前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇论文结构范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:被动语态;非限定动词;名词化;长句
一、广泛使用被动语态
根据英国利兹大学John Swales的统计,英语科技论文中的谓语至少1/3是被动语态。这是因为英语科技论文侧重叙事推理,强调客观准确。第一、二人称使用过多,会造成主观臆断的印象。因此尽量使用第三人称叙述,采用被动语态,例如:Electricity is widely used in industry and daily life.(电被广泛用于工业和日常生活中);Many alkaloids have been obtained by synthesis.(目前已用人工合成的方法获得许多生物碱)。Attention must be paid to the working temperature of the machine.(应当注意机器的工作温度)。而很少说:You must pay attention to the working temperature of the machine.(你们必须注意机器的工作温度)。
二、非限定动词应用多
如前所述,英语科技论文要求行文简练,结构紧凑,为此,往往使用分词短语代替定语从句或状语从句,使用分词独立结构代替状语从句或并列分句,使用不定式短语代替各种从句,介词十动名词短语代替定语从句或状语从句。这样可缩短句子,又比较醒目。
(一)动词不定式
不定式虽然不能单独做谓语,但它毕竟是动词的一种形式,因而保留有动词的某些特性。不定式有一般式、进行式、完成式和完成进行式四种。英语科技论文中一般式出现频率最高,完成式次之,进行式和完成进行式出现较少。例如:Other problems to be solved are those of moisture,air and warmth.(要解决的其他问题就是湿度、空气和温度);It is possible to estimate the age of the earth by studying the concentration of salt in sea water.(通过测定海水中盐的浓度,有可能估计出地球的年龄)。
(二)分词
分词和不定式一样,虽然不能单独作谓语,但仍然保留原有动词的某些性质:可以用状语来修饰;及物动词的现在分词可以有自己的宾语;有时态和语态的变化。例如:A force acting on a body may change the motion of the body.(作用在物体上的力可以改变该物体的运动);Having finished the test,they began to study the result(做完实验后,他们开始研究实验结果);This is a clear case of electricity being converted into heat.(这是电能转化为热能的明显例证)。
三、大量使用名词化结构
大量使用名词化结构(Nominalization)是科技英语的特点之一。因为英语科技论文文体要求行文简洁、表达客观、内容确切、信息量大、强调存在的事实,而非某一行为。科技英语中名词化句子可作主语、宾语、介词宾语、表语、宾语补足语、定语、同位语和状语等,换句话说,除了不能担任谓语外,可以用作句子其它一切成分。例如:The rotation of the earth on its own axis causes the change from day to night(地球绕轴自转,引起昼夜的变化);The neutrons and protons form the core of the atom.(中子和质子构成原子核)。名词化结构使复合句简化成简单句,而且使表达的概念更加确切严密。又如:Archimeds first discovered the principle of displacement of water by solid bodies(阿基米德最先发现固体排水的原理)。句中displacement of water by solid bodies系名词化结构,一方面简化了同位语从句,另一方强调displacement这一事实。
四、长句特殊作用
为了表述一个复杂概念,使之逻辑严密,结构紧凑,英语科技论文中往往出现许多长句。根据长句的结构特点大致可以将它们分为两类:由于从句多而构成的长句和由于并列成分多或长而构成的长句。
文献综述可以作为论文里面的一部分,因为它是前期研究工作的个研究性总结。文献综述要求介绍与主题有关的详细资料,动态,进展,展望以及对以上方面的评述。
因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言,主题,总结和参考文献。撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写工作。前言部分,主要是说明写作的目的,介绍有关的。
(来源:文章屋网 )
1.1算例概况
结构为二十三层外钢框架-内混凝土核心筒混合结构[1],平面尺寸及布置如图1所示,结构总高为78.3m,1到2层层高为4.5m,3到23层层高为3.3m。在结构的1、2层抽柱形成大空间,外钢框架柱、梁均采用方钢管。全部柱及加强层梁尺寸为800mm×800mm×55mm;其余的梁尺寸均为600mm×600mm×55mm;芯筒为钢筋混凝土,墙厚根据计算方案不同从200mm到600mm变化;标准层钢筋混凝土楼板厚150mm,加强层及抽柱处楼板厚200mm。钢材采用Q235,混凝土为C40。活荷载取值为3kN/m2。
1.2计算方案
计算程序采用大型结构分析通用有限元程序ANSYS6.1,采用梁、壳单元进行分析。为了探寻剪力墙与钢框架不同刚度比以及不同位置设加强层对结构竖向受力性能的影响,采用如下几个方案进行分析计算:方案一(w2):剪力墙厚度为200mm;方案二(w3):剪力墙厚度为300mm;方案三(w4):剪力墙厚度为400mm;方案四(w6):剪力墙厚度为600mm;每种方案里面又分5种情况:⑴,不设加强层(s0);⑵,第3层加强(s3);⑶,第3、14层加强(s3-14);⑷,第3、23层加强(s3-23);⑸,第3、11、23层加强(s3-11-23)。
1.3计算结果
①变剪力墙厚度时剪力墙承担的总轴力比较(图2)
在图2所示的五种情况下,随着剪力墙厚度的增加,剪力墙承担的总轴力均大幅增加,大于20%,增加百分数逐渐减小。不设加强层时,剪力墙厚度增加100mm,承担的轴力平均增加22.05%;厚度增加200mm,承担的轴力平均增加39.17%;厚度增加400mm,承担的轴力平均增加63.55%。第3层设加强层后,剪力墙承担的轴力随墙厚增加的变化情况和不设加强层时的变化相差不大,分别增加1.3%、2.67%和4.95%,加强层以下墙的轴力随墙厚的增加影响逐渐减小。设第2、3道加强层与设1道加强层时相比的平均增长幅度变化不大于2%。第3层和顶层加强时,顶层剪力墙承担的轴力随墙厚的增加变化不大,当墙厚增加100mm、200mm和400mm时,轴力分别增加2.3%、1.88%和1.96%。
②不同位置设置加强层时剪力墙承担的轴力比较(图3)
剪力墙厚为200mm时,第1道加强层设在第3层时,竖向荷载下剪力墙承担的轴力,在加强层突然增大14.8%;加强层以下剪力墙轴力增大,但增大百分比显著减小(<1.9%);加强层向上至顶层剪力墙轴力减小,减小百分比逐渐减小。在第14层设第2道加强层时,第3层以下与只设1道加强层时相比剪力墙轴力增加小于1.0%;从第1道加强层以上到第2道加强层之间,剪力墙承担的轴力比不设加强层时的减小,减小百分比逐渐减小,但减小量低于只设1道加强层时的减小量;第2道加强层处剪力墙轴力则突然增大7.66%;第2道加强层以上至顶层,剪力墙轴力减小,减小百分比逐渐减小。第2道加强层设在顶层时,第3层以下与第2道加强层设在第14层时的相比,变化小于0.5%;第3层以上墙轴力的变化与不设加强层时相比从减小9.96%向上逐渐变化到顶层的增加100.52%。在第3、11、23层处设置共3道加强层时,剪力墙承担的轴力与不设加强层时相比,加强层处均突然增大,从下向上增大的百分比分别为15.76%、6.12%和75.33%;第3层以上到第10层轴力减小,减小百分比逐渐减小;第11层以上到第22层,轴力从减小10.57%逐渐变化到增大25.50%。
剪力墙厚为300mm、400mm和600mm时,墙轴力随加强层的设置位置和层数变化规律同墙厚为200mm时的一样,但受影响程度减小了。
③顶点竖向位移的比较
由于结构双向对称,故只选取对称的1/4平面内的节点进行分析,各点位置见图1(b)。
剪力墙厚为200mm时,第3层设加强层,各点位的顶点竖向位移显著减小,最大减小12.51%,最小减小4.95%,变形差由2.5mm减少为2.15mm;第3、11和23层设加强层,点5竖向位移减小9.57%,点7竖向位移增大8.92%,变形差减小为1.18mm。
剪力墙厚为300mm时,不设加强层时,与墙厚为200mm时相比,顶层各点的竖向位移显著减小,最大减小14.1%,,平均减小11.05%,但顶层的竖向变形差增大了17.2%;顶点竖向位移随加强层的变化规律和墙厚为200mm时的相同,两者相差不大(<1.0%)。
剪力墙厚为400mm时,不设加强层时,与墙厚为200mm时相比,顶层各点的竖向位移减小更为显著,最大减小22.47%,平均减小18.4%,顶层的竖向变形差增大了23.6%;剪力墙厚为600mm时:不设加强层时,与墙厚为200mm时相比,顶层各点的竖向位移最大减小33.37%,平均减小27.7%,顶层的竖向变形差增大为3.34mm,增大了33.6%。
1.4计算结果分析
剪力墙的厚度增加100mm、200mm和300mm后,墙轴力分别增加22%、39%和64%左右;由于该结构高78.3m,剪力墙厚度不会达到600mm,所以可以说剪力墙厚度每增加100mm,其承担的总轴力将增加20%左右。这说明增大剪力墙的厚度可以明显的增大其竖向刚度,“脊柱”作用明显加强,可以承担更多的竖向荷载。同时,随着剪力墙厚度的增加,顶层各点的竖向位移也明显减小。墙厚减小100mm、200mm、400mm时,顶层各点的竖向位移差分别减小17.2%、23.6%和33.6%,这说明剪力墙厚度的减小,使竖向变形更为均匀。
第3层设置为加强层后,竖向荷载下剪力墙承担的轴力,在加强层突然增大(7.75~14.8%);加强层至底层剪力墙轴力增大,增大百分比显著减小;加强层至顶层剪力墙轴力减小,减小百分比逐渐减小。第2道加强层设在第14层时,2道加强层之间从下至上轴力减小,减小百分比逐渐减小,但减小量低于只设1道加强层时的减小量。顶层设有加强层时,对顶层的墙轴力影响最大,最大可增大100.52%。总体来看,剪力墙轴力在加强层及其附近几层变化最大。在加强层处显著增大;在加强层以下,轴力增大,但增大幅度较小,且增大百分比逐渐减小;在加强层以上,轴力减小,减小百分比也逐渐减小。同时,剪力墙厚度不变时,随加强层数的增多,柱子的竖向位移减小,墙的竖向位移增大,使楼层竖向位移趋于均匀。说明加强层有较大的抗弯刚度,减小了加强层以上柱子的竖向位移,并把荷载传递到剪力墙,增大其竖向变形,很好的起到了减小变形差的作用。从以上分析来看,加强层设在第3层和顶层对改善结构的竖向变形最有利,再设第3道加强层时的变化已不大。
2结论
通过以上分析,对于高层外钢框架-钢筋混凝土核心筒结构在竖向荷载一次加载下的受力性能,可以得出以下结论:
2.1增加剪力墙的厚度,可以显著的增加剪力墙承担的总轴力、减小楼层的平均竖向位移;减小剪力墙厚度可减小楼层的竖向位移差;
2.2设加强层仅对加强层及其附近几层的受力影响较大:加强层处剪力墙轴力突然增大;加强层以下轴力增大,增大百分比逐渐减小;加强层以上轴力减小,减小百分比逐渐减小;
2.3设加强层可以减小柱子的竖向变形,增大剪力墙的竖向变形,从而显著减小楼层的竖向变形差;但随加强层道数增加,竖向位移差的减小幅度减弱,故加强层不宜多设;
2.4改善结构的竖向受力性能和变形性能,应适当的增加剪力墙的厚度和设置加强层;
2.5加强层附近几层内力发生突变,设计时应对加强层相连接的构件予以加强。
参考文献:
[1]龚炳年.钢-混凝土混合结构模型实验研究.建筑科学,1994(2):10-14.
[2]赵西安.现代高层建筑结构设计.北京:科学出版社,2000:693-724.
[3]赵西安.钢筋混凝土高层建筑结构设计.北京:中国建筑工业出版社,1992.
[4]邹永发,张世良,刘立华,尚春雨.超高层结构设置加强层问题探讨.建筑结构,2002(6):44-46.
[5]罗文斌,张保印.超高层建筑S+RC混合结构竖向变形差的工程对策.建筑结构学报,2000(12).
《傣人塑》的作曲是朱江,整个音乐都是按照舞蹈的气息、动律、风格的要求来完成的。主要使用傣族民间乐器来完成。其中包括葫芦丝、巴乌、象脚鼓、锣,还用了一些现代的音乐电钢和打击乐。音乐的曲式和舞蹈的段落是一直的,分为三段、a(慢)、b(快)、c(超快)的形式,第一个段落还分成了(a1、a2、a3)三个段落。
《傣人塑》第一段主要使用葫芦丝、巴乌,主要内容和功能非常的明确清晰节奏主要4/4拍为主,音乐创造出了空灵的意境,影子是用电钢作为背景音乐。上面淡淡的飘着巴乌和葫芦丝的音乐。a1段犹如在原始密林中飘荡着的一丝丝阳光。主要讲述了泥人出现了生命,一个有手有脚的过程。a2段是用电钢作的,体现出生命的蠕动,一种艰难,却没有方向的感觉。音乐稍有些现代,为的是配合舞蹈的进一步发展而铺垫。舞蹈讲述的是泥块在有手有脚以后,想要站立却又不知如何站立,想要蠕动却又十分迟钝。a3段又回到了葫芦丝和巴乌的飘荡中,那泥人跟着音乐在迟钝的舞蹈着,第一大段主要作为铺垫,再为整个舞蹈的进行着进一步的升华。生命的初声!
《傣人塑》第二段主要是一个过渡段,舞蹈的内容也跟着音乐的变化而变化,这一段音乐在原由的葫芦丝和巴乌上加上了锣和鼓,配合着舞蹈过渡。音乐节奏明确,具有一定的跳动性,舞蹈演员也跟着音乐跳动,也慢慢的灵动了起来。从一个迟钝的状态中改变了自己,泥人身上好象有了细胞而且每一个细胞都在跳动。第二段舞蹈过渡段起决定性作用,讲诉生命成长的过程,从钝到灵的过程。
引起砌体结构墙体裂缝的因素很多,既有地基、温度、干缩,也有设计上的疏忽、施工质量、材料不合格及缺乏经验等。而最为常见的裂缝有两大类,一是温度裂缝,二是干燥收缩裂缝。
1.1温度裂缝温度的变化会引起材料的热胀、冷缩,当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。最常见的裂缝是在砼平屋盖房屋顶层两端的墙体上,如在门窗洞边的正八字斜裂缝,平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝等。导致平屋顶温度裂缝的原因,是顶板的温度比其下的墙体高得多,而砼顶板的线胀系数又比砖砌体大得多,故顶板和墙体间的变形差,在墙体中产生很大的拉力和剪力。剪应力在墙体内的分布为两端大,中间小,顶层大,下部小。温度裂缝是造成墙体早期裂缝的主要原因。这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展。
1.2干缩裂缝烧结粘土砖,其干缩变形很小,且变形完成比较快。只要不使用新出窑的砖,一般不要考虑砌体本身的干缩变形引起的附加应力。但对这类砌体在潮湿情况下会产生较大的湿胀,而且这种湿胀是不可逆的变形。对于砌块等砌体,随着含水量的降低,材料会产生较大的干缩变形。如砼砌块的干缩率为0.3~0.45mm/m,它相当于25~40℃的温度变形,可见干缩变形的影响很大。轻骨料块体砌体的干缩变形更大。干缩变形的特征是早期发展比较快,如砌块出窑后放置28d能完成50%左右的干缩变形,以后逐步变慢,几年后材料才能停止干缩。但是干缩后的材料受湿后仍会发生膨胀,脱水后材料会再次发生干缩变形,但其干缩率有所减小,约为第一次的80%左右。这类干缩变形引起的裂缝在建筑上分布广、数量多、裂缝的程度也比较严重。如房屋内外纵墙中间对称分布的倒八字裂缝;在建筑底部一至二层窗台边出现的斜裂缝或竖向裂缝;在大片墙面上出现的底部重、上部较轻的竖向裂缝。另外不同材料和构件的差异变形也会导致墙体开裂。如楼板错层处或高低层连接处常出现的裂缝,框架填充墙或柱间墙因不同材料的差异变形出现的裂缝。
2裂缝的危害和防裂的迫切性
砌体属于脆性材料,裂缝的存在降低了墙体的质量,如整体性、耐久性和抗震性能,同时墙体的裂缝给居住者在感观上和心理上造成不良影响。它已成为住户评判建筑物安全的一个非常直观、敏感和首要的质量标准。因此加强砌体结构,已成为国家行政主管部门、建筑公司及房屋开发商共同关注的课题。
3现有产生裂缝的原因
3.1设计者重视强度设计而忽略抗裂构造措施设计者一般认为多层砌体房屋比较简单,在强度方面作必要的计算后,针对构造措施,引用标准图集,很少单独提出有关防裂要求和措施。
3.2我国《砌体规范》抗裂措施的局限性我认为这是最为重要的原因。《砌体规范》GBJ3-88的抗裂措施主要有两条,一是第5.3.1条:对钢筋砼屋盖的温度变化和砌体的干缩变形引起的墙体开裂,可采取设置保温层或隔热层;采用有檩屋盖或瓦材屋盖;控制硅酸盐砖和砌块出厂到砌筑的时间和防止雨淋。二是第5.3.2条:防止房屋在正常使用条件下,由温差和墙体干缩引起的墙体竖向裂缝,应在墙体中设置伸缩缝。
由此可见,《砌体规范》的抗裂措施,如温度区段限值,主要是针对干缩小、块体小的粘土砖砌体结构的,而对干缩大、块体尺寸比粘土砖大得多的砼砌块和硅酸盐砌体房屋,基本是不适用的。因为如果按照砼砌块、硅酸盐块体砌体的干缩率0.2~0.4mm/m,无筋砌体的温度区段不能越过10m;对配筋砌体也不能大于30m。在这方面,国外已有比较成熟的预防和控制墙体开裂的经验,值得借鉴:一是在较长的墙上设置控制缝,这种控制缝和我国的双墙伸缩缝不同,而是在单墙上设置的缝。该缝的构造既能允许建筑物墙体的伸缩变形,又能隔声和防风雨,当需要承受平面外水平力时,可通过设置附加钢筋达到。这种控制缝的间距要比我国规范的伸缩缝区段小得多。二是在砌体中根据材料的干缩性能,配置一定数量的抗裂钢筋,其配筋率各国不尽相同,从0.03%~0.2%或将砌体设计成配筋砌体,如美国配筋砌体的最小含钢率为0.07%,该配筋率又抗裂,又能保证砌体具有一定的延性。
4防止墙体开裂的具体构造措施建议
4.1防止混凝土屋盖的温度变化与砌体的干缩变形引起的墙体开裂,宜采取下列措施:
4.1.1屋盖上设置保温层或隔热层;
4.1.2在屋盖的适当部位设置控制缝,控制缝的间距不大于30m;
4.1.3当采用现浇混凝土挑檐的长度大于12m时,宜设置分隔缝,分隔缝的宽度不应小于20mm,缝内用弹性油膏嵌缝;
4.1.4建筑物温度伸缩缝的间距除应满足《砌体结构设计规范》BGJ3-88第5.3.2条的规定外,宜在建筑物墙体的适当部位设置控制缝,控制缝的间距不宜大于30m。
4.2防止主要由墙体材料的干缩引起的裂缝可采用下列措施之一
4.2.1设置控制缝①控制缝的设置位置a在墙的高度突然变化处设置竖向控制缝;b在墙的厚度突然变化处设置竖向控制缝;c在不大于离相交墙或转角墙允许接缝距离之半设置竖向控制缝;d在门、窗洞口的一侧或两侧设置竖向控制缝;e竖向控制缝,对3层以下的房屋,应沿房屋墙体的全高设置;对大于3层的房屋,可仅在建筑物1-2层和顶层墙体的上述位置设置;f控制缝在楼、屋盖处可不贯通,但在该部位宜作成假缝,以控制可预料的裂缝;g控制缝作成隐式,与墙体的灰缝相一致,控制缝的宽度不大于12mm,控制缝内应用弹性密封材料,如聚硫化物、聚氨脂或硅树脂等填缝。②控制缝的间距a对有规则洞口外墙不大于6mm;b对无洞墙体不大于8m及墙高的3倍;c在转角部位,控制缝至墙转角的距离不大于4.5m。
4.2.2设置灰缝钢筋①在墙洞口上、下的第一道和第二道灰缝,钢筋伸入洞口每侧长度不应小于600mm;②在楼盖标高以上,屋盖标高以下的第二或第三道灰缝,和靠近墙顶的部位;③灰缝钢筋的间距不大于600mm;④灰缝钢筋距楼、屋盖混凝土圈梁或配筋带的距离不小于600mm;⑤灰缝钢筋宜采用小螺纹钢筋焊接网片,网片的纵向钢筋不小于25,横筋间距不宜大于200mm;⑥对均匀配筋时含钢率不少于0.05%;局部截面配筋,如底、顶层窗洞上下不小于38;⑦灰缝钢筋宜通长设置,当不便通长设置时,允许搭接,搭接长度不应小于300mm;⑧灰缝钢筋两端应锚人相交墙或转角墙中,锚固长度不应小于300mm;⑨灰缝钢筋应埋人砂浆中,灰缝钢筋砂浆保护层,上下不小于3mm,外侧小于15mm,灰缝钢筋宜进行防腐处理;⑩当利用灰缝钢筋作砌体抗剪钢筋时,其配筋量应按计算确定,其搭接和锚固长度尚不应小于75d和300mm;不配筋的外叶墙应设控制缝,控制缝间距不宜大于6m;设置灰缝钢筋的房屋的控制缝的间距不宜大于30m。
4.2.3在建筑物墙体中设置配筋带①在楼盖处和屋盖处;②墙体的顶部;③窗台的下部;④配筋带的间距不应大于2400mm,也不宜小于800mm;⑤配筋带的钢筋,对190mm厚墙,不应小于2Φ12,对250~300mm厚墙不应小于2Φ16,当配筋带作为过梁时,其配筋应按计算确定;⑥配筋带钢筋宜通长设置,当不能通长设置时,允许搭接,搭接长度不应小于45d和600mm;⑦配筋带钢筋应弯入转角墙处锚固,锚固长度不应小于35d和400mm;⑧当钢筋带仅用于控制墙体裂缝时,宜在控制缝处断开,当设计考虑需要通过控制缝时,宜在该处的配筋带表面作成虚缝,以控制可预料的裂缝位置;⑨对地震设防裂度≥7度的地区,配筋带的截面不应小于190mm×200mm,配筋不应小于410;⑩设置配筋带的房屋的控制缝的间距不宜大于30m;
4.3也可根据建筑物的具体情况,如场地土及地震设防裂度、基础结构布置型式、建筑物平面、外形等,综合采用上述抗裂措施。