前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇腐蚀监测范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:无线电监测设备;海洋大气腐蚀;设备腐蚀形态
前言
随着无线电监测系统应用领域的不断扩展,由频谱传感器、监测测向设备和天线组成的户外部署设备在沿海地区、舰船、岛礁等环境的使用日益广泛。这些长期曝露在海洋大气环境下的无线电监测设备,其工作寿命和可靠性与其抵抗盐雾侵蚀的能力密切相关。提高设备的抗蚀性能既是系统可靠性设计的重要环节,也是无线电监测系统长期工作于海洋大气环境时必须面对的关键技术。针对这一难题,成都华日通讯技术有限公司组织相关科研人员进行了专题科研攻关。经过研究腐蚀形成的机理,采取相应的防腐蚀对策,在大量实验的基础上,最终取得了较好的效果。按照IEC61969-3防护要求,工作于户外的频谱传感器机箱通常采用IP55以上防护等级的全密封结构设计。为了满足密封状态下内部电路的传导散热要求,箱体金属构件大多采用传热性能优越的铝合金材质生产。同时,铝合金还以其优良的电性能和较高的比强度,在各类天线构件中获得广泛应用。可以说,监测设备的核心金属构件几乎全部采用铝合金材质生产。根据金属材料腐蚀理论,氯离子对铝合金材料具有强烈的腐蚀性[1]。在海洋大气环境下,曝露于高盐雾介质中的铝制构件在氯离子作用下将产生严重的电化学腐蚀,进而导致设备可靠性遭到破坏。监测测向设备的损坏形态不仅取决于海洋大气腐蚀特征,也与其具体结构形式密切相关。需要针对不同的腐蚀成因,采取科学、合理的措施,才有可能阻止或减缓腐蚀进程的发生,有效提高设备的抗腐蚀性能。
1海洋大气的腐蚀特征
海洋腐蚀环境可以分为海洋大气区、飞溅区、潮差区、海水全浸区、海底泥土区。处溅区的构件由于表面供氧充足、干湿交替,因而是最严峻的海洋腐蚀环境[2]。从防腐蚀和维修便利性考虑,海洋环境下监测测向设备的选址应尽可能远离飞溅区,布置于海洋大气区。海洋大气区是海水蒸发形成的含有大量盐分的大气环境,具有高盐雾、高湿度的特点。对铝合金的腐蚀特征主要体现在两方面:其一是大气中的溶解盐直接作用于铝合金和无机材料产生腐蚀;其二是结晶盐粒吸湿后在铝合金表面形成液膜,为腐蚀发生所需的电化学反应提供活性电解质,加速金属构件的腐蚀进程。海洋大气对设备的腐蚀性取决于设备所处位置、降雨量的多少、温度的高低。数据显示:海洋大气中氯离子含量随着离开海岸线的距离呈指数级降低[3]。因此海岸线附近的腐蚀远高于海洋其他区域。海洋大气陆上腐蚀范围一般在距海岸20km左右,距海岸越近、降雨量越小、温度越高腐蚀就越强,24m处比240m处腐蚀大12倍。对处于海岸、舰船或岛屿上的无线电监测测向设备而言,海洋大气的腐蚀、老化作用是其必须面对并长期承受的环境因素。
2设备的腐蚀形态
铝与氧有极强的亲和力,在普通大气环境下其表面会自然形成厚度为0.5~4微米的氧化膜,使铝处于钝化状态,阻止其与周围环境继续接触,保护基体不被腐蚀损坏。但在海洋大气环境下,由于氯离子的作用,钝化膜的防护作用极易被破坏。如没有有效的防护措施,曝露在腐蚀介质中的监测设备将出现以下几种腐蚀形态:
2.1合金成分引起的腐蚀
海洋性气候的腐蚀介质中主要是高浓度的氯离子和促进阴极反应的溶解氧。由于氯离子的半径很小,极易透过膜的孔隙缺陷到达合金基体。当合金中含有加速阴极反应的其他金属成分时,电解液中的活性阴离子便与这些金属阳离子结合,生成可溶性氯化物,形成俗称“白斑”的小孔腐蚀。腐蚀的严重程度不仅与介质有关,更与铝合金的成分有关。实验表明[4]:高纯铝具有很强的抗点蚀性,而含铜铝合金则对小孔腐蚀最为敏感。安装在海洋环境中的铝合金天线构件,仅几年时间就发生腐蚀,严重部位的表面几乎完全呈白色粉末状态(见图1),对天线结构与性能造成较大破坏。究其原因,不仅与腐蚀环境有关,应该还与材质中含有能够加速腐蚀进程的铜元素有关。因此,对应用于海洋环境的机箱、天线等铝合金构件应充分重视材料自身的抗腐蚀特性。设计时不仅应避免使用铝-铜系合金,还应对各类防锈铝的实际含铜量给予高度关注。
2.2异相金属接触引起的腐蚀
由于铝的自然电位较负,与异相金属接触时总是处于阳极,异相金属则成为铝合金电解的阴极体,在电解质的作用下发生电化学腐蚀,也称电偶腐蚀或双金属腐蚀。几乎所有常用金属,只要和铝合金之间存在湿润导电接触都会导致铝的电化学腐蚀。在各种金属对铝材的电偶腐蚀影响中,尤以铜引起的腐蚀最为严重[4]。电偶腐蚀引起的损坏程度取决于两种金属的电位差、阴阳极的接触面积比。实验证明[5]:电位差越大,阴阳极面积比就越大、腐蚀越严重。安装在沿海地区的天线,其连接处的腐蚀往往比其他位置严重。图1中有插座连接的地方以及使用螺栓连接的螺孔都显现出更严重的腐蚀痕迹(螺孔内部已完全呈白色)。造成这种现象的原因,不仅有腐蚀介质在合金表面的点蚀结果,更主要的是连接处存在促使铝合金电解的其他金属,两种金属在盐雾介质作用下发生了电偶腐蚀。监测设备上安装的各种插座、装配用到的紧固件其材质大都为钢或铜,当它们与铝合金之间有电解液膜时则会发生电偶腐蚀,对设备造成破坏。因此,在天线与机箱的设计中应尽量减少或避免采用腐蚀电位悬殊的异种金属材料,装配中还必需对产生电偶腐蚀的条件加以控制,无法控制时应采取相应的隔离措施,以便有效避免或减缓电偶腐蚀的发生。
2.3结构缝隙引起的腐蚀
振子与振子座连接处、箱体与盖板间、插座与面板间、垫圈与螺钉连接处、搭接焊处、铆接处均有缝隙存在,在腐蚀介质的作用下,缝隙金属面将发生腐蚀。腐蚀作用初期,缝隙内外腐蚀介质中的氧浓度差异不大。随着腐蚀的进行,缝隙内的氧很快被消耗。缝隙内外腐蚀介质因溶解氧浓度不同形成氧浓差电池(也称差异充气电池),促使缝隙内金属不断发生腐蚀。缝隙腐蚀现象与金属成分关系不大,但对缝隙宽度较为敏感。最易发生腐蚀的缝宽为0.025~0.100mm,这种宽度下盐雾液膜既能侵入又不会流失,非常有利于腐蚀进程的持续发生,是设计中必须注意解决的问题。缝隙腐蚀的另一特点是其临界腐蚀电位较低,因此它比点蚀更容易发生。加之腐蚀发生在缝隙内,缝隙外部腐蚀迹象并不明显,通常不易被发现,因而对设备具有更大的破坏性。
2.4涂层缺陷引起的腐蚀
当有机涂层与金属膜层之间因针孔或膜层损坏渗入电解液后,涂层下金属在氧浓差电池效应下被逐步侵蚀,由于其膜下腐蚀路径呈蠕虫状,也称丝状腐蚀。这种腐蚀的活性头部区域为阳极,尾部是阴极。由于腐蚀电池两级之间是依靠氧浓差维持,因此其活性头部总是向缺氧方向发展。当接近另一条丝状腐蚀线时,活性头部会避开涂层已破坏的高氧区而转向涂层尚未破坏的低氧区,使丝状腐蚀具有不交叉的典型特征。需要注意的是,丝状腐蚀是一种膜下腐蚀,且只发生在有机涂层与金属之间,一般不发生在的氧化膜上面,因而在腐蚀前期往往不易发觉,具有很大的隐蔽破坏性。图2是遭受丝状腐蚀后的对数天线,可以看出很多振子都已出现丝状腐蚀。左侧上下两振子的表层金属已出现严重的蓬松剥离状态,结构强度与电性能均已遭受破坏。为了减少丝状腐蚀的产生,铝合金构件的涂覆工艺需要特别注意增强金属表面和有机涂层的结合力。确保涂膜的完整性不被损坏是避免丝状腐蚀发生的关键。因此要特别注意在运输、安装环节做好对涂层的防护,避免涂膜出现针孔与破损。
2.5加工工艺引起的腐蚀
构件加工中涉及焊接和人工时效,若处理不当这些工艺过程,往往会导致合金元素或金属间化合物沿晶界沉淀析出,相对于晶粒形成阳极,在海洋性气候下构成腐蚀电池,引起晶间腐蚀。尤其需要注意的是铝-铜-镁系、铝-锌-镁系合金对晶间腐蚀敏感性较强,在海洋性气候下应避免采用该类合金。晶间腐蚀带来的另一不利因素是在加工应力和腐蚀介质的共同作用下还可诱发应力腐蚀,最终使构件产生裂纹、断裂,丧失使用功能。晶间腐蚀、应力腐蚀都与构件的加工有关,即:构件加工工艺不仅仅关乎结构变形带来的尺寸精度问题,同时还是发生腐蚀的内在诱因。因此,在接收机机箱、天线构件的加工中必须制定合理的工艺路线,控制和减少各类应力产生的外在原因,避免金属中合金元素沿晶界的沉淀析出,以此破坏原电池产生的条件。
3设备的防腐蚀措施
由于户外监测设备具有上述腐蚀形态中的全部工况,加之其在系统可靠性中所处的地位,成为海洋大气环境下监测测向设备防腐研究的重点。从前述分析不难看出,设备的防腐蚀是一项系统性的工作。需要在材料选择、加工工艺、氧化工艺、密封设计、涂覆处理、安装紧固处理等诸多方面采取针对性措施,才能有效提高其抵抗盐雾侵蚀的能力。
3.1合金材料的选用
监测设备材料的选择除了考虑其常规力学性能、物理性能、加工性能外,还必须考虑材料的耐蚀性能。由于监测测向设备自身并不作为力学构件使用,因而在海洋性气候环境下应重点关注材料的耐蚀性和加工工艺性。从多种文献资料的实验数据来看,铝-铜系合金中的铜离子在与海洋大气中的氯离子接触后具有强烈的腐蚀诱发作用,需要严格避免使用。常用的LY12铝合金只能适用于内陆气候,在海洋性气候下并不具有抵抗腐蚀的优势。即便标注为防锈铝的材料也要注意其生产厂家,避免使用小厂产品(小厂产品含铜量往往得不到保证)。
3.2结构设计
在充分了解设备安装使用环境的基础上,合理确定抗蚀面和导电面界限,以便于氧化膜的可靠形成;合理确定开孔位置与数量,尽量减少所需密封通道;选用高质量的导电密封材料,并按30%~50%压缩量确定嵌入槽的公差与尺寸;为了减少和防止缝隙腐蚀的发生,设计中对结合面缝隙应采取措施,提出合理的形状、位置公差要求,避免因贴合不严形成敏感缝隙,从源头消除差异充气电池产生的条件,对无法避免的敏感缝隙,应在外部设计消缝沟槽,减少电解液的进入与滞留;散热翅片设计应避免尖角、锐边,减小热量集中对氧化膜的生成影响,尽量不用异种金属,减少电偶腐蚀产生条件。
3.3加工工艺
全密封接收机机箱的生产涉及焊接和大面积散热翅片加工,容易产生和积累加工应力。为了避免晶间腐蚀和应力腐蚀,加工中应减小吃刀深度、减缓进刀速度,在应力集聚工序后均应进行人工时效处理,消除或减小材料内部的微观应力和加工应力。避免和减少晶间腐蚀、应力腐蚀的出现。对具有密封界面构件的加工,要严格控制装夹应力,确保其加工平面度符合设计要求。
3.4氧化膜处理
常用的铝合金氧化膜有两种形式,一种是具有良好导电性的化学氧化膜(分为酸性和碱性氧化),另一种是具有高硬度、高耐磨性的阳极氧化膜,后者以其致密、厚实的膜层优势拥有远高于天然氧化膜的抗腐蚀性能。但阳极氧化膜30V/μm击穿电压带来的高绝缘性却无法满足接收传感设备对电气性能、屏蔽性能的要求,这也是电子设备通常直接采用化学氧化膜(导电氧化)加涂覆方式进行表面处理的重要原因。通过改进结构设计和加工工艺,华日海洋环境户外设备合理地将两种氧化膜的优点集于一体。使其不仅具有良好的电气性能与屏蔽性能,而且还拥有优异的耐磨性和高抗蚀性。这一氧化膜处理工艺有效解决了天线振子的连接与防护矛盾,也为采用有机涂层后易导致丝状腐蚀的天线构件提供了新的解决措施。需要指出的是,两种氧化膜都有多种生成工艺,其抗蚀性能因工艺方法和工艺参数不同而差异较大。本次研究中,通过对比分析不同工艺下氧化膜的抗蚀性能参数,优选出有利于提高设备防护性能的氧化膜生成工艺。实验表明:按选定工艺方法生成的阳极氧化膜,在不喷涂任何有机防护涂层的情况下,直接曝露在富含铜离子的酸性盐雾环境中。其承受腐蚀的能力也远高于军品盐雾防护所规定的验收标准,显示出良好的抗蚀性能。
3.5涂覆处理
从铝合金的腐蚀机理可知,氯离子对氧化膜的穿透是造成金属基体腐蚀的根本原因。因而,在氧化膜的表面增加对腐蚀介质有隔离作用的有机涂层可以大大提高抗蚀层厚度,降低电解液与氧化膜的接触几率,进而减缓氯离子对氧化膜的侵蚀进程。从涂层的耐蚀性、耐候性、附着性考虑,监测设备底层应采用适用于有色金属的环氧类防腐底漆,面漆采用具有较强耐候性、抗腐性的改性丙烯酸涂料。从防腐效果看,光泽不积水的漆膜可以有效减少腐蚀介质的存留,破坏腐蚀电池产生的条件。常用的橘纹漆面、磨砂漆面、喷砂面不宜用于海洋大气环境。鉴于涂覆工艺与产品最终抗蚀性的密切关系,本文研究过程中对监测设备的喷涂方式、涂覆层数、涂层膜厚、间隔时间等提出了具体要求,并进行了相应验证。需要注意的是喷涂前基体表面应参照ISO8504进行清洁处理,以提高附着性、避免和减少丝状腐蚀的产生。
3.6装配处理
分析设备的腐蚀形态可知,其抵抗电偶腐蚀、缝隙腐蚀的能力相当一部分是由装配环节实现的。因此监测设备的装配应遵循以下原则:(1)由于电偶腐蚀主要存在于异种金属的接触处,因此需对紧固件、插接件的非导电面涂绝缘胶或加装绝缘垫后装入,以阻断电气接触;(2)无法避免电气接触时,异种金属构件应选用腐蚀电位与铝相近的材料,紧固件可进行镀镉处理,以减小电偶腐蚀对箱体造成的危害;(3)对弹垫、平垫间的缝隙,箱盖与箱体间的缝隙,插座与面板间的缝隙均应采用聚氨酯弹性密封胶填充,以减少缝隙腐蚀的发生;(4)装配完成后应对所有紧固件、插接件外露部分喷涂聚氨酯清漆实现表面隔离防护,避免不同金属外露部分通过表面电解液膜构成腐蚀回路。
4设备的防腐蚀验证
海洋大气环境对监测设备的腐蚀是一个多因素作用下的缓慢、渐进过程,通常采用盐雾试验方法对产品抗蚀能力与防护措施的合理性进行评估验证。图3CASS试验后的户外机箱常见的盐雾试验有:中性盐雾试验(NSS)、乙酸盐雾试验(ASS)、铜加速乙酸盐雾试验(CASS)三种。其中NSS是军品防腐蚀验收标准规定试验方法,CASS的腐蚀加速性为NSS试验的8倍。为验证本文防腐措施的有效性,采用CASS标准对海洋环境户外机箱进行了与军品验收时间要求相同的抗蚀性试验(见图3),结果显示:机箱表面无点蚀及起泡空鼓现象,漆膜光泽亮丽,内置电路板卡,导电结合面完好如初,无任何腐蚀迹象,防腐效果符合设计期望。
5结束语
由于腐蚀介质的不同,工作于海洋大气环境的无线电监测设备在结构设计与制造工艺上都与内陆设备有着较大的区别。本文所提出的防腐措施为提高该类设备的防腐性能积累了经验,为无线电监测设备在海洋大气环境下的可靠应用提供了技术借鉴。
参考文献:
[1]魏保民.金属腐蚀理论及应用.化学工业出版社
[2]侯宝荣等.海洋腐蚀环境理论及其应用.科学出版社
[3]李晓刚等.我国海洋大气腐蚀分级分类与机理.2014海洋材料腐蚀与防护大全
[4]朱祖芳.铝合金阳极氧化与表面处理技术.化学工业出版社
【关键词】杂散电流燃气管道腐蚀监测
中图分类号:TU996.7 文献标识码: A 文章编号:
随着供电设施(高压线、电气化铁路等)的大量兴建和用电场所(施工工地、地下采矿设施等)的与日俱增,电气化设施会对其附近管道产生动态杂散电流干扰,使管道的交、直流电压产生一定程度的波动。管道的交流干扰源主要来自高压线与电气化铁路。高压线对管道的交流干扰主要是持续性的干扰,干扰形式为感性耦合,干扰值在一定区间内波动。电气化铁路对管道的干扰主要为间歇性的干扰,干扰形式亦为感性耦合。列车在两个供电区间通过时,供电线路会对管道产生一定的干扰,当列车加速时,由于用电量增加,供电线路对管道的干扰影响增大。
一、杂散电流干扰腐蚀原理
杂散电流的主要来源是直流电气化铁路、直流电解设备接地极、阴极保护系统中的阳极地床等。其中以直流电气化铁路引起的杂散电流干扰腐蚀最为严重。当直流电流沿地面敷设的铁轨流动时,直流电流除了在铁轨上流动,还会从铁轨绝缘不良处泄漏到大地,在大地的金属管道上流动,然后返回电源。这部分泄漏的电流称为杂散电流。
杂散电流的流动过程形成了2个由外加电位差建立的腐蚀电池,一个是电流流出铁轨进入管道处,铁轨是腐蚀电池的阳极,管道为阴极,不腐蚀;另一个是电流流出管道返回铁轨处,这时管道是腐蚀电池的阳极,铁轨则是阴极,不腐蚀。图1给出了管道电位的变化图。由图1可判断出管道腐蚀电池的阳极区和阴极区以及杂散电流最强的部位。通常没有杂散电流时腐蚀电池两极电位差仅0.65 V左右,杂散电流存在时管道电位可达8~9 V。因此,杂散电流干扰对金属管道的腐蚀比一般的土壤腐蚀要强烈得多。
图1为杂散电流对管道的干扰示意图,杂散电流必须在某一部位从外部流到受影响的管道上,再流到受影响管道的某些特定部位,并在这些特定部位离开受影响的管道进入大地,返回到原来的直流电源;其它直流干扰源产生的杂散电流腐蚀也具有同样的回路特点。
在杂散电流流出的部位,管体将发生快速腐蚀。腐蚀的严重程度遵循法拉第定律(与流出的杂散电流量成正比,与金属材料的电化学当量成正比),即:
式中:ΔW——杂散电流造成的管体腐蚀量,g;
N——管体金属的原子量;
I——杂散电流强度,A;
T——杂散电流对受影响管道的作用时间(流出的时间),s;
n——管体金属的化合价;
F——法拉第常数。
杂散电流在单位面积的管体上产生腐蚀的速度表示为:
杂散电流造成管道腐蚀时,其管体(杂散电流流出处)的阳极反应为:
FeFe+2+2e-
已知:N=55.84 g,n=2,F=26.8 A·h。假设杂散电流的强度为1 mA,杂散电流流出处的管体面积(防腐层破损面积)为1 cm2,于是:
VSC=10.4 g/(m2·h)
取钢质管体的密度为7.80 g/cm3,于是,杂散电流在上述假定条件下引起管体腐蚀的速度为:
VSC=11.68 mm/a≈1 mm/月
当受干扰的管体上有1 cm2的防腐层破损,且在该处有1 mA的杂散电流流出时,杂散电流对管体的腐蚀速率为1 mm/月。当杂散电流的强度比1 mA更大,或流出的面积比1 cm2更小时,管体的腐蚀速率会更高。
图1杂散电流对管道的干扰
二、杂散电流对燃气管道的影响
1、直流杂散电流对燃气管道的影响
(1)腐蚀强度危害大。埋地金属燃气管道无杂散电流时,只有自然腐蚀,大部分为原电池型,驱动电位差只几百毫伏,腐蚀电流只几十毫安;而杂散电流干扰腐蚀时是电解电池原理,电位可达几伏,电流最大可能上百安。根据法拉第电解定律,1A的电流通过钢管表面流向土壤溶液一年可溶解约10 kg,由此可看出直流杂散电流干扰腐蚀相对其它原因引起的腐蚀严重得多。
(2)范围广,随机性强。杂散电流干扰腐蚀范围大,特别是地铁的杂散电流几乎影响整个城区的地下金属管网;轨道与地的绝缘电阻,管道的防腐绝缘层电阻,土壤电阻率、电流大小等都是变化的,因此杂散电流流向也是随机的,给防护带来一定难度。
2、交流杂散电流对燃气管道的影响
电气化铁路在运行状态下对相邻的地下金属管道会产生交流干扰。国内外对交流干扰研究结果均表明,交流干扰对地下金属管道的危害很大,在故障状态下瞬间感应电压可能击穿管道的绝缘层、绝缘法兰,甚至击毁阴极保护设备并对生产操作人员人身安全造成威胁;此外交流电的存在可引起电极表面的去极化作用,加剧管道腐蚀,交流干扰可加速防腐层的老化,引起防腐层的剥离,干扰阴极保护系统的正常运行,使牺牲阳极系统发生极性逆转,降低牺牲阳极的电流效率,致使管道得不到有效的防腐保护。
二、埋地燃气管道的杂散电流监测
1、管道电位波动检测
埋地燃气管道受到的杂散电流干扰多为动态干扰,表现为管地电位和干扰电流连续动态波动、随机突变等特征,可以采用管地电位波动检测方法,对管地电位进行监测。当电位变化幅度超过50 mV时,确定存在杂散电流干扰,且监测时间不少于30 min.图2是某单位利用DATA-LOGGER数据记录仪,追踪某个测试桩处管地电位随时间的波动情况。每3 s采集1个数据。阴保通电电位波动范围为-1 764~-1 445 mV,电位波动幅度319 mV,评估报告中评定该处有较强连续性杂散电流。
图2 管地电位连续动态监测
2、基于SCM的动态杂散电流检测
短时间的管地电位监测不能判断在役城镇埋地钢质燃气管道是否存在破损点,因此,可以利用2~4个智能感应器进行测量,能够判断杂散电流的方向以及杂散电流在管道上的流进点、流出点,为管道的运行维护、排流改造以及阴极保护提供依据。图3所示为利用SCM测试的杂散电流时变图,其中,圆形罗盘处粗箭头指示管道方向(正上为北向),细箭头指示杂散电流的方向,移动智能感应器,根据杂散电流大小、方向的改变,可以判断杂散电流在管道上的流进、流出点。
图3 SCM杂散电流测试
三、杂散电流腐蚀防护措施
管道沿线与高压输电线路近距离平行敷设时,高压输电线、电气化铁路会对管道造成干扰,加剧管道的腐蚀,因此管道应尽量远离交流、直流干扰源,并采取相应的保护措施。
1、尽量避开干扰源
根据线路杂散电流源的勘察结果,管道布线时在符合安全要求的前提下,合理选择走向,避开地铁、电气化铁路、输变线路等杂散电流干扰源。对于受杂散电流干扰管道增设绝缘法兰,将扰的管道与主干线分隔开,目前国内外没有对管道与电气化铁路的安全间距的专门规定,参照目前相关的标准GB50251-200《3输气管道工程设计规范》。
2、排流保护措施
排流保护措施不同于管道的防腐设计,需按《SY/T 0017-2006 埋地钢质管道直流排流保护技术标准》进行干扰源侧及管道侧测定,根据具体情况进行方案确定。排流保护措施通常采用直接排流、极性排流、强制排流、接地排流四种方案:
a)管/地电位偏移稳定在正方向时,可采用直接排流保护措施。通过导线将管道和干扰源测的负极直接连通,使管道中的干扰电源引入干扰源的负极。此法适用于牵引变电所附近,简单经济、效果好,但范围有限。
b)管/地电位正、负极变时,可采用极性排流保护措施。它是通过一极性排流器(一般为二极管)将管道和回流轨道连通,当管道上出现正电位时可把管道中的杂散电流排出,出现负电位时排流器不导通,可防杂散电流的进入。此法安装方便、应用广,但管道距轨道远时效果不好。
c)强制排流主要用于管/地电位正、负极变,电位差小,且环境腐蚀较强的情况下使用。通过强制排流器将管道和轨道连通,杂散电流通过强制排流器的整流环排放到轨道上,当无杂散电流时,强制排流器给管道提供一阴极保护电流,使管道处于阴极保护状态。此法保护范围大,地铁停运时可对管道提供阴极保护,但对轨道电位分布有影响,需要外加电源。
d)排流保护系统的管理和监测是保证管道排流保护系统正常运行的关键。管道的排流保护系统管理采取日常管理和重点监测相结合的方式,对管道排流和阴极保护系统运行的技术参数进行及时的记录和分析,对重点管段的排流保护状况进行重点监测,并针对杂散电流干扰状况的变化及时调整排流保护系统的运行情况。
3、阴极保护
杂散电流是随时间不断变化的,多数情况下杂散电流表现得不十分明显,因而管道的自然腐蚀仍会占据主导地位,因此排流保护必须与阴极保护相结合才能有效遏制管道的腐蚀。
4、管道均压
在相邻管道间加设管道均压装置。这些装置有助于平衡相邻管道间的电位,缓解管道间的相互干扰。
5、加强日常维护
为改善管道防腐层绝缘状况,采取检修、补漏与大修相结合的方式,每年均进行管道防腐层的检漏修补工作,以提高管道防腐层质量,为有效地进行排流保护打下较好的基础。同时开展智能清管作业,对重点地段管道的腐蚀风险评估,确保油气管道安全运行。
结束语
杂散电流会对管道本体造成严重的腐蚀,对管道的安全运行具有极大的危害,如果不及时修补,将会发生泄漏事故。通过检验及论证,杂散电流检测仪(SCM)能够有效地检测并发现杂散电流,因此在规定时间内,对燃气管道进行专业性检验,发现隐患,及时修补整改,是燃气管道安全运行的重要保障。
参考文献
[1] 唐永祥,宋生奎,朱坤锋.油气管道的杂散电流腐蚀防护措施[J].石油化工建设. 2007(04)
关键词:金属腐蚀 检测 无损检测 电化学
1、腐蚀检测
腐蚀检测是对设备和构件的腐蚀状态、速度以及某些与腐蚀相关的参数进行测量。其主要目的是:
1)确定系统的腐蚀状况,给出明确的腐蚀诊断信息。
2)通过检测结果制定维护和维修策略、调节生产操作参数,从而控制腐蚀的发生与发展,使设备处于良性运行状态。
2、腐蚀检测的常用方法
腐蚀检测的方法主要有机械法、无损检测法以及电化学法。随着现代检测技术的不断发展,各种新型的检测技术在腐蚀检测领域中的应用越来越广泛。
2.1机械方法
机械方法主要包括表观检查、挂片法和警戒孔监视法等手段。
表观检查是最基本的腐蚀检查方法,一般是指用肉眼或低倍放大镜观察设备或试样的表面形态、环境介质的变化情况和腐蚀产物的状态;挂片法是将装有试片的支架固定在设备内,在生产过程中经过一定时间的腐蚀后,取出支架和试片,进行表观检查和测定失重;警戒孔监视法是在设备或管道的腐蚀敏感部位的外壁上钻出一些精确深度的小孔,其深度使得剩余壁厚等于腐蚀裕量,或为腐蚀裕量的一部分,由于腐蚀或冲蚀的作用,使剩余壁厚逐渐减少,直至警戒孔处产生小的泄漏。此外还可用“分级”警戒孔测量实际腐蚀速度。
2.2无损检测方法检测现状
金属材料无损伤检测是通过利用声、光、热、电、磁等由于金属材料内部结构的形态以及变化所做出的反应进行检测,从而查明材料内部是否存在异常或者缺陷。以下就对几种常用无损伤检测方法的应用现状进行分析:
激光无损伤检测技术是指由于激光本身所具有的性能,通过给被测材料增加加使其产生形变,材料内部存在异常或者缺陷部位的形变量与正常部位存在差异,而此时激光可以将通过对检测材料施加荷载作用前后所形成的信息图像的叠加来反映其内部结构是否存在缺陷。但是激光无损伤检测技术的成本较高、安全性差,仍处于发展完善的阶段。目前激光无损伤检测主要应用于高温条件、不易接近的样品以及超薄超细的样品检测下。例如热钢材的无损伤线检测、放射性样品的检测等。而且由于激光束可入射到检测材料的任何部位,可以用来检测金属材料形状不规则的样品。
渗透检测是利用毛细现象进行检测的一种无损检测方法,适用于各种金属和非金属材料,不受材质的限制,对材料表面的开口式缺陷(如裂纹等)能进行有效检查,但是对于表面粗糙以及疏松多孔性材料,应用受到了一定的限制。
射线无损伤检测技术是通过利用X射线、射线以及中子射线等穿过检测材料时产生的强度衰减变化进行检测的方法。由于穿过检测材料的射线强度不同,可以反映出检测材料内部结构是否存在异常或者缺陷,一旦材料中存在缺陷就会破坏射线的连续性,而这种不连续的射线在X射线胶片上的感光程度也存在差异,然后呈现出不连续的图像信息。近年来射线无损伤检测技术的应用主要体现在对小型、复杂或者精密的金属铸件以及锻件,进行无损伤检验和尺寸测量,航空工业复合型型材料的检测以及金属组件结构的无损伤检测等。
红外检测主要是检测工件表面上由于缺陷处材料温度的变化。与腐蚀有关的现象如设备泄漏,传热设备结垢等都可以提供红外测量讯号。红外检测方法易受环境温度、局部空气扰动等条件的影响,一般只适用于检测蚀斑的分布,不适用于腐蚀发展速度的检测。
2.3电化学方法
绝大多数腐蚀过程的本质是电化学性质的,在腐蚀机理研究、腐蚀试验及工业腐蚀监控中,广泛利用金属/电解质溶液界面(双电层)的电性质。因此电化学测试技术己成为重要的腐蚀研究方法。
2.3.1与电化学有关的探针技术
与电化学反应有关的探针技术主要包括电位探针、线性极化探针、电偶探针和电阻探针等技术。
电位探针技术是基于金属或合金的腐蚀电位与它们的腐蚀状态之间存在着某种对应的特殊关系。由极化曲线或电位-pH图可以得到电位监测结果所对应的材料的腐蚀状态。其优点是:可以在不改变金属表面状态、不扰乱生产体系的条件下从生产装置本身得到快速响应。电位法已在阴极保护系统监测中应用多年,并被用于确定局部腐蚀发生的条件,但它不能反映腐蚀速率。
电偶探针是利用零阻电流表测量浸于同一环境中的偶接金属之间流过的电偶电流。利用电偶腐蚀探针可以灵敏地显示阳极金属的腐蚀速度。薄片状金属作为探头的电偶探针己用于混凝土腐蚀的监测。电偶探针除了测量双金属腐蚀外,还有其他更为广泛的应用如监测钝化膜的破坏情况、定性指示氧含量、缓蚀剂浓度或水质等影响材料腐蚀状态的参量。
电阻探针技术的适用范围较广,在气相、液相、导电和不导电的介质中均可应用,通过周期性地精确测量探针电阻的增加,就可以计算出金属的腐蚀速率。具有制作简单,成本低廉,适用性强等优点。但是在实际应用中只有当腐蚀量积累到一定程度,金属试片的电阻变化增大到了仪器测量的灵敏度,仪表或记录系统才会作出响应,因而反应时间长,不适用于监测局部腐蚀的情况。
2.3.2场图像技术
场图像技术(FSM)也被称为“电指纹法”。它是将所有测量的电位同监测的初始值相比较,这些初始值代表了部件最初的形态,可以将它看成被测对象的“指纹”。通过在给定范围进行相应次数的电位测量,可对局部现象进行监测和定位。与传统的腐蚀监测方法(探针法)相比, FSM在操作上没有元件暴露在腐蚀、磨蚀、高温和高压环境中,没有将杂物引入管道的危险,不存在监测部件损耗问题,在进行装配或发生误操作时没有泄漏的危险。其敏感性和灵活性要比大多数非破坏性试验好。此外还可以对不能触及部位进行腐蚀监测,例如对具有辐射危害的核能发电厂设备的危险区域裂纹的监测等。
2.3.3电化学噪声(EN)技术
近年来电化学噪声技术作为一门新兴的实验手段在腐蚀与防护科学领域得到了长足的发展。研究表明电化学腐蚀活性越高,则噪声水平也就越高的在0.5mol/LNa2SO4+5×10-3mol/LH2SO4溶液中,研究了AISI。此外,电化学噪声水平还与材料的破坏形式和变形阶段有关,据试验结果显示拉伸条件下的钢的低频显示为白噪声,电位的波动幅值与试样的拉伸程度有关。随着拉伸程度的增加,噪声的能谱密度(PSD)增加。在钢的弹性阶段的噪声水平很低,随着拉伸,噪声水平增加。
电化学噪声技术是一种原位的监测技术,在测量过程中无须对被测电极施加可能改变电极腐蚀过程的外界扰动。还可以监测诸如均匀腐蚀、孔蚀、裂蚀、应力腐蚀开裂多种类型的腐蚀,并且能够判断金属腐蚀的类型。但目前对这项技术的通用性仍存在较多的异义,并且数据的解析相对比较复杂,需要丰富的专业知识来解释原始噪声记录。
1 概述
软件测试是很广的概念。从其贯穿软件生命周期全过程来看,测试可分为模块测试、集成测试、系统测试等阶段。测试还可分为静态检查和动态运行测试两大类。在动态运行测试中,又可有基于程序结构的白盒测试(或称为覆盖测试)和基于功能的黑盒测试。测试不仅关注程序的功能,还有性有测试、强度测试等等。
要达到比较好的测试效果,除了要有周全的测试计划、可控的测试过程、测试人员丰富的经验外,还需要借助一些行之有效的辅助工具,尤其在当今软件规模日益庞大、测试工作量成倍增加的情况下。对应上述的测试分类情况,测试工具可划分为:支持对程序源代码进行静态规则检查和质量评估的静态分析工具、支持对程序单元进行动态覆盖测试的工具、对软件系统的整体运行性能进行测试的工具。另外,还有一些特殊用途的或专用工具,如协议测试仪、内存检测工具等。这些工具都有较为成熟的商业化产品,也可通过自行开发的方式获得。
本文具体讨论了对一类特殊的系统软件——嵌入式实时操作系统——进行覆盖测试的情况。内容涉及对这类软件特性的研究、测试的难点和特点、对现有测试工具的适应性改造和测试实例说明。
2 软件覆盖测试
覆盖是一种白盒测试方法,测试人员必须拥有程序的规格说明和程序清单,以程序的内部结构为基础,来设计测试案例。其基本准则是则测试案例来尽可能多地覆盖程序的内部逻辑结构,发现其中的错误和问题。所以,覆盖测试一般应用在软件测试的早期,即单元测试阶段。
覆盖的几种方法或策略如表1所列。
表1 几种典型的覆盖策略
覆盖策略定 义语句覆盖在制定测试案例时,使程序中的每个语句都至少执行1次。其缺点是不能发现某些逻辑错误判定覆盖执行足够的测试案例,使得程序中每个判定都获得一次“真”值和“假”值,或者说使每一个分支都至少通过1次条件覆盖执行足够的测试案例,使得判定中的每个条件获得各种可能的结果判定/条件覆盖执行足够的测试案例,使得判定中的每个条件取得各种可能的值,并使得每个判定取得各种可能的结果条件组合覆盖执行足够的测试案例,使得每个判定中的条件的各种组合都至少出现1次。其特点是覆盖较充分,满足条件组合覆盖的测试案例也一定满足判定覆盖、条件覆盖和判定/条件覆盖。从以上简要介绍可看出,这几种覆盖策略的严格程序有如下趋势:
其它一些覆盖策略还包括:修改的条件/判断覆盖(通常简称为MCDC)、路径覆盖、函数覆盖、调用覆盖、线性代码顺序和跳转覆盖、数据流覆盖、目标代码分支覆盖、循环覆盖、关系操作符覆盖等。随着软件规模的增长,实现全面的覆盖所需的测试案例的数目也越来越庞大,因此根据被测软件对象的特点选择适当的覆盖策略是非常重要的;同时,要确定合理测试目标,达到100%的覆盖往往要付出很大的代价,应该同形式化评审等方法结合,以发现更多的软件故障。
3 覆盖测试工具
要取得较好的覆盖测试效果,需要借助一定的工具软件。这些工具软件一般具备如下的功能特点,可弥补人为测试的缺陷:
①分析软件内部结构,帮助制定覆盖策略及设计测试案例;
②与适当的编译器结合,对被测软件实施自动插装,以便在其运行过程中生成覆盖信息并收集这些信息;
③根据搜集的覆盖信息计算覆盖率,帮助测试人员找到未被覆盖的软件部位,以改进测试案例提高覆盖率。
在利用工具进行动态覆盖测试时,需要3个要素:测试用例、插装过的被测代码、搜集覆盖信息并进行分析的工具本身。代码插装由工具自动完成,通过执行测试用例,再由工具搜集覆盖信息并进行分析,就可以看到覆盖率指标了。图1展示实现覆盖测试的基本过程。
4 嵌入式软件的覆盖测试原理
嵌入式软件的开发与通用软件很大的不同点在于,需要采用交叉开发的方式:开发工具运行在软硬件配置丰富的宿主机上,而嵌入式应用程序运行在软硬件资源相对缺乏的目标机上。对于这类软件的测试也存在着同样的问题:测试工具运行在宿主机上,测试所需要的信息在目标机上产生,并通过一定的物理/逻辑连接传输到缩主机上,由测试工具接收。因此,嵌入式软件测试的一个重要问题是建立宿主机与目标机之间的物理/逻辑连接,解决数据信息的传输问题。
嵌入式软件覆盖测试的基本原理如图2所示。
在目标机方,插装过的被测应用程序将覆盖信息发送到消息队列中,一个专门的任务负责在适当的时候将这些信息发送到宿主机方。缩主机方有专门的模块负责接收覆盖信息。并交给分析工具分析和在线动态显示覆盖率的增长情况。
支持嵌入式软件覆盖测试的工具应解决如下2方面的关键问题:
*与嵌入式操作系统的结合
覆盖测试工具与嵌入式操作系统的结合体现在3方面。首先,在目标机方,应用任务与专门负责收集/上传覆盖信息的任务是通过消息队列来传递数据的,该消息队列可使用嵌入式操作系统的相应机制实现。其次,这个专门任务也可以被看作一个特殊的应用任务,也必须有嵌入式操作系统的支持,因为任务管理是后者的基本功能之一。最后,目标机与宿主机之间的通信可以采用串口或以太网方式,对串口的驱动或网络协议均可使用嵌入式操作系统的相应程序组件。
*与其它嵌入式交叉开发工具的关系
嵌入式应用程序的开发通常采用交叉开发方式,几乎所有的开发工具均要解决3部分的问题:宿主机部分的功能、目标机部分的功能、宿主机与目标机的连接问题。其中,宿主机与目标机的连接是个瓶颈,如果不同的工具要使用同一物理线路实现数据传输,则要解决对该物理线路(或者说硬件端口)的正确共享。比如在图3所示的环境中,宿主机方的各种工具通过统一的接口——目标服务器(target server)实现对通信线路的访问,目标机方的调试(debug agent)则是各种信息(调试信息、覆盖信息、时间信息、对象信息等)的收集与传递的核心。
5 Logiscope在嵌入式操作系统DeltaCORE测试中的应用
Logiscope是Verilog公司的CASE产品,对软件的编码、测试、维护提供多方面的服务,并且支持嵌入式软件的覆盖测试。
5.1 测试前的准备
测试前的准备即为支持对DeltaCORE的测试所做的移植工作。
目前,Logiscope已经为一些成熟的商用嵌入式操作系统提供了支持,比如pSOS。DeltaCORE是我国自主开发的嵌入式强实时操作系统内核,为了利用Logiscope实现对DeltaCORE的应用程序乃至DeltaCORE本身的测试,我们主要解决了第4节中描述的第1个关键问题。
为了支持嵌入式程序的测试,Logiscope提供了运行在目标机方的程序代码(或称为目标机端的支持库),里面包含了:
*1个用来收集和发送覆盖信息的主循环线程,该线程即是嵌入式应用中的特殊任务;
*实现具体数据传输的函数,包括对串口或网络的驱动,它们将被上述线程调用;
*插装函数的实现,这些函数被被测代码调用,向缓冲中放入覆盖消息块;
*对缓冲信息队列的管理;
*初始化代码。
例如,当被测程序运行进入到一条if(……)语句时,整个过程如图4所示。
为了支持对DeltaCORE的测试,将与这些机制相关的代码进行移植,包括以下几方面:
*将收集和发送覆盖信息的主循环线程作为在目标机端运行的应用程序中的特殊任务;
*对串口的驱动采用LambdaTOOL BSP(板级支持包)中的串口驱动代替,对网络的驱动,用DeltaCORE的配套组件DeltaNET中的驱动程序实现;
*利用DeltaCORE的信箱机制实现消息队列的创建和管理,插装代码向这些信箱发送覆盖消息块;
*在DetaCORE应用程序的根任务中调用Logiscope的初始化函数,达到创建特殊任务信箱的目的。
开发DeltaCORE应用程序时,我们使用了其配套开发工具LambdaTOOL。由于所使用的工具版本没有实现目标服务器(target server)的调试方式,因此对物理端口的使用采用的独占方式,即调试工具不能与其它工具共享同一端口。我们可以用网络试上载并启动目标应用程序,而通过串口传送覆盖信息。
5.2 对DeltaCORE的覆盖测试过程及结果
对于函数内部,Logiscope支持的覆盖策略有:
*指令块IBs(Instruction Blocks)
*判断到判断的路径DDPs(Decision-to-Decision Paths)
*MCDC(Modified Condition/Decision)
在项目层次上支持的覆盖策略是:
*过程到过程路径PPP(Procedure-to-Procedure Path)
在DeltaCORE的测试中,我们采用了较为常用的覆盖策略——判断到判断的路径,其含义是:DDP是一个指令序列,它的起点是函数或判断(if,while,……)的入口点,它的出口是下一个函数或判断的退出点,之间不能再有判断,比如在图5中包含了5个DDPs:
测试的具体过程是:
①利用插装分析器对DeltaCORE的源代码进行插装,并生成插装信息文件。
②将移植后的Logiscope目标机端程序与插装后的内核源代码一同编译链接成库,以替代原来的内核库,供应用程序使用。
③编写测试案例,从实现应用的角度使用DeltaCORE的各种系统功能调用,力求遍历内核函数所有的判定分支,并将这些案例编译成可执行程序。
④在宿主机端启动覆盖信息收集和分析程序,用LambdaTOOL的调试器下载并启动应用程序。DeltaCORE的覆盖信息被传递到宿主机上,分析程序动态显示覆盖率的增长情况,并将这些信息记录在一个文件中。
⑤应用程序执行完毕后,启动Logiscope的事后分析工具,将覆盖信息记录文件与插装信息文件(在源代码插装在生成的附属文件)进行比较,帮助测试人员清晰地了解每个被测函数内部的路径覆盖情况,借此可为测试案例的改进提供帮助。
⑥测试人员修改测试案例,并重新进行整个测试过程;各项测试的结果可以叠加,覆盖率将得到增长。
经过2个多月的时间,我们对DeltaCORE 1.1版本79个文件共计115个函数进行了覆盖测试,覆盖率已经达到了70.55%。编写测试用例89个,主要的60个API函数均已获得较高的覆盖,覆盖率达100%的约占51.3%。
6 小结
我们借助Logiscope工具对嵌入式实时操作系统DeltaCORE进行了覆盖测试,达到了较好的覆盖率;发现并处理了一些缺陷,提高了软件的质量和可靠性,但同时也存在不足之处:
①测试应好好规划,包括测试顺序的选择、测试案例的设计、测试文档的管理等等。
②由于该测试手段依赖于操作系统的有关机制,而被测对象又是操作系统本身,因此与这些机制有关的部分代码未装和测试,否则就会出错。比如,操作系统的初始化函数os_init,在这个函数运行完毕之前,操作系统的相应机制尚未建立起来,因此对它进行插装就会造成问题,不能正确地得到覆盖信息。又比如,出于效率方面的考虑,与系统时钟相关的部分函数未装,因为在程序运行过程中,时钟是最频繁产生的一种外部事件,如果插装,就会产生大量的覆盖信息,会对信息缓存、传递、收集和处理造成压力。另外,所用的工具不支持对汇编函数的插装和测试。综合上述各种原因,DeltaCORE 1.1的总体覆盖率还显得比较低,需要采用其它的方法来提高它。对于非操作系统组件及应用的测试,由于不存在操作系统本身的问题,因此可望达到较高的覆盖率。
关键词: 调幅度 虚拟仪器 LabVIEW
调幅度作为调幅广播发射系统的一个重要技术指标,我们采用功率测定法、示波器法以及专业的调幅度测量仪来对它进行测量。但是以上的方法要么不能得出准确的读数,要么就是需要用到复杂、昂贵的设备系统,而且缺乏计算机接口,难以对测量数据进行保存和处理,或者有接口的,也存在操作语言障碍、软件功能有局限等等问题。鉴于这些情况,我们便利用虚拟仪器设计该嵌入式调幅度监测系统。
一、系统分析
如图1所示,系统包括硬件和软件两个部分。硬件部分实现数据采集和I/O接口功能;软件部分完成数据的处理并提供友好的GUI供用户使用。
二、硬件设计
要得出比较准确的实时调幅度值,并且实现起来较为简便,我选择用检波法。调幅度 ,用检波电路检出音频信号和载波直流电平,两者之比就是调幅度值,不仅简单直接,而且得出的是瞬时值。考虑到应用实际,系统采用十分简单的包络检波电路。
设计二极管包络检波器的关键在于:正确选用晶体二极管,合理选取RL、C等数值,保证检波器提供尽可能大的输入电阻,同时满足不失真的要求。以我台200kW PSM发射机为例,单音调制95%调幅度时,分离出的音频电压为1.4V,直流电压1.5V,计算调幅度为93.3%,误差1.76%,在允许范围内。
目前A/D转换器的型号非常多,性能差别主要体现在转换速度、分辨率,输入通道上,不同的性能使其价格差异很大,转换器的选择就决定了整个系统的性能和造价。对于调幅度监测的应用,当使用8位分辨率的转换器时,可对模拟音频实现256级的采样,也就是实现最小的调幅度显示等级为0.39%,完全能满足实际应用,所以我采用了ADC0809。我们要求的调幅度是音频信号与载波直流电压的比值,如果控制检波电路中载波直流电压低于5V,将它作为ADC0809的基准电压,再把音频信号输入模拟通道,这样得出的转换结果就是音频信号与载波直流电压的比值,只不过是基于5V电压的结果。这样,用一片ADC0809便直接测出了调幅度值,大大简化了电路。
为配合8位的ADC0809进行A/D转换,我使用ATMEL公司的8位Flash单片机AT89C51。单片机外接11.0592MHz晶振,采用9600比特的波特率,其LAE脚以1843.2kHz频率输出方波信号,经三分频后作为ADC0809的时钟频率。AT89C51以查询方式控制ADC0809进行A/D转换,然后通过串口发送数据给计算机。
三、软件设计
根据系统要求,软件的设计结构如图2所示:
通过虚拟仪器技术,工程师可以利用计算机和相应的接口设备来对各种技术数据进行测量和处理,只需一台计算机就可实现多种传统仪器的功能,用户在控制桌上就能实现原本复杂的工作。编写虚拟仪器应用软件时,若使用通用编程软件则对编程者要求较高,需要编程者熟悉掌握复杂的语句和程式,而采用专业的图形化编程软件显然是非常明智的,工程师采用预制的图形化控件就能完成程序的编写,使其从繁重的编程工作中解放出来,而且简单明了的图形化程序也方便了其他用户对系统进行更改和扩展。相比其它图形化编程软件,LabVIEW以其编程速度快、控件丰富、提供硬件驱动广泛而更胜一筹,最为重要的是,开发LabVIEW的美国NI公司生产各种类型的专业虚拟仪器硬件设备,采用LabVIEW编程,方便了今后的系统硬件升级和扩展。
利用LabVIEW设计的系统GUI如图3所示,程序应用于两个频率,576Hz和1242kHz的调幅度监测。
由图2可见,程序主要有四个组成部分,即串口信号的读取和处理、调幅度实时显示、数据监测、网络数据。
串口信号的读取和处理主要是用“VISA配置串口”和“VISA读取”函数来实现,用户可以在“设置”选项卡中通过下拉菜单来选择串口;然后再用一系列的转换函数把从串口读取的字符串转换为数字。
调幅度实时显示通过“柱状数值显示” 和“波形图表”控件来实现,用户可以通过旋钮来设置合适的刷新率。
数据监测功能首先用“幅值测量”函数测量实时数据值,然后与用户设定的低限值进行比较,如果小于此值,便使用“已用时间”函数来计时,计时时间大于用户设定的报警延时后,系统便开始报警;如果时间小于报警延时,程序返回。
中短波发射台和监控中心彼此相距较远且较为分散,而监控中心又必须收集所有监测主机的调幅度数据,在这种情况下,我们可以利用LabVIEW提供的Web工具,实现客户端远程访问本机程序,即使客户端没有安装LabVIEW,或是没有硬件资源,也可以运行本机上的程序。本机上的程序对于客户端来说,就像是Web页上嵌入的图像。
另外,用户设置的串口号、数据刷新率、低限值和报警延时在程序关闭前要自动为用户保存,而在下一次启动时要自动载。
为避免用户要费时、费力安装LabVIEW以及VISA、LabSQL等组件后才能运行该监测系统,我将VI程序、LabVIEW引擎、相应组件等制作成一个安装文件,既方便了使用,也更适合软件的推广应用。
四、总结及展望
该系统自2009年完成以来运行至今,一直稳定有效。它应用虚拟仪器技术,以简单的设计和低廉的造价,实现了调幅度的实时监测和报警功能,同时支持数据远程,具有较强的实用性和扩展性。鉴于LabVIEW强大的功能,如果采用高速的A/D转换器,我们不但能监测调幅度数据,还能对解调音频进行分析。通过调整软件,可进行信噪比监测、频谱分析、频率响应分析等,系统即可升级为高性价比的综合调幅广播测试仪。同样,如果应用数字鉴频和解调技术实现调频广播的调制度测量,就能更加丰富和完善系统的应用功能。
作者简介: