际,构建“外引+内培+实践锻炼”相结合多渠道的“双师型”教师的培养方式,加强与高校、科研院所和企业的联系,切实提高教师的业务水平。近三年来,我系派出4位教师到能源化工企业进行业界锻炼,培养教师的工程实践能力,使教师明确企业对人才规格的需求,同时加强与企业之间的科研合作。我们还聘请企业的业务骨干为我们的兼职教师,不定期地给学生开设讲座和实践课。同时,我们鼓励年轻教师考取化工安全评价师、化工工程师、设备设计工程师等相关专业的职业资格证书。这些措施有力地培养了教师的工程实践应用能力,加强了“双师型”师资队伍的建设。总之,根据社会发展对能源化学工程人才的需求和菏泽学院建设应用型地方特色明显建设的目标,化学化工系根据师资结构特点,对能源化工人才培养模式进行了探索和改革,目前取得了一定的经验。而对如何更高效的进行校企合作,建设产学研联合协同创新体系,打造有能源化学工程专业特色的培养模式和体系,是我们继续努力和探索的目标。

参考文献

[1]刘淑芝,王宝辉,陈彦广,等.能源化学工程专业建设探索与实践[J].教育教学论坛,2014(6):209-210.

[2]赵海,刘瑾,董颖男,等.应用型本科能源化学工程专业建设的实践与思考[J].沈阳工程学院学报(社会科学版),2015,11(4):547-550.

[3]北京化工大学能源化学工程[EB/OL].

[4]哈尔滨工业大学能源化学工程专业介绍[EB/OL].

[5]邵波.论应用型本科人才[J].中国大学教学,2014(5):30-34.

[6]董泽芳.高校人才培养模式的概念界定与要素解析[J].大学教学科学,2012(3):30-36.

[7]任成龙.论科研实践与大学生创新能力的提高[J].南京工程学院学报(社会科学版),2010,10(1):48-51.

[8]陈彦广,韩洪晶,陈颖,等,基于国际化、工程化能源化工工程创新人才培养模式的评价及效果[J].教育教学论坛,2013(13):224-227.

化学工程师范文第3篇

(一)明确工程教育的培养目标和内涵

工程教育由工程科学、工程社会学、工程技能训练等构成,其目标是培养“高级工程技术人才”“高级科学技术人才”和“高级工程管理人才”等。欧美以麻省理工学院(MIT)为代表的一些大学充分拓宽了高等工程教育的内涵,从关注工程教育本身转向强调影响工程教育的哲学、教育学和文化学基础等,其目的是全方位培养基础知识厚、实践动手能力强、学习能力强、适应能力快、创新素质高、综合素质好的“现代工程人”。现代社会经济发展所需要的人才已经超越了只问过程不求结果的学术性人才和只知其果不问其因的应用性人才。当前社会迫切需求的是能够将理论与应用相结合,过程与结果相统一,将科学家素质与工程师精神相融合的工程应用型创新人才;工程应用型创新人才要能够将科学原理及学科知识转化为设计方案或设计图纸,并将设计方案与图纸转化为产品。工程实践创新平台的构建要以社会、企业对人才的需求为导向,必须与工程应用创新人才的培养目标和培养内涵相结合,充分考虑相关专业的定位、方向和特色;以提高学生自主获取知识的能力和应用知识的能力为目的,以激发他们的创新与创造性思维为宗旨;并增强他们的自信心和与人沟通交往的能力,加强他们对所学专业的热爱等。构建过程中还要树立以创新为核心,“重过程体验、重创新思维”的教学理念。总之,实践创新平台的架构是一个复杂的系统工程,不仅要呈现出综合性、复杂性和创新性的特征,还要体现社会性和伦理性的特征。

(二)分层次、多元化

化学工程学院实践创新平台的架构以强化实验技能训练、开拓创新意识、培养产品开发和实际操控能力为目的,建设了主辅线兼备、课内外结合的高水平化工基础实验室和独具石化特色的专业实验室,建设了校企联合、现场实习与仿真操作互补的实习基地;开发了系列化工生产实习仿真软件,并同时开展化工原理实验大赛和化工设计大赛,打造了具有“实践内容特色化,科研成果教学化,工程训练实战化”的立体化、多元化的实践创新平台。实践创新平台的架构过程中注重实践课程教学内容的改革。鼓励教师开设综合设计型课程、模拟训练课程和研究方法实践课程,教学内容面向化学工业的工程实际,并结合学科前沿,更多地采用案例分析、课程项目等形式。学生首先在课堂理论教学中认知工程实践,奠定工程实践创新人才扎实而又雄厚的理论基础,并使学生的实践能力逐渐由学科基础实践转向多学科知识融合实践,为高素质创新人才的培养奠定基础。与此同时,为强化学生化工设计的能力,采取项目教学的形式,按照实战演练的要求,统筹优化、整合化工原理课程设计、化工设计和毕业设计内容,构建点、线、面循序渐进且长程统一的化工设计实训平台,使工程理念四年不断线。在现场实习过程中,实现认识实习对化工工艺流程和化工设备的认知到生产实习对化工工艺参数和化工工艺流程的熟知,最后到化工仿真的实际操作。总之,在实践创新平台的构建过程呈现出了由认知实践、工程实训和工程实战的层次过渡。

(三)动态发展原则

在经济高速发展的信息时代,知识已经超越了社会构成中的其他要素成为了决定工程企业发展的主要素。当今科学知识和技术发展速度超越了以往任何时代,知识发展状况使工程企业等组织的生产水平与服务领域不断变化,对高素质工程人才的工程与社会方面的知识和能力不断提出新要求,在工程职业实践过程中不断遇到新的问题与情境。社会和企业对人才能力和要求的变化及工程实践问题的变化,要求高素质工程实践创新人才的培养目标要实时作出调整,相应的课程体系和实践教学环节也要随之变化,这就决定了实践创新平台的构建要遵循动态发展的原则,在动态变化中让学生感受、理解知识产生和发展的过程。

二、工程实践创新平台架构模式

(一)现场实习实训化、仿真模拟实战化

工程实践是工程教育的重要特征,是工程教育的灵魂,而产学研结合是工程教育的本质要求。学生只有充分利用校企合作平台,通过实践训练环节不断地尝试、摸索和研究,才能不断提高工程创新能力和分析解决工程实际问题的能力。只有亲历工程实践过程,才能真正了解工程的内涵,体验企业文化,并提高认知社会的能力。由此决定了生产实习的重要性。化学工程学院充分调动社会各界优质资源,不断探索校企合作方式,先后与校内外多家石油石化大型企业签订了联合培养协议,让学生在企业实习期间,具有学生和企业员工双重身份。目前化学工程学院已形成了“生产现场实习+计算机仿真实习”的生产实习模式。四周企业现场实习实行与企业相同的倒班制,教师和学生深入车间和工人师傅打成一片,教师更多地给予学生理论知识的传输,现场师傅给予现场经验的指导。学生在完备的安全防护措施下到常减压蒸馏、催化裂化、重油加氢裂化和催化重整等不同的炼油装置上跑流程、爬塔器、辨认主要操作设备和辅助设施,并在车间见习工人师傅对DCS系统的操作,观察各类操作参数的变化,以及突发性事故的处理方法等。但鉴于现场安全的严格要求,企业不允许学生进行现场操作。为弥补生产实习只能近观不能操作的遗憾,学生可在仿真实验室中进行炼油工艺过程的操作。现在仿真实验室中装有“常减压蒸馏”“催化裂化”“催化重整”和加氢裂化4套DCS仿真软件。学生可利用这四套软件进行炼油生产装置的仿真生产、开停工演练、事故处置模拟和化工装置的流程模拟计算等方面的训练。现场生产实习后的仿真实习使化学工程与工艺专业学生的实践能力锦上添花。生产实习的实训和实战过程充分体现了“工学结合”“做中学”和“做中教”的工程教育特点。

(二)教学实验综合化、创新化

把握内涵、优化组合、架构了实验课程体系,将实验按照设计型、综合型和研究创新型三个模块设置。目前已形成了从初级到高级、从基础到专业、从接受知识到综合性、创新性的实验教学平台。设计型实验模块涵盖了化工原理、化工热力学和反应工程实验等,实验过程遵循“自主设计,虚拟演练,室内实战,厚实基础,实现拓展”的方针。整合并优化了专业基础实验教学条件,建立了完善的实验教学保障机制,构建了虚拟化工多媒体操作平台和多个覆盖范围广的多功能实验室。实验内容包括了文献调研、实验方案设计、网上预习并模拟演练、实验室内实战等,强调学生实验过程的自主性,强化对专业基础知识的认知。此外,提倡小组讨论、协作攻关的实验模式,增强学生的团队协作精神。综合型实验模块按照“一线贯通,首尾相合,展现特色,体现综合”的规划,从原油的实沸点蒸馏实验出发,首先切割汽油和柴油馏分,然后测试原油和相应切割馏分的粘度、密度、馏程、硫含量、凝点、闪点和苯胺点等油品性质参数,实现整个专业实验的一线贯通;结合石油炼制工程所学理论,在对所有测试数据进行分析的基础上,对原油性质进行综合评价,确立初步的原油加工方案,从而体现整个专业实验首尾相合、特色化和综合性的特点。研究创新型实验模块遵循“把握前沿,展现工程,培养创新”的理念,依托并结合科研实验室,积极开发和建立大型实验装置,在构建过程中使之规范化和系列化,尽可能扩大学生的受益面。

(三)科研成果教学化

以学科建设为龙头,依托科研实验室,不断拓展工程训练内涵,加大科研成果向实验教学转化的工作力度,促进科研成果教学化。化学工程学院以科研成果转化为依托,积极开发和建立大型实验装置,作为学生选做实验内容。如近几年开发的两段提升管催化裂化技术和多产低碳烯烃技术等,均具有为学生提供实验的功能,每年都有大量的本科生参与到实验过程中,这不仅有助于学生对石油炼制工程教学内容的理解,也有利于学生综合能力的提高。鼓励并推行本科生参与科学研究,教师将科研课题分解成多个子课题,然后依托化工实验中心和教师科研室完成相应课题的研究;由此开发学生的创新思维、提高学生分析问题和解决实际问题的能力。

(四)教师队伍多元化

工程实践创新平台的建设要有强有力的教师队伍支撑。当前工程教育存在的一大弊端就是缺乏有工程背景的教师。尽管在过去的教学过程中我们注重强化学生的工程实践能力,重视各实践教学环节,建立了多层次、立体化的实训教学平台,但是我们仍严重缺乏有丰富工程经历的教师。针对教师队伍中工程实践经验薄弱的问题,化学工程学院实行了青年教师生产实习轮训制,鼓励和制订政策支持教师到企业培训或到相关高校学习。学校也调整用人制度,降低学历门槛,注重实践能力,从厂矿企业或设计院引进工程背景丰厚的工程师增添到教师队伍中。针对当前全方位、高素质工程人才的培养目标,我们在重视工程设计、工程管理素质培养的同时,还关注了学生文化素养的培养。以工程文化教育课程及工程文化教育基地为载体,实施工程文化教育,培养学生“大工程”意识。要实现这一培养目标,工程教育也需要具备相应素养的教师队伍。此外,借鉴其他高校的成功经验,加大“双师”型师资队伍建设力度,尽快实现教师队伍结构和素养的多元化。

(五)学生学习自主化

在工程实践创新平台的构建过程中,我们还密切关注了学生自主学习能力的培养。所谓“自主学习”是指在教师指导下主动参与、主动获取、自我构建、自我发展和自我完善的过程。工程实践创新平台的构建要给学生提供充分自主学习的空间,鼓励学生主动思考、自觉学习;激发学生的学习兴趣和求知欲望。为实现这一目的,我们一方面大量开设了综合开放性实验、创新实验,由化工实验中心或教师科研室为学生提供完成实验的基本条件,学生在教师指导下通过自主设计、自主操作和自主处理实验数据完成实验的设定目标;另一方面在工程设计中,在教师指导下,学生可自行拟定工程设计题目,完成从设备选型到工艺流程的初步设计。此外,我们也面向学生开设了兴趣认识性开放实验,培养学生展示自己想象力的能力。

三、结语

化学工程师范文第4篇

1.1四元复合实践

教学体系的组成结构常熟理工学院作为一所地方院校,安全工程专业从2011年开始招生,在专业创办之初就确定以学校已有的化学、材料类专业为依托,发挥自身优势打造具有化工行业背景的安全工程特色专业,但与老牌工科高校依托传统采矿、冶金等专业发展起来的安全工程专业相比有一定的差距,尤其在实践教学环节还比较薄弱。实践教学有多个环节,包括实验、实习、实训、设计、大学生课外创新活动等内容。本文在借鉴其他高校经验的基础上,提出具有化工行业特色的四元复合实践教学体系。四元复合实践教学体系由基础性实践、专业性实践、综合性实践和创新性实践四个层次的教学内容构成。

1.2基础性实践

基础性实践包括工学基础实验、实训和专业基础实验,工学基础实践内容是指培养学生工程素养的工学通识类实践课程,例如大学物理实验、热工学实验、电工实训、金工实训等。专业基础实践内容是指立足化工行业的基本要求的化工专业基础实验课程和立足安全工程学科基本要求的基础实验课程,包括基础化学实验、化工原理实验、燃烧与爆炸基础实验、安全人机实验等。基础性实践课程的作用是加深对基础理论知识的理解和掌握,为进一步学习专业知识和专业技能奠定基础。

1.3专业性实践

专业性实践是培养基本专业技能、拓宽专业视野、带领学生初步进入专业角色的实践性课程,包括专业基本技能实验、实训、实习。例如消防安全实验、安全监测与监测技术实验、应急救援实训、化工过程见习、专业认识实习、安全管理实习、生产实习等。

1.4综合性实践

综合性实践是培养学生综合利用所学知识解决实际问题的能力的实践课程,包括课程设计、综合实训和毕业论文或毕业设计。例如防火防爆课程设计课程是通过具体工程案例的分析和设计,使学生更好地熟悉和理解防火防爆安全技术的基本理论;化工安全课程设计是综合应用所学知识,完成以化工安全设计为主的一次工程设计实践,使学生掌握化工安全设计的基本程序和方法,并在分析和解决安全问题、查阅技术资料、选用评价方案、用简洁文字和图表表达设计结果等能力方面得到一次全面训练;安全工程仿真模拟是应用挪威船级社开发的SAFETI风险评价软件或其他安全评价软件对石油、化工等涉及危险化学品生产、储存的区域进行火灾、爆炸、泄漏等多种灾难事故的叠加风险分析与定量计算,是以虚拟仿真案例综合培养学生风险分析及风险管理能力,提高学生的岗位适应能力。毕业设计是本科教学的最后环节,也是最为重要的实践环节,由于安全工程专业是实践性很强的专业,所以毕业设计提倡真题真做,要求学生能在导师的指导下独立解决较为复杂的工程实际问题,所以选题应以实际安全设计或安全评价项目为主,需要学生对所掌握知识进行一定程度的扩展、加深并具有一定的创新。

1.5创新性实践

创新性实践主要是学生利用课余时间参与教师的科研项目,做教师的科研助手,或者学生自己组建科技兴趣小组,积极参与各级各类大学生课外学术科技作品竞赛和创业大赛,通过这些创新实践活动培养学生的科技创新能力,拓宽视野,了解专业的发展前沿问题,增强学习兴趣。

2四元复合实践教学体系的实施保障措施

2.1师资队伍建设

师资队伍建设要引进和培养两手准备,由于近几年安全工程专业的快速发展,许多高校新建了安全工程专业,都迫切需要引进新教师补充师资队伍,而国内安全工程博士学位点较少,所以本专业科班毕业的博士生非常稀缺,新教师引进难度都比较大,因此一方面要积极争取引进具有安全工程专业背景的科班教师,另一方面也要鼓励相近专业的教师转型到本专业任教。对转型教师可以多举措提高其工程素养,一方面鼓励青年教师参与学校“双百工程”和江苏省“教授博士柔性进企业”活动,积极到相关企业甚至安监局等职能部门挂职锻炼,另一方面教师要积极参加安全生产审核、安全风险评价等相关培训,获取“注册安全工程师”“注册安全评价师”等资质并努力为企业服务来丰富工程经验。

2.2实验室建设

根据实践教学课程的需要,对专业实验室进行了科学规划,在学校的重点扶持下先后建设了安全人机实验室、防火防爆实验室、消防安全实验室、安全监测与检测实验室、工业安全实验室、应急救援实训准备室和安全仿真模拟实验室等七个实验室,在满足教学的同时也具备了较好的社会服务条件。

2.3实习基地建设

首先在校内依托已有的应用化学工程训练中心、材料工程训练中心进一步建设完善了安全工程相关实训项目;同时在校外建立了常熟市安全生产监督管理局、苏州市相城区安全生产监督管理局、常熟市永安安全技术咨询公司、常熟三爱富中昊新材料化工有限公司、江苏理文化工有限公司等十多家稳定的实习基地;满足了学生各类各层次的见习实习需要。

2.4实践课程建设

由于安全工程专业在国内还处于发展阶段,各个院校开设的安全工程专业由于行业属性不同,课程设置差异较大,所以缺少成熟的实验实训讲义,所以要鼓励专业任课教师要一边教学一边探索,及时修编整理实践课程讲义,形成一套能较好满足本校人才培养定位的特色讲义教材;另外在依托教师科研项目和社会服务项目的基础上,设计一系列能够提升学生研究、发现、解决问题能力的实验、实践项目,并制定出新的实验指导书与实践讲义。

3结语

化学工程师范文第5篇

关键词:化工工艺设计;实践环节;教学改革

为适应国家战略发展需要,2013年教育部、中国工程院联合出台了《卓越工程师教育培养计划通用标准》,为高等院校培育工程技术人才提出了新的标杆,也提供了新的契机。在众多工科专业中,化工专业涵盖过程工业的各个部门,对高质量各类型的工程技术人才需求十分迫切。化工工艺设计课便是培养化工专业优秀工程技术人才的一门不可多得的课程,在高等工程教育的深化改革中越发展现出其在本科教学课程体系中无可替代的作用和地位。

1化工工艺设计课简介

化工工艺设计课(以下简称“工艺设计课”)目前在国内大多数设立化学工程与工艺专业的院校都有开设,一般安排在本科四年级,是在学生学完专业基础课之后,综合运用专业基础课、制图以及经济、安全等方面的专业知识解决问题的一次训练,更能够迫使学生从做题的情境切换到工程实际的情境,因而能加快学生的思维向工程思维转变,能切实提高学生处理工程实际问题的能力。因此,与本专业的理论课相比,工艺设计课在优秀工程技术人才的培养方面具有独特的优势。然而,由于多种原因,工艺设计课还存在着不少问题,这门课的优势还远未被充分发掘,应有的教学效果还远未达到。

2工艺设计课存在的问题及原因剖析

纵观国内开展工艺设计课的高等院校,目前该课程教学过程中发现的主要问题可归纳为以下五点。

2.1设计要求和难度一降再降

工艺设计课教学效果难以达到预期,很大程度上源于设计要求和难度的一降再降。一方面,信息时代生活节奏越来越快,压力越来越大,很多本科生为了提高自己的竞争力,不得不分心考研、考证、实习、联系出国、进实验室、参加学生工作和社会实践,难以专注于专业课程学习本身。因此,学生们能真正投入到工艺设计课中的时间越来越少。例如,每年都有大量学生参加考研,考研之后紧接着就是毕业设计,使得学生很难充分重视工艺设计这门课。另一方面,化工设计工作量巨大,真正的设计从来都是团队共同作业才能完成。但在实际教学中,为防止学生抄袭而催生的“一人一题”的强制要求,也使得教师很难提出由多人共同完成一个设计任务的设想,因而也不得不降低对个人的要求和难度。

2.2设计题目缺乏精心设计

设计题目的合适与否对教学效果影响甚大,但从目前情况看,不少设计题目缺乏精心设计,衍生出如下几类问题。(1)与《化工原理》、《反应工程》等经典先修课程脱节严重。近年来,有一部分带设计课的指导教师认为,设计应该做真题,不应该做所谓的“假题”,甚至于设计题目就是指导教师团队正在做的工程项目。这就使得设计题目中所涉及的核心反应和分离单元经常不是经典的反应器和单元操作(如吸收、精馏),有时会大量涉及气体吸附、膜分离、结晶、离子交换等非传统的化工的单元操作,有时甚至还因为新技术保护的原因无法获得设计所必需的数据。此外,即便有些题目来源于经典的传统化工工艺,但如完全忠实于实际项目,没有必要的简化处理,也必会造成工艺系统过于庞大、题目过于复杂,使学生感到一下子难以承受,不利于短学时性质的工艺设计教学。(2)“一人一题”设计的考虑不够周全。“一人一题”的初衷是限制学生抄袭。然而,很多设计题目,设计变量很少,甚至只有生产强度一个变量,使得学生的设计题目之间没有本质区别,无法杜绝学生抄袭。只要有个别学生做出来,其他学生只需简单地线性变换,仍可效仿,无需经过足够的个人思考。(3)未充分体现“整体设计”,仅是单元操作的简单组合。工艺设计课的工艺计算过程,应充分体现过程、工艺的整体设计。然而,目前的许多设计题目,其设计条件没有涉及单元之间的耦合,使得学生无需深刻认识过程和全流程,便可迅速进入到各个单元操作的计算阶段,其教学效果约等于化工原理课程设计,缺失了对学生大局观的培养。

2.3缺乏高效的“过程管理”

目前很多院校完全采用“结果管理”的教学模式,存在很大问题。所谓完全采用“结果管理”,即设计开始阶段做一次较为充分的宣讲,对设计过程不甚关心,完全以最终的报告和图纸定成绩。有些教师迫于科研压力,不愿在设计课上投入时间精力实施过程管理,甚至以“设计课以学生为主、学生自己完成”为理由,过度精简了设计过程中的师生互动环节。当然,也有很多教师非常重视过程管理,投入了大量的精力,但效率不高,其重要原因就是容许学生自由发挥的地方过多,学生的设计计算结果五花八门,教师很难对学生的阶段性进展做出高效反馈,甚至会打击青年教师的信心。诚然,设计没有标准答案,充分开放的设计题目更有利于启发学生,但这更多是针对设计大赛或是毕业设计。对于学时有限的工艺设计课教学,笔者不敢苟同。

2.4指导教师与真实设计资料的接触非常有限

近年来入职的青年教师,受到目前高等院校大环境影响,学术型的居多,大多没有经历过多少设计实践,自身工程设计底子薄。即使是有一定经验的教师,也有很多没接触过真正的、有代表性的设计资料。笔者所在的教研室只是收藏了一些早期的纸质版的图纸供学生学习,能反映当今化工厂、化工车间设计成果的图纸(特别是CAD电子版的图纸)还非常有限。学生们从未见过规范的设计文件和图纸,他们上交的报告和图纸都与行业规范相差甚远。

2.5先修课程缺乏对工艺设计课的铺垫

工艺设计课是一门综合运用所学专业知识的实践性课程,应该让学生能够在学习过程中将所学知识充分用到解决实际问题中去,这样会激发学生内心中的成就感,更加明白终身学习的重要性。然而,从目前看,学生学过的先修专业课程,对工艺设计课的铺垫不够,常常与设计题目脱节严重,这会使得“大学上的课没用”的思潮抬头,学生听课的积极性大减。例如,《化工工艺学》和《化工设计》这两门课是工艺设计课的直接先修课,但这些课程间的沟通合作还远远不够,从而不能将工艺设计题目中涉及的工艺流程在这些先修课上有所伏笔,提高了学生们面对工艺设计题目时要迈过的门槛。又如,认识实习、生产实习等实习环节,也是理论与实际联系的重要桥梁,但也很少跟工艺设计课之间建立紧密的关联[5]。我们常常不能将工艺设计题目中涉及的过程、车间和设备在实习阶段就让学生有所了解,这就使得工艺设计只能停留在课堂教学而没有实习支撑。

3改进工艺设计课的若干措施

笔者结合自己的教学实践以及在学生阶段的一些设计经历,尝试总结了一些可能对解决上述问题有所改善的措施,分五点陈述如下。

3.1精心安排设计时间

(1)尽早动员,尽早布置题目。《化工工艺设计》的全员动员应在四年级上学期开学即进行,最好能和另一门设计类实践课《化工原理课程设计》的全员动员合并进行。这样做好处有二:①学生通过一次集合就知晓大四的设计开课整体情况,便于其合理安排时间;②这样安排可以使得在《化工原理课程设计》结束后顺理成章地布置《化工工艺设计》的题目,给学生更多的准备时间应对难度更大的《化工工艺设计》。

(2)尽量避开考研冲刺期。可考虑将官方的开课时间定在春季学期,实际教学则可以跨年度。具体地说,是从考研结束之后那一周算起,完整进行4~5个自然周。笔者所在教研室一直推行这个方针,最大限度地减少了考研对工艺设计课的影响。

(3)给学生较为充足的报告撰写时间。在教学环节结束后,推迟1~2周(甚至整个寒假)收缴报告和图纸,给学生充足的报告撰写时间。如果寒假之前时间不够,则顺延到年后,但无论是否顺延,都统一在春季学期的第一周做完并上交报告,以减少对《毕业设计》环节的干扰。

3.2精心制定设计题目

(1)设计题目应更强调过程和整体。应通过设计条件的合理设定,使得任何一个单元操作都不可能独立求解,籍此强化过程物料衡算和过程设计的概念,使学生认识到过程设计不是单元操作设计的简单加和,有利于培养学生的大局观和主人翁意识。

(2)拉开“一人一题”设计条件的差异。通过设置不同的设计条件参数,对设计题目分组,使组与组之间在一开始便存在较大差别。这样即便无法完全杜绝抄袭,但也增加了抄袭的难度,迫使试图“偷懒”的学生不得不思考别人的结果哪些可以借鉴,哪些不能简单照搬,在这样的“询问他人+自我思考”中也潜移默化地达到了教学的目的,“少数人栽树、多数人乘凉”的状态得到有效的遏制。

(3)设计的前期计算应有相对确定的参考答案。设计的物料衡算、热量衡算和设备工艺尺寸计算部分,应有相对确定的参考答案,作为指导教师进行过程控制的重要依据。原因有四:①由答案反推过程,有利于及时纠正低级错误,有利于引导学生主动思考;②结合结果控制的管理,当有严格时间限制时,往往比纯过程控制效果更好;③能提高当面交流的效率,有利于提高学生的学习体验,也有助于提升青年教师信心,使其快速成长;④设计的开放性体现在多个方面,诸如PID设计就能充分训练学生的发散思维,没必要从工艺计算就开始发散。

(4)避免重复训练。设计题目最好应包括反应器设计。如果没有反应器,指导教师还应充分注意所带班级《化工原理课程设计》的题目,使得核心单元操作与《化工原理课程设计》有所区别。

3.3完善成绩评定方式

最终成绩应是设计步骤(设计过程)、答辩(测验)、说明书撰写、图纸绘制等环节的成绩总和。其中,设计步骤(设计过程)环节是过程监控性质的,应规定学生在每个节点必须完成的任务,且对其完成情况作出快速、准确的评估;答辩(测验)环节也是过程监控性质的,是教师了解学生投入情况的另一个重要窗口,是对抄袭行为的必要威慑。

3.4加强设计类课程的中青年教师培养

(1)提高准入门槛。首先,从事化工设计实践环节教学的教师,必须有化学工程与工艺的专业背景,最好是参加过设计大赛或本科毕业设计题目为设计型题目。其次,青年教师接手设计课也必须有听课、助课等自我修炼的过程,特别是没有时间较长、强度较大的实践经历的青年教师。

(2)鼓励设计课相关的教师“走出去”访问学习。鼓励工艺设计课相关的教师,包括从事《化工设计》理论课教学的老师,多去化工专业排名前列的院校走访,听听那些口碑较好的老师的《化工设计》理论课,了解其授课内容,学习其先进的课堂组织方式和授课方式。笔者本科阶段上过天津大学王静康院士负责的《化工设计》课,深刻体会到:把《化工设计》理论课上好,是调动学生兴趣的第一步;否则,学生就会本能地对设计实践课产生抵触情绪,很难谈得上有兴趣。

(3)下大力气收集、整理真实的设计案例。学院和教研室应设法为一部分指导教师创造去设计院实训的机会,积累一些真实的设计案例,至少是获得一些标准规范的PID、平立面布置、设备、配管设计等图纸,加以分类,做好资源共享管理。

3.5加强不同专业课教师之间的沟通、协作

在此笔者有两个特别建议:

①特别建议带设计的指导教师参加实习。比如,在生产实习过程中,要求学生认真体会工艺设计相关的工艺和单元操作,了解厂区总图布置、设备布置、管线走向、监控室设计等,学习工程实际中的反应器和多组分分离系统。

②特别建议《化工工艺设计》的指导教师也从事《化工原理课程设计》的教学,甚至是带同一个班。同一位老师带班,更有利于讲清楚这两门设计课的相通点和不同之处,使得工艺设计课能够尽量多涉及过程和整体,避免在单元操作的局部中纠缠不清。笔者已通过这种模式连续带班了2届学生,效果良好。

4结语

工艺设计课是化工专业设计类实践环节的典型代表,综合性和应用性都很强。在高等工程教育深化改革方面,工艺设计课是大有可为的,应引起相关专业、相关院校和相关部门的高度重视。一方面,必须从学校、学院和教研室层面重视起来,为支持设计课的发展、构筑合理的专业培养体系精心谋划、大胆创新;另一方面,这门课以及化工设计相关的指导教师应当意识到自己身上的责任和使命,下大力气提高组织教学的水平和业务水平。如此经过全方位多角度的改进,工艺设计课的教学质量才会不断提高,才会在培养高层次工程技术人才方面发挥更大的作用。

参考文献

[1]冉茂飞,张嫦,刘东,等.基于卓越工程师计划的“化工设计”课程教改初探讨[J].广东化工,2015,42(14):228-229.

[2]赵云鹏,周敏.化工设计课程教学改革与实践[J].广州化工,2014,42(8):193-194.

[3]梁克中,黄美英,赖庆柯,等.大学生化工设计竞赛对化工设计课程教学改革的促进作用[J].职业时空,2014,10(8):76-77.

[4]张刚,涂军令,傅小波,等.化工设计课程教学中的问题与改革尝试[J].广州化工,2016,44(6):181-182.

[5]陈效宁,张艳辉.关于生产实习与化工设计类课程相结合的探讨[J].广州化工,2015,43(23):255-256.