前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇数字电子技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号:TN79+2 文献标识码:A
收录日期:2014年5月13日
随着电子技术的不断发展,对于电路技术的应用也不断增加,在很多领域中,电子技术都有着广泛的应用。此外,尤其是在计算机技术领域以及工业领域中,实践的技术结合,让现代工业和电子行业有了巨大的进步。在实际的电子技术使用过程中,针对不同的应用领域,其使用的技术也有所不同。电子技术中,以模拟电子技术和数字电子技术为主流,两者有着较大的差别,因此在优势对比方面,也会比较明显。本文将重点分析两者在不同领域的应用优势,并对两者的优势进行对比分析。
一、模拟电子技术分析与应用
电子技术一般主要应用于电路中,电路的放大器,反馈期以及后期的电流增益等等。这些电子技术是以基本的元器件为基础的,从而实现电路所需功能。在自然界中,一般以模拟和数字两种方式来作为基础的分析方向。模拟实际上就是连续的,而数字则是不连续。模拟电子技术,实际上就是针对连续的电子信号进行处理的。在模拟电子技术使用的领域中,其使用范围最为广泛,在电路以及工业控制设备中,模拟电子技术都有所应用。但是,模拟电路一般造价相对较低,使用的技术也会比较娴熟,其传输的效果还是有一定的差异。由于容易受到噪声的影响,对于信号的接收效果也是产生了一定的影响。
二、数字电子技术分析与应用
数字电子技术一般应用于对于精度要求较高的设备中,数字电子技术是一种相对技术,即通过抽样定理,对模拟信号进行抽样,从而形成相对精度较高的电子信号。在数字电视中,使用的就是数字电子技术,可以将信号的传播精度有效提高,并且在传输的过程中,可以减少噪声对于信号的影响。在加密过程中,由于数字信号可以使用较高级的加密系统,因此对于信号传递的安全性,数字电子技术有一定的保障。数字电视的推广,实际上就是由于信号传播一般都要使用译码和解码的过程,而收到噪声影响的越少的信号,其还原和解码的过程就越简单。因此,数字信号的优势也非常明显。在实际生活中,目前市场上使用的数字电视就是采用的数字信号进行传输的,数字电视的效果更好,画面更清晰,原因也就是因为数字信号的优势体现。
三、模拟电子技术与数字电子技术对比分析
电子技术通常会与计算机技术进行结合,从而实现电子技术的多功能性。在电路领域中,数字电子技术与模拟电子技术才会真正可以进行优势对比,从而根据不同的电路实现不同的功能。一般情况下,电路以信号为主导,信号的形式在一定程度上决定了使用怎样的电子技术。
(一)信号形式与电路形式对电子技术的主导作用。在电路工程中,信号的形式在很大程度上决定了采用怎样的电子技术。或者是根据电路的要求,进行相应的技术匹配。模拟电路中,一般采用的是模拟电子信号,从而根据模拟电路的特点,进行模拟电子技术的相关技术标准进行设计。例如需要设计增益与放大器的电子电路中,模拟电路就会更加适合。此外,在电路的精度要求方面,会相对比较明显。模拟电路一般造价相对较低,使用的技术也会比较娴熟,但是其传输的效果还是有一定的差异。由于容易受到噪声的影响,对于信号的接收效果也是产生了一定的影响。因此,即便模拟信号有一定的缺陷,但是依然有较大的市场占有率。原因就在于其原理相对简单,并且造价较低,在一些低端的应用中比较适合。而数字电子技术一般适合采用高端的电子电路中,尤其是对信号传播的精度要求高的电路中,一般都要采用数字电子技术。数字电子电路的设计比较高端,对于信号的传播效率以及接收效果要求也比较高。但是,数字电子电路的造价相对较高。所以,一般都会在比较高端的设备中使用。因此,不同的电子技术对应不同的信号形式,模拟电子技术一般就针对模拟信号进行使用,数字电子技术一般就会针对数字信号进行使用。电路形式方面,则会根据电路的要求以及其复杂程度和精度进行相应的使用。高精度就代表这高造价,而数字电子技术可以实现高精度,但是要考虑市场造价。而模拟电子技术虽然存在一定不足,但是由于电路要求相对简单,而造价也有一定的优势,因此才会依然有很大的市场。总之,要依据电路的形式以及信号的传播要求,进行相应的电子技术选择。
(二)模拟电子技术与数字电子技术之间的优势对比。模拟电子技术适用于模拟信号的设计与使用,由于模拟信号也可以称之为连续信号,在自然界中是普遍存在的。也可以认为模拟电子是绝对存在的,而数字电子则是相对存在的。利用通信工程中的抽样定理可以了解,抽样定理实际上就是针对模拟连续信号进行的定点抽样,然后形成的数字信号。从高等数学微分与积分的角度分析,可以证明连续信号是绝对的,但是抽样后的数字信号则是相对的。由于模拟信号是自然存在的,因此在通常的电路使用中,一般都会使用模拟信号,模拟信号的使用范围广,并且在使用的过程中造价相对较低,对于电路的设计也不是非常苛刻。但是,模拟信号由于是自然存在信号,相对而言在加密过程中就存在一定的不足。此外,由于在自然界中是存在噪声的,因此模拟信号在传播的过程中非常容易收到噪声的影响,而且在传播的过程中容易出现损耗。因此,在模拟电子电路的设计中,通常要设计放大器。放大器进行增益处理以后,噪声并不能很好的过滤,从而造成了接收端的接收信息的准确性相对较低,并且接收的效果也不是十分好。从实际的案例中分析,电视信号的接收就是非常常用的案例,一般的电视信号就是采用的模拟电信号。因此,对于电视的效果而言,也存在一定的不足。有时候电视的效果不佳,或者是存在一定的失真,就是模拟信号在传输的过程中,出现了噪声的混杂。而数字电子技术,一般是将原有的模拟信号进行抽样处理,从而生成数字信号。数字信号虽然是相对存在,但是在优势方面比较突出。数字信号可以进行高精度的加密,这样就可以避免噪声的影响,同时也保证了信号传播的安全性。此外,在数字信号的传输过程中,由于数字信号的精度更高,所以在接收端的接收效果也会更好。此外,数字信号的损耗和衰减也相对较低,因此,在使用的过程中,可以减少放大器的使用。数字电子信号的优势还在于数字信号的解码相对简单容易,并且在还原的过程中也相对方便。由于信号传播一般都要使用译码和解码的过程,而收到噪声影响的越少的信号,其还原和解码的过程就越简单。因此,数字信号的优势也非常明显。在实际生活中,目前市场上使用的数字电视就是采用的数字信号进行传输的,数字电视的效果更好,画面更清晰,原因也就是因为数字信号的优势体现。
四、结语
在信号处理与电子电路应用中,模拟电子技术以及数字电子技术实际上可以认为是针对不同的信号的应用技术。模拟信号是连续信号,在自然界中普遍存在,而数字信号则是通过抽样定理进行抽样所获得的信号,针对数字信号即可使用数字电子技术。在两者的对比中,一般情况下,模拟电子技术的使用会相对方便,由于是客观存在,在较为低端的电路设备中,一般会采用模拟电子技术,由于造价相对低廉,原理也比较简单,在增益与放大的过程中,对信号的误差率要求相对较低。而在比较精端的电路设备中,通常要使用数字电子技术,利用抽样定理,提高信号的精准度,从而保证电子电路的高精度运行。总之,两者在不同的领域有不同的应用优势。
主要参考文献:
关键词:模拟电子技术,数字电子技术应用
中图分类号:TN710文献标识码:A文章编号:1674-098X(2019)04(c)-0164-02
随着电子技术发展水平不断优化,数字电子技术与模拟电子技术发展迅猛,其应用性均呈现扩张趋势。就双方的具体特征而言,模拟电子技术生产成本较低,通过便利的使用性能收获了群众的喜爱,但是数据的精度与准度较低,缺陷性明显。因此,模拟电子技术具体应用在低端设备,并且对于具体的精度准度要求较低。与之相对,数字电子技术呈现出良好的精度与准度特征,其数据更加全面与真实,在具体的运行工程中能够保证设备的整体效能发挥,提升工作效率。但是,因为精度与准度不断提升与优化,其工程造价远高于与模拟电子技术。
1模拟电子技术、数字电子技术简介
1.1模拟电子技术
模拟电子技术核心在于电路,通过全面有序地将电路进行细化,保证整体效能的稳定发挥。模拟电子技术处理模式较为简易,通过形成连续信号来提升工作效率,在相应的电子技术中发挥着重要的作用。因为模拟技术具有成本低廉、应用性能较广等特点,使得具体的模拟电子技术深受低精度领域产业的喜爱。但是,其低廉的成本带来了较大的问题,在具体的应用过程中,噪音问题无法解决,信号传播效率较差,并且容易受到电磁干扰,在一定程度上加重了失真和数据性能不足的问题,使得群众的具体使用满意度不足,带来了一定的不便性,同时也影响着人们对于电子技术的认识,造成在使用过程中频繁出现问题,阻碍着模拟电子技术的向前发展。
1.2数字电子技术
数字电子技术以抽样定理作为运算基础,在与抽样信号相结合的过程中,不断提升与优化数据的精度与准度。因为其自身运算逻辑严密,所以其精准度远超模拟电子技术。因为自身综合能力优异,数字电子技术应用广泛,并且能够保证数据信息安全有序的传播,将所有的不利因素,即噪音、电磁波等进行规避,保证了实际的播放效果与播放质量。与此同时,数字电子技术内部的安全系统健全,通过加密的方式来切实提升安全性,不断优化数据,保证整体的工作效能,切实提升工作效果。
2模拟通信和数字通信的分析和研究
2.1分析模拟通信的优缺点
模拟通信因为自身的安全性能不健全,使得具体的保密工作不到位,容易受到严重的电子干扰,从而产生信息泄露和他人盗取信息等问题。与此同时,其抗干扰能力较差,在具体的通信过程中,噪音会对通信质量产生严重的破坏,降低了整体的通信质量与通信水平。其優点也显而易见,即使用方便与造价低廉,是通信要求较低的企业和个人的福音。
2.2分析数字通信的优缺点
数字通信因为自身系统性和技术性较强,所以其频带较宽,并且对于技术性要求不断提升,其发展速度必须与相关电子技术发展水平同步。因为自身的精度要求较高,对于同频技术需求较大,其误差同样需要量化与整合。同样,其优点明确,即抗干扰能力和数据的精度与准度远超模拟电子技术,信息处理能力优越。目前,我国的高清电视大多使用数字电子技术,其信号传播率传播能力不断优化与提升。同时,数字电子技术通过构建完整的通信网络来切实提升和优化信号处理能力,保证通行的安全性与稳定性全面提升,为电子计算机技术与通信技术搭建了良好的沟通与合作的平台,保证二者紧密结合。相比与传统的通信技术,现代通信采用网络数据模式来保证接线工作的迅捷程度,大大解放了接线员大量的工作任务,并切实减少因人为因素带来的误差,保证工作效率与相关经济效益的全面提升。在存储方面,数字电子技术凭借优质的存储系统极大地便利了存储工作,不断优化和提升整体存储性能。
3模拟信号和数字信号在数字电子技术应用中的体现
模拟信号和数字信号通过文字、语音、视频等形式来将相应的信号数据进行有序的整理与表达,形成了良好的表现形式。
3.1模拟信号
模拟信号是指在特定的参数范围内,通过连续的或者有一定间隔的信息特征进行数据化表达,并最终产生信息数据。在传统的模拟信号模式下,电话与电视均采用有线模式,即通过将数据信息进行线路传播,在形成声音信息之后,通过用户声音来进行相应的变化与处理,保证时间呈现连续性特征。简而言之,即通过转换数据信息,使之以电信波的形式进行有线传输,在数据传出之后,将电信号进行备份与还原,使之能够直接应用于具体的生活与生产工作中来。
模拟是一种富有时效性与真实性的表达模式,在我们的日常生活中应用广泛,我们看到的具体事物或者通过多媒体设备看到的具体数据信息皆属于模拟,其应用型广泛,并与我们的日常生活与生产关系紧密。因为模拟自身的特殊性质,所以在其运行过程中需要载体,载体形式多样,可以使胶卷或者白纸,也可以是专业的数据云盘。同时,模拟工作同样对工具的需求性较高,模拟设备多样,可以是电视机或者音响。模拟的传播方式多样,可以采用传统的纸质传播,也可以使用先进的互联网技术进行传播。
3.2数字信号
数字信号的工作模式是去表示数字量,其特征是将信号进行状态变化,使其趋于稳定与跃式发展。数字信号的表现形式为电位型和脉冲型,前者的表示法则在于将不同状态的电位信号通过零和一来进行表达。后者的表示模式为将脉冲模式通过零和一来进行表达。在科学技术水平日新月异的今天,数字化技术不断成熟与优化,数字时代正式来临,通过数字来对人们的实际生活进行有序的表达,保证生活水平不断提升,信息的精度与准度同步优化。在具体的数字通信过程中,通过将数字信号作为信息传输的载体,保证信息传播的有序性与完整性,通过使用二进制信号表达模式,切实提升了表达工作的简易程度,缓解了数字表达的工作压力。
3.3在通信技术中模拟电话通信与数字电话通信的区别
模拟电话通信模式下,线路传输工作的起点是信号发送端,在发送端将模拟信号进行整合后,用声能的形式来进行传输,之后通过使用电能转化器来根据音频和声波来将变化着的声能进行转化与还原,保证用户能够收到模拟信号,并将其数据信号进行还原,其工作模式为数据信息-声能-电能-数据信息,形成一定的循环。数字电话通信模式下,语音声波直接转化为模拟信号,通过声音与电能的装换来简化工作流程,通过二进制算法来保证模拟信号的精度与准度,实现良好的声电、电声转换循环,保证用户在使用过程中能够切实减少工序,相应的操作工作也在同步减少。
【关键词】数字信号;数字电路;数字电子技术
自然界存在着各种各样奇妙的变化,在时间和数值上断续变化的信号,习惯上被叫做数字信号。数字信号不具有持续性,常常会反映很多时间片段中的信号状态,数字电子信号在我国的各个科技领域都得到了广泛应用。与数字信号相对的是模拟信号,模拟信号指的是在时间和数值上持续变化的信号。
1数字信号与数字电路的概念
数字信号是由断断续续的物理量组成,它们在时间和数值上不具有连续性,是比较分散的。比如公路上车辆的数目、操场上学生的数目,这些数字的变化都是以1为单位增加或减少,并不会存在数字增减上的持续性。通常情况下,把这种数字化的物理量叫做数字量,把该数字量代表的信号叫做数字信号,最典型的数字信号就是方波信号。数字信号又叫做离散信号、脉冲信号,数字信号具有电位型和脉冲型两种形式,在这两种形式之间做阶跃变化。电位型数字信号中,用“1”和“0”两个数字表示电位信号的高低。而在脉冲数字信号中,则用“1”和“0”表示脉冲信号的有无。能够传送、处理、变换、存储数字信号的电路叫做数字电路,数字电路包括数字电路和脉冲电路两大部分。数字信号作为一种电信号,电压的幅度将会在高电压和低电压之间变化。一般情况下,我们会将高电压规定为与电路电压相同,而将低电压则表示为0。如果一个电路的信号满足这种要求,那么就可以认定该电路为数字电路。
2数字电路的不同种类
2.1分立电路与集成电路
按照数字电路的结构来分,数字电路可以分为分立元件和集成电路两种。电阻、电容、二极管、三极管、场效应管等组成的电路为分立元件电路。而将许多基本元器件都固定在一个基板上,把元器件的外部管脚进行连接,使许多元器件集成为一个整体的电路则为集成电路[1]。按照每个基板上元器件的数目,集成电路又可以分为小规模集成电路、中等规模集成电路、大规模集成电路几种。每块基板上有10~100个基本元器件的集成电路,则为小规模集成电路,比如各种逻辑门电路、集成触发器等;每块基板上含有100~1000个元器件的电路,则成为中等规模的集成电路,比如各种编码器、计数器、寄存器等等;而每块基板上含有1000~10000个元器件的电路,就是大规模集成电路,比如许多存储器、串行并行接口电路、中央控制器等。
2.2单极性电路和双极性电路
根据数字电路中半导体元器件的构成情况,可以将数字电路分为单极性电路和双极性电路两种。在电路的工作状态时,电路内部具有两种载流子的二极管和三极管的电路,就是双极性电路,也被称之为双极性半导体器件电路[2];而根据导电沟道工作的场效应管,则为单极性半导体器件,也称为单极性电路。双极性电路包括TTL电路、FCL电路、I2L电路等,单极性电路包括NMOS电路、PMOS电路、CMOS电路。
2.3时序逻辑电路和组合逻辑电路
按照数字电路的记忆功能来划分,可以分为时序逻辑电路和组合逻辑电路两种。时序逻辑电路的输出和电路的当前输入状态、过去输入状态有关,比如触发器、寄存器、计数器等。这些集成电路为时序电路,他们能够对过去的状态进行“记忆”,以此来完成信号的输出。而组合逻辑电路的输出信号只和当前的输入有关,比如各种译码器、编码器、全加器等。
3数字电路的特点
数字电路不但能够完成简单的加、减、乘、除计算,而且还可以进行较为复杂的“与”、“或”、“非”逻辑运算,具有很好的系统控制能力,所以数字电路也常常被称为数字逻辑电路。数字电路中,因为只有“0”和“1”两种信号变化状态,所以数字电路的逻辑运算和数字运算都比较简单。数字电路的基本结构单元简单,能够进行大批量的生产。由于数字电路一般都只有高电平和低电平两种信号,数字电路的导通、闭合性能良好,抗干扰能力强、稳定性好。如果对数字电路进行加密,那么在信号的传输过程中信号就很难被窃取,具有很强的保密性。
4结语
随着数字技术的不断发展,我国的数字电路在各个领域得到了广泛应用。在数字信号中,常采用“1”和“0”两种信号表示电平信号和脉冲信号。按照数字电路的结构来分,数字电路可以分为分立电路和集成电路。按照数字电路的半导体器件来分,可以将数字电路分为单极性单路和双极性电路。按照记忆功能来分,可以将数字电路分为时序逻辑电路和组合逻辑电路。数字电路具有稳定性高、保密性好等优势,能够进行大批量生产。
参考文献
[1]金鑫.数字电子技术中的数字信号和数字电路[J].现代工业经济和信息化,2015(08).
关键词:数字电子技术;教材改革;工程应用
1.引言
《数字电子技术》是高等学校通信工程、电子信息工程、自动化、电气工程及自动化等专业的重要专业基础课程[1]。随着数字电子技术、数字系统的高速发展,以FPGA(FieldPro-grammableGateArray)和CPLD(ComplexProgrammableLogicDevice)为代表的大规模可编程逻辑器件(ProgrammableLogicDevice,PLD)的广泛应用,使传统“板上数字系统”被“片上数字系统”替代[2]。为适应数字电子技术的发展趋势,对传统《数字电子技术》教材内容进行了改革,在教材内容的安排和例题选用上,立足于应用型人才培养,以现代信息技术为依托,注重理论联系实际,取得较好的应用效果。
2.教材改革的基本思路
随着数字电子技术的快速发展,如何处理数字电子技术的经典内容与现代内容、传统分析设计方法与现代分析设计方法之间的关系,是教材内容改革的重点。教材以“基础知识器件原理器件应用器件仿真系统构建系统仿真”为主线,构建数字系统的知识框架。在教材内容组织上,将数字电子技术和数字系统有关知识融为一体,系统介绍数字电子技术与数字系统的基本分析方法和设计方法;在教材内容编写上,以培养学生的应用能力和实践能力为目的,采用案例式或项目式编写思路,将理论知识和实际应用相结合,把突出知识的应用性和实践性作为主要方向,做到理论和实践并重,既强调理论基础,又突出应用性。对于集成电路注重逻辑功能和使用方法介绍,增加EDA(ElectronicDesignAutomation)技术基础知识[3],利用Multisim软件对部分电路进行功能仿真,并介绍VHDL语言、QuartusⅡ软件的基本使用方法,利用VHDL语言设计部分数字电路,利用QuartusⅡ软件进行仿真分析,适应现代电子技术飞速发展和应用的需要。
3.教材的主要特点
3.1教材内容组织
按照教育部高等学校电子信息科学与电气信息类基础课程教学指导委员会对《数字电子技术基础》课程教学的基本要求,对《数字电子技术》教材内容进行重新组织,将教材内容分为十章[4]。第一章介绍逻辑代数的基础知识,主要包括各种数制、常用的编码规则、逻辑代数的基本定理、逻辑函数的表示方法和化简方法等。第二章介绍EDA技术的基础知识,包括Multisim、VHDL语言、QuartusⅡ的基础知识。第三章介绍分立门电路、集成门电路和可编程逻辑器件的特点,并介绍利用VHDL语言设计门电路的方法。第四章首先介绍组合逻辑电路的基础知识,然后讲解组合逻辑电路的应用,最后利用Multi-sim对组合逻辑电路进行功能仿真和设计分析,并介绍组合逻辑电路的VHDL语言设计方法。第五章介绍各种触发器的功能和应用,并利用Multisim对触发器进行功能仿真,介绍触发器的VHDL语言设计方法。第六章介绍时序逻辑电路的分析方法和设计方法,介绍常用时序逻辑电路的功能和应用,并分别利用VHDL语言和Multisim进行功能描述和仿真。第七章介绍脉冲波形的产生与整形电路,重点介绍集成电路的应用。第八章介绍半导体存储器的特点和应用。第九章介绍A/D转换和D/A转换的工作原理和主要技术指标,对集成DAC和ADC的基础知识及应用进行简单介绍,并利用Multisim对基本转换电路进行功能仿真。第十章介绍数字系统设计的基本流程,通过3个实例介绍数字系统的不同设计方法。
3.2强调基础理论
随着数字电子技术的发展,数字电子技术已逐渐渗透到各个行业,《数字电子技术》课程作为高校电类专业的基础课程,是学生走向数字化时代的第一门课程,也是某些高校相关专业的考研课程,其重要性不言而喻。教材编写强调《数字电子技术》基础知识的系统性、完整性,将逻辑代数基础、组合逻辑电路分析与设计、时序逻辑电路的分析与设计等基础知识作为教材核心内容,并结合部分高校相关专业《数字电子技术》研究生考试大纲的要求,增加部分教学内容。例如,在第六章“时序逻辑电路”中增加利用观察法和隐含表法进行状态化简的内容,使学生能够更容易掌握时序逻辑电路的传统设计方法。在教材内容编排上,反复训练基础理论知识,使学生更好地学习并掌握基础理论知识,为进一步学习打下坚实的基础。例如,第四章“组合逻辑电路”首先介绍组合逻辑电路的分析方法和设计方法,然后介绍常用集成组合逻辑电路的原理和应用,其中译码器、数值比较器按照组合逻辑电路的分析方法进行阐述,编码器、数据选择器、加法器按照组合逻辑电路的设计方法阐述,使教材内容循序渐进、深入浅出,适用于学生自学,有利于培养学生自主学习能力。
3.3突出实践应用
在教材编写过程中,注重学生对知识应用能力培养的需要,强调具体操作过程中学习理论基础,将知识应用能力培养贯穿整本教材,突出教材知识的实践应用性。在介绍集成电路时,删除集成电路内部电路的分析,强调集成电路的逻辑功能和使用方法[5],例如,介绍555定时器时,在简单介绍555定时器的电路结构和工作原理的基础上,以“触摸式定时控制开关电路”、“双音门铃电路”等应用电路介绍555定时器的使用方法。在第九章“数/模和模/数转换器”中,以DAC0808、DAC0832、AD7543为例介绍常用集成数/模转换器的工作原理和使用方法,并分别给出DAC0832、AD7543与单片机AT89C51的接口电路,既加强与后续课程单片机、微机原理等的联系[6],又突出教材内容的应用性。
3.4增加EDA技术知识
EDA是电子设计自动化(ElectronicDesignAutomation)的缩写,是从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。教材第二章EDA技术基础知识介绍了Multisim和QuartusⅡ两种EDA工具的操作界面和使用方法,并介绍了VHDL语言的基本结构、数据对象、数据结构、操作符和基本语句结构,使学生借助EDA工具进行电路分析和设计。教材给出了74LS138、74LS153、74LS194、74LS160等常用集成电路的Multisim仿真电路和VHDL描述方法,并在第十章“数字系统设计”中,以“计数报警器”、“简易交通灯控制器”、“函数信号发生器”为例,结合Multisim和QuartusⅡ软件,详细介绍简单数字系统的设计过程,丰富教材内容。
4.结语
《数字电子技术》教材改革是一项长期工程,随着数字电子技术的发展,必将对教材内容产生深刻影响。本教材于2012年10月由北京大学出版社作为“21世纪全国本科院校电气信息类创新型应用人才培养规划教材”出版,2013年12月被评为河南省“十二五”普通高等教育规划教材。教材经过3年多的使用,得到了广大师生的关注,收集了各方面建议和意见。为了更好地适应现代数字电子技术的发展和应用,需要对教材内容进行进一步改革。
参考文献:
[1]陆冰,魏芸,闾燕,等.“数字电子技术”课程教学改革的实践[J].电气电子教学学,2013,35(4):46-47.
[2]宁改娣,杜亚利.教材:《数字电子技术》教材改革探索[J].教育教学论坛,2012(8):98-99.
[3]黎艺华,谢兰清.高职数字电子技术项目课程教材建设探索[J].教育与职业,2011(15):131-132.
[4]秦长海,张天鹏,翟亚芳.数字电子技术[M].北京大学出版社,2012.
[5]王国新,张桂凤,宋婀娜.“数字电子技术”课程教学改革探究[J].中国电力教育,2014(12):73-74.
关键词:数字电子技术;网络;应用表现
中图分类号:TN791 文献标识码:A 文章编号:1674-7712 (2013) 12-0000-01
现阶段,计算机网络技术在人们的生产、生活、学习、工作应用的越来越广泛,使人们的生活变得越来越方便,对于现代人来说,已经成为其生活中不可缺少的部分。同时,网络也促进了数字电子技术的发展,使其在渗入现代人的生活时有了一个依托的平台,是数字电子技术得以发展的重要条件,而数字电子技术也使网络的内容更加的丰富,由此,在网络中应用数字电子技术有着重要的现实意义。
一、网络在人们生活中的重要作用
网络是一个可以实现信息资源的传输、接收和共享的平台,在人们生活的方方面面都得到了广泛的应用,给人们的生活提供了极大的便利。首先,从网络的特点上说,一是网络提供海量的信息资源,通过对互联网进行浏览,人们就可以实现对所需信息资源的快捷查询,在网络上,通过利用电子邮箱等信息工具,人们还能自由就一些问题提出自己的见解,互相交流彼此的看法,达到在网络上的互动和反馈,并使地域的界限被打破,实现了跨国界的、跨地区的零距离的交流;二是网络具有很强的开放性,并在信息方面存在着共享性,在网络信息资源量巨大的情况下,保证信息的有效的传输、存储和共享;三是与报纸、杂志等传统媒体相比,网络上的信息更新的更快,并且时效性更强,新闻的传播与事件发生之间的时间差很小,几乎可以达到同步的状态,同时又因为报纸杂志是通过印刷品的形式进行传播,而网络不需要纸张,所以在成本费用方面,相对来说网络也更低,在资源方面更节约。
其次,从网络的应用优势上说,网络的最大优势之一就是在进行信息的整合和传播时的综合化,不同于报纸杂志等纸媒仅依靠文字和图片来传播信息,网络在传播信息时,除了可以运用文字和图片的方式,还可以涵盖视频、音乐等信息,使信息内容得到了极大的丰富,当用户在浏览这些信息时,可以对其传达的内容进行非常全面和透彻的理解,并且还可以了解其他的相关信息。随着网络技术的发展成熟,用户在收听或者观看信息时还可以进行同步的下载,缩短了用户在下载方面花费的时间,实现了时间的节约。总之,网络上的信息来源的范围广泛、表现的形式多样,通过网络,用户可以在任何地点任何时间以图片、数据、声音、表格等方式实现对信息的接受和反馈,尤其是数字电子技术在网络中的应用,更是加快了网络上信息互动沟通的速度。
二、数字电子技术应用于网络的重要意义
首先,信号的数字通信可以通过数字电子技术的应用来得到实现,数字信号具有很强的抗干扰能力,而且没有噪音污染,在储存处理和交换方面都非常的便捷,在其依托下,可以缩小设备的体积并使设备更加的集成,一般占用的信道频带比较宽,对综合数字网的构成有促进作用。对于数字信号来说,二进制代码是其与计算机信号的共同点,具体的说,就是它们是相同的,这个共同点促进了计算机与数字信号的联网,并且使计算机对数字信号的存储、交换和处理更方便,使通信网管理成功的趋向了自动化和智能化。
其次,数字信号在抗干扰方面很强,可以进行距离比较长且质量比较高的信息传输,并且通过数字转换的方式进行处理以后,信号在网络信息的加密方面变得更有效更方便,这是由于数字逻辑运算不是很难,在加密及解密方面可以进行相对简单的处理。数字电子技术对数字电路的运用有很多方面的优势,包括功率比较低、体积比较小,通过集成电路的大量使用可以使网络设备的形成变得很容易。现阶段的应用科学中,数字通信技术和网络技术的应用最多。网络的普及极大的改变人们传统的生活、工作的方式,使人们对其越来越依赖,在网络中应用数字电子技术,可以加快信息处理的速度,使海量的信息及时的以更快的速度进行传输供用户使用。
三、数字电子技术在网络中的应用表现
数字电子技术是一门对集成器件和电路的功能和应用进行研究、对芯片的各脚功能进行集成、对时序电路和逻辑门电路组合进行分析和设计的学科。通过数字电子技术,可以实现对集成芯片和电路组合的设计、对各种电路和集成元件的分析和研究等。在计算机技术快速发展的基础上,数字电子技术在信号的处理方面体现出了很显著的优势。它可以将模拟信号根据一定的比例要求转变成数字信号,再用数字电路对其进行处理,然后输出所需信息转变成的模拟信号,最大程度的发挥了数字电路在信号处理上的优势,并提高了网络信息传输的效率。其中信息的数字化处理方式包括编码、量化和抽样。编码的意思是说根据一定的规律,将量化后的值表现为二进制的形式并转变成多值的信号流。量化就是通过一定限度的幅度值让原先连续的幅度值变得相似,使存在一定间隔的离散值替换模拟信号连续的程度。抽样就是在一定的时间段内,将原来具有连续性的信号转变成信号样值序列,在时间的方面离散模拟信号。
数字电子技术可以在很大程度上提高网络信息的发展速度。以数字信号作为信息的载体来进行传输的通信方式,即为数字通信,数字通信极大的加快了信息传输的速度,增大了信息传输的容量,形成了信息高速公路,即高速信息电子网络,它是一个系统的网络体系,具体的构成包括网络、计算机、数据库以及其他各种电子产品等。利用高性能的计算机和通信网络中的服务器可以控制和处理网络中的信息,用数字信息替代模拟信息,实现在数字电路上的信息的输入和输出以及最后的存储。
四、结束语:
总之,随着科学技术的发展和更新,在网络信息高速公路的构建要求下,数字电子技术在网络中的应用会越来越广泛。
参考文献:
[1]张杰.浅谈数字电子技术的应用与发展[J].科技致富导向,2012(12).
[2]徐丽香,刘威.基于建构主义的数字电子技术网络教程的研制[D].广东工业大学,2009(17).