前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇地质类范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
含水层发育特征
1松散岩类孔隙含水层
松散岩类孔隙含水层,主要由第四系及局部地区成岩作用较差的新近系及古近系组成,岩性以中细砂、砂砾石、卵砾为主,粒度、厚度变化较大,富水性不均一。各煤炭基地规划矿区均有分布,主要与新近系及古近系煤层与侏罗系煤层的开采关系较为密切。在鄂尔多斯盆地东部、内蒙古东部、东北及新疆青海等地的煤炭基地内松散岩类孔隙含水层富水性较强,而在华北地区及云贵等地则较弱。
2碎屑岩夹碳酸岩类裂隙-岩溶含水层
碎屑岩夹碳酸岩类裂隙-岩溶含水层,包括白垩系、侏罗系、二叠系和石炭系含水层,岩性主要为上述各时代地层中的砂岩、砾岩、砂砾岩及其灰岩夹层。白垩系裂隙含水层主要分布在鄂尔多斯盆地中部,富水性较强;侏罗系裂隙含水层主要分布在东北等地,富水性较强;石炭—二叠系裂隙-岩溶含水层主要分布在华北地区,其砂岩裂隙含水层的富水性相对较弱、太原组裂隙-岩溶含水层在山西省煤炭基地富水性较弱,在冀中、鲁西、河南、两淮煤炭基地富水性相对较强。
3碳酸盐岩裂隙岩溶含水层
由于各时代碳酸盐岩岩性特征、组合关系和构造部位不同,岩溶裂隙发育程度差异较大,岩性以灰岩、白云质灰岩、白云岩为主。在华北地区为石炭—二叠系煤层的基底,富水性较强,在云贵基地其上、下均发育裂隙岩溶含水层,富水性中等。
煤层与含水层的叠置关系
1垂向上
在山西省及冀鲁豫皖煤炭基地主要发育石炭—二叠系煤层(图1),孔隙、裂隙含水层位于二叠系主采煤层之上,岩溶裂隙含水层位于石炭系煤层之上、岩溶含水层位于石炭系煤层之下。鄂尔多斯盆地周边煤炭基地发育侏罗系煤层,孔隙、裂隙含水层位于侏罗系煤层之上,在盆地深部侏罗系煤层之上主要为白垩系裂隙含水层,而在盆地浅部侏罗系煤层之上主要为第四系孔隙含水层。蒙东(东北)基地主要发育侏罗系煤层,孔隙、裂隙含水层位于主采煤层之上。云贵基地主要发育二叠系煤层,主采煤层上下均为岩溶含水层及裂隙含水层。
2平面上
山西省、冀鲁豫皖、云贵煤炭基地主要开采石炭—二叠系煤层,孔隙和裂隙含水层位于煤层之上,富水性相对较弱,仅在山间沟谷处第四系孔隙水富水性较强。鄂尔多斯盆地周边煤炭基地主要开采煤层为侏罗系,第四系孔隙含水层和白垩系裂隙含水层位于主采煤层之上。从平面上看盆地北部毛乌素沙漠一带,地势平坦,含水层有利于接受大气降水入渗补给。第四系萨拉乌苏组孔隙含水层多为风积砂所覆盖,当其上无良好隔水层时,往往与沙丘潜水沟通,单井涌水量一般为200~1000m3/d,最大可达3000m3/d,富水性较好。白垩系裂隙含水层岩性为河流相砂岩、含砂砾岩,间夹有泥岩、砂质泥岩,泥岩和砂质泥岩在平面上分布不连续,空间上多呈透镜状,尚不能构成区域性隔水层,地下水水力联系密切,并同上覆风积砂层或萨拉乌苏组冲湖积砂层构成统一的含水层,单井涌水量一般为100~1791.07m3/d,含水层富水性为中等-强。该地段分布第四系萨拉乌苏组孔隙水和白垩系裂隙水供水目标区。盆地南部黄土丘陵区。不利于大气降水入渗补给,第四系孔隙含水层岩性主要为中更新统离石黄土,其间夹有多层砂质含量较大的黄土及十数层古土壤与钙质结核层,下部新近系及古近系泥岩为隔水底板,含水层富水性较弱。白垩系裂隙含水层,岩性是一套多层结构的、以泥岩为主的湖泊相及沙漠相沉积的砂岩,是地下水的主要富水层位。含水层仅在河谷出露,多被第四系黄土覆盖,埋深数十至百米,地下水补给条件差。由于上部新近系及古近系泥岩隔水层的存在,阻断了黄土层地下水与下伏白垩系地下水的水力联系,总体不利于地下水富集。蒙东(东北)基地主要发育侏罗系煤层,松散层孔隙和裂隙含水层位于主采煤层之上。由于各规划矿区所处的地理位置差异,煤层的埋藏深度差别较大。蒙东(东北)基地规划矿区煤层埋藏较浅,如,宝日希勒矿区,煤层埋深最浅27m,最低可采煤层埋藏深度一般不超过250m。扎赉诺尔、大雁、伊敏、霍林河、白音华和胜利矿区,主采煤层距松散层孔隙含水层为12~180m,煤层埋藏较浅,大部分地段采煤导水裂隙带发育至地表。从平面上看,蒙东地区扎赉诺尔、宝日希勒、大雁、伊敏、霍林河、白音华和胜利矿区位于内蒙古高原,地表水系发育,地下水补给条件好。煤种为褐煤,煤层皆为含水层,煤层及其顶、底板砂砾岩、砂岩构成含水层组。煤层埋藏较浅,而煤层由于构造及风化作用影响,裂隙发育,与上覆第四系含水层水力联系密切。该区松散层孔隙含水层钻孔单位涌水量在0.0279~5.63L/(s•m),煤系裂隙含水层钻孔单位涌水量在0.001~05L/(s•m),局部地段达19.245L/s•m,含水层富水性以强富水、中等富水为主。平庄矿区多为低山丘陵,孔隙和裂隙含水层,钻孔单位涌水量分别为0.05L/s•m、0.03L/(s•m),富水性弱。
煤矿床水文地质类型划分
1考虑因素
与以往水文地质类型划分不同,本文是针对煤炭基地规划矿区进行煤矿床水文地质类型划分,因此仅考虑了以下因素。
1)充水水源
煤炭基地规划矿区主要发育三大含水层,即松散岩类孔隙含水层,碎屑岩夹碳酸岩类裂隙-岩溶含水层,碳酸盐岩裂隙岩溶含水层。本次划分未考虑大气降水、地表水及老空水。不同的充水水源具有不同的充水特征,特别是在充水水量和动态特征等方面,差异更大。一般地说,岩溶充水水源充水量大,来势猛,破坏性强;砂岩裂隙充水水源充水量小,动态较稳定,一般情况下对矿井安全生产威胁不大;松散未胶结的孔隙充水水源充水量不均匀,有大有小,有时发生充砂、塌陷等现象,在分析时,应视具体水文地质条件而定。在实际生产中,开采某时代煤层的充水水源往往不止某一种,多为两种或两种以上的充水水源同时涌入矿坑。将可开采煤层的主要充水水源和它们的组合再分亚类,即:A,岩溶水;B,孔隙水;C,裂隙水;D,岩溶-孔隙水;E,岩溶-裂隙水;F,裂隙-孔隙水六大亚类。
2)充水方式
充水方式反映了充水水源进入矿坑的方向和特征,据此可合理选择相应矿坑涌水量预测的水文地质概念模型,有的放矢地决定防治突水灾害的方向和措施。为此将其划分为两大型,即:1,顶板充水型;2,底板充水型。
3)充水途径
煤层顶、底板充水是最基本的两种型式。在实际煤层回采过程中,顶、底板的具体充水方式要复杂得多。煤层顶、底板充水包括直接充水和间接充水。顶、底板直接充水即为煤层顶、底板为充水含水层;顶板间接充水是指煤层开采后形成的导水裂隙带导通了上部的含水层,底板间接充水是指煤层隔水底板强度不足以抵抗底板承压含水层水头而引起的充水(底鼓型)或因断裂或陷落柱等内边界导通引起的充水。故根据顶、底板具体的充方水式,对每一类型再细分为两种亚型,即:a,直接充水亚型;b,因断裂、陷落柱等内边界导通的间接充水亚型。
1.1生油层
所谓的生油层就是这一区域能够生成石油资源。通常情况下,石油的生油层主要分布在烃源层的底部。从生油层岩性上来看,主要以泥质岩和碳酸盐岩为主。其中泥质岩是一种含有丰富有机质的黏土、泥岩以及页岩等等。而碳酸盐岩的主要构成部分就是深灰色的泥灰岩和生物灰岩。如果在适宜环境的作用下,就会产生一定量的石油或者是天然气。另外,这也是生物体大量繁衍的主要区域。
1.2储集层
储集层也是经过漫长的时间才能形成的一种岩层,岩层只有具备一定的条件才能形成储集层。第一是岩层需要具有足够的空间来容纳流体,也就是孔隙。第二是岩层具有一定的渗透能力。也就是说岩层要具有一定的容纳性和渗透性。从储集层的分布状况上看,主要以变质岩、火山岩以及泥岩为主,有规律有层次低分布状态,使得储集层很容易被辨别。但是,储集层也可以再分,分成不同的类型,然后每一种类型也是由不同的岩体构成。从储集层的开发上看,还有大部分的岩体没有得到开发,也就是说石油资源的储存潜力和空间还是很大的。储集层多见于盆地地带,很容易出现裂缝,孔隙以及溶洞的现象,这三种现象中的裂缝可以被看做是流体通道,孔隙也类似为轴状,溶洞就是扩大之后的孔隙。
1.3盖层
盖层是阻碍石油等流体出现渗漏的岩体,盖层是影响油气区形态以及分布状况的重要因素,盖层也在某中程度上影响到储集层的保持时间。所以,在石油勘察工作进行的过程中,首先需要对盖层的状况进行勘探。从地质构造上看,盖层的空隙相对较低,主要以膏岩、泥岩以及盐岩为主。
2、地质类型对石油勘探的影响
地质类型中,开采油层的数量众多,这些油层主要以片状的形式存在,所以,可以采用钻井方式来进行开发。另外,随着人们对油田的不断开发,油气的储存量也逐渐降低,因此,石油勘探工作主要由常规油田勘探转移到非常规油田的勘探。这些方式的运用主要是为了提升油田勘探工作的效率,获得更多的原油,同时不断提升原油的产量,保证石油勘探的稳定性。另外,不同的地质类型对于石油的勘探和开采工作都会产生严重的影响。局部的构造条件也是直接影响油气形成主要方面,刘贵才大庆油田钻探工程公司钻井二公司技术服务分公司黑龙江大庆163000因此,相管的工作人员需要对不同地质构造进行分析,对地质类型进行了解。
2.1构造的褶皱形态
地质构造出现了褶皱的现象,说明地层在某一区域的受力情况以及受力方向等发生过明显的变化,研究人员可以通过褶皱的地质构造形态来对石油勘探工作进行研究。褶皱现象能够有效的抑制裂缝现象的出现,对于油气的储存工作也产生了较大的影响。不仅如此,地质构造的褶皱现象对于石油的储集和保存等也会产生一定的影响。因此,相关的工作人员要对这一形态进行深入分析,提升石油勘探工作的效率。
2.2构造与裂缝发育
从岩层存在的特点上看,构造力和裂缝的出现情况之间存在着密切的联系,构造力主要起到一种控制作用,能有助长裂缝形成和扩大,所以,要想对裂缝现象进行研究,需要从外部的构造力入手。局部的构造往往以群带的形式存在,同时还会形成组系间的交汇。不仅如此,受力情况的复杂性不言而喻,不用类型的局部构造会形成不同类型的裂缝现象。其中,局部构造的高点,长轴等部分往往也是裂缝发育的主要位置。
2.3构造形成时间
2、滑坡:滑坡是斜坡上的土体或岩体,受河流冲刷、地下水活动、地震及人工切坡等因素影响,在重力作用下,沿着一定的软弱带,整体地或分散地顺坡向下滑动的自然现象。临灾前兆特征表现为前缘出现隆起和放射状裂缝;后缘裂缝加宽,产生新裂缝;中部裂缝加宽,产生新裂缝,出现错落台阶,有小坍滑现象;后缘出现斜向裂缝。
3、泥石流:泥石流是山区特有的一种自然地质现象。它是由于降水(暴雨、冰川、积雪融化水)产生在沟谷或山坡上的一种携带大量泥沙、石块和巨砾等固体物质的特殊洪流,是高浓度的固体和液体的混合颗粒流。运动过程介于山崩、滑坡和洪水之间,是各种自然因素(地质、地貌、水文、气象等)或人为因素综合作用的结果。临灾前兆特征表现为松散物质丰富;沟谷两侧滑坡、坍滑强烈。
4、地面塌陷:地面塌陷是指地表岩、土体在自然或人为因素作用下向下陷落,并在地面形成塌陷坑(洞)的一种动力地质现象。由于其发育的地质条件和作用因素不同,地面塌陷分为岩溶性塌陷和非岩溶性塌陷。
5、地裂缝:地裂缝是指地表岩、土体在自然或人为因素作用下,产生开裂,并在地面形成一定长度和宽度裂缝的现象。当这种现象发生在有人类活动的地区时,便可形成一种地质灾害。
关键词:矿山地质;3S;灾害类型;防治措施
Abstract: after the exploitation of mineral resources, in a great extent change the local geology environment, causing many serious mine geological disasters. This paper, from the mine geology disaster caused the main factors of, combining the characteristics of time and space of geological disasters and disaster methods, the mine geology disaster into several main types and the class. And according to the several types of geological disaster characteristics, this paper explores the establishing of the corresponding prevention and control measures, to China mine geology hazard prevention and control and the mine geological environment management to provide the scientific basis.
Keywords: mine geology; 3 S;Disaster type; Prevention and control measures
中图分类号:O741+.2文献标识码:A 文章编号:
1、概述
由于矿产开采过程势必改变原有稳定的矿藏条件,改变了当地的地质环境,而由于人为的采矿活动改变了地质环境所引起或诱发的灾害被称为矿山地质灾害。矿山地质灾害的发生会对生态环境、自然资源和经济社会造成不可估量的危害和破坏。
我国的矿产开采具有相当长的历史,在相当长的时间内,我国矿产开采技术和设备都比较落后,这种条件下的矿产开采导致矿山地质环境不断恶化,矿山地质灾害事故频发。危及生命的矿难和环境灾害时有发生,近年来还有逐渐上升的趋势。因此,根据我国矿山地质灾害发生及发展规律、特点,将矿山地质灾害进行详细分类,并根据其各自特点提出防治灾害的措施,是一项十分必要的工作。
2、矿山地质灾害类型
就目前的科学技术发展状况而言,采矿活动的范围仍多数被限定在地球表面和岩石圈层内部。在矿脉开采之前,矿区地质环境是处于稳定平衡状态。而采矿过程,是从地壳内部的土壤、岩石圈层挖出大量的土石方,对地质环境进行了巨大的破坏,使其处于非稳定状态。我们可以看出,不论钻井开采、掘坑开采、注液开采,还是露天开采,都改变了原有的地质环境,这种不平衡性的出现导致了地壳物质的不稳固,进而容易引发灾难性地质改变。
矿山地质灾害类型很多,若单从灾害发生的速率加以区别,可分为突变型矿山地质灾害,如矿坑突水、瓦斯爆炸、岩爆等,另一种就是缓发型矿山地质灾害,如采空区的地面沉降,水体污染等。然而,在我们最常用的地质灾害分类,常常是以地质灾害的时空分布和成因关系来分类。这种分类方法有利于对地质灾害的成因进行深入探究,才能根据各种地质灾害类型制定相宜的防治措施。人为地质作用过程中不合理或者不科学改变地质环境,进而诱发的地质灾害基本涵盖了除火山喷发之外的所有地质灾害类型,本文将就其特点简要分类阐述。
2.1 岩土圈层形变灾害
这部分矿山地质灾害是由于采矿活动改变了矿区的地质环境,导致地区地下和地表岩土圈层形变,进而引发的灾难性后果。
2.1.1 诱发性地震
由于采矿活动致使岩土圈层结构性失衡,这种失衡状态反映在岩土圈层内部就是地震与断层错位。短时间的断层剧烈错位容易产生诱发性地震。由于人为地质改变而诱发的浅源性地震,深度小,危害和破坏力却十分巨大。小震级的地震,就可能致使井下和地表岩土圈层的剧烈改变,从而对建筑物、地表结构造成危害。
2.1.2 断层错位
断层错位也是圈层结构性失衡的一种表现,不过由于断层错位具有缓发性,能量在缓慢积聚,短时间内不易被测量和察觉。但是,可以预见,随着开采活动的不断进行,矿脉被采空后,断层积聚能量会在短时间释放,终究会造成巨大的危害,这种灾害对矿山及周边地质环境的破坏力也十分巨大。
2.1.3 地面圈层形变
地下岩土圈层的形变,往往导致地表岩土圈层下陷、沉降、开裂等,进而引发危害性巨大的矿山地质灾害。例如,矿山地面和采空区塌陷、矿区地面沉降,地面开裂。一般的矿区地面塌陷主要发生在井巷开采的矿山地区。矿脉埋藏较浅,矿区地面平缓,地面塌陷与沉降的现象较为常见。而矿脉埋藏深、距地表较远的开采区,如果不能及时回填矿渣,就有可能发生大面积塌陷,地面塌陷、沉降和开裂不仅可破坏水土、建筑物,还可能毁坏道路、水库等公共资源与建筑,造成更大的危害。
2.1.4 斜坡岩土体运动
这一类灾害是由于采矿区地质边坡或地表断层边缘结构不稳造成的灾害,如崩塌、滑坡、泥石流等。例如采矿边坡失稳,常常会造成边坡岩土滑坡,岩崩等灾难,泥土边坡在雨后形成流动性土体,形成灾害性泥石流等。这些地质灾害发生的主要原因是不合理造成的采剥失调、边坡角度过陡等形成不稳定结构。此一类型矿山地质灾害多发生在露天开采或掘坑开采矿山。这种灾害常常瞬时发生,但造成结果危害性更大,如矿山山崩,往往使矿产毁于一旦,造成人员大量伤亡,危害极大,是此类灾害的典型例子。
2.1.5 矿坑工程灾害
不合理的矿山开采手段与落手的开采方式,常会造成矿山地下工程灾害事故的发生,如洞井塌方、冒顶、偏帮、鼓底、岩爆等。这些灾害均是因为矿井、矿坑内的岩土圈层发生地壳应力变化,而导致岩层、土层应力突然释放,导致大量岩石、碎屑,并向坑井内突进,给矿井开采带来危害,危急矿工安全并造成财产损失。例如坑内岩爆就是因矿坑周边和顶底板围岩,在受到巨大的岩石圈层应力作用状况下,一旦因采掘面不能维持平衡,即有可能产生岩石圈层应力突然释放,导致岩石破裂迸裂,并向坑内大量喷射、爆散,从而给矿山带来毁灭性灾难。
2.2 地下水位异变灾害
矿山开采过程中,深层开采有时会破坏地下水自由浅水层或层压含水层的结构稳定性,进而引起地下水位和矿山地质环境的改变,造成灾害性后果。
2.2.1 矿坑突水涌水
矿坑、矿井突水、涌水是最常见的矿山灾害之一。由于地下水位的短时间迅速改变,致使矿坑突然进水。这种矿山地质灾害突发性强、规模大,导致后果也十分严重。
采矿过程中常因对矿坑涌水量的排空速度估计不足,采掘过程中穿透隔水断层,或者骤遇蓄水溶洞、暗河,导致地下水大量涌人,造成坑井被水淹没,造成人员伤亡或其他严重灾难性后果。这种灾害在盗采严重矿山频发,多数因为开采技术低下,私挖乱采的盗采现象存在,相互均有可能突破蓄水坑洞,引发灾难性后果。
2.2.2坑内溃沙涌泥
坑内涌砂是矿坑突水的伴生灾害,当矿坑采掘过程中遭遇富含泥沙的蓄水层或溶洞,突破隔水层后,泥沙和岩屑随水一起涌入矿坑,造成涌浆灾害。另外一些透水断层和潜水层也常会因为断层错位,夹杂沉积物下漏涌人坑内,其结果是使矿坑被泥浆阻塞,设备和开采人员被泥沙掩埋,致使矿山遭受灾难性后果。
2.2.3地下水漏失
由于矿山开采,破坏了地下水埋藏条件,造成地下水的水源补给跟不上消耗的速度。比如矿山开采造成地下河流的改道,过分开采破坏潜水层,这些地质环境的改变,造成地下水位超常下降,从引发地下水源枯竭灾害,进而引发河水漏失、泉水干涸,造成局域性干旱区。
2.3 矿体内因引起的灾害
这类矿山地质灾害常常是因为矿山地质环境改变后,一些偶发因素造成的突变性的灾难性后果。
2.3.1 瓦斯爆炸
瓦斯爆炸灾害最常见于大小煤矿,由于矿坑通风条件不良,使瓦斯在封闭空间内积聚到一定程度,偶然因素引发爆炸。这种灾害常常造成矿山开采人员群死群伤,矿井被剧烈的爆炸损毁,造成巨大的人员与财产损失。
2.3.2 煤层自燃
由于煤层开采,是一部分开采矿面暴露在空气中,部分煤矿石因氧化放热导致温度逐渐升高,热量集聚后温度升高速度骤然加快,温度升高到煤的着火点时,便会引起燃烧。煤层自燃现象在古今中外时有发生,我国每年因为煤层自燃破坏煤炭资源多达2亿吨,经济损失巨大。
2.3.3 矿山火灾
矿坑火灾常见于煤矿的煤矸石山和硫化物矿床,因为煤矸石和硫化物也能氧化生热,进而引发火灾。矿山火灾对周围环境的大气危害也十分严重,一些常年燃烧的矿山,使当地空气污染严重,区域小气候发生改变,矿区周围苗木大量死亡,田地荒芜,环境状况堪忧。
2.3.4 地热
矿山开采过程中,凡需通过深入岩土圈层开采矿产资源,包括煤炭、金属和非金属矿等,当达到一定深度后都会遇到矿井温度升高的危害。通常矿山开采深度达到800 米以后,矿山因含硫量高,开采深度大,地温非常高,也会导致矿工劳动环境恶劣,严重影响正常生产。
2.4 矿山环境化学污染灾害
采矿、选矿产生的废渣、废水、废气物质造成环境污染,也是矿山地质灾害日趋凸显的一种形式。这些废弃物未经有效处理,直接堆弃或者无序排放,都会造成环境污染公害事件。这种环境灾难还会引发水土流失、土地砂化、盐渍化、地下水断流等相关次生灾难。这些污染事件的后果,往往长期影响人与动物的身体状况,导致国民经济和资源、环境的不可持续发展。
2.4.1 尾库、场库灾害
许多矿山开采,都伴随着矿场与尾矿库的存在。场库失稳主要是由于尾矿坝体不能承受压力决堤后形成泥石流造成巨大的危害。尾矿库溃坝常常因为坝体稳定性在日益增加的压力,或因废矿液溢出,坝体管涌而发生决堤。尾矿溃堤给矿区人民生产生活都带来不可估量的灾难性后果,同时也会给当地水土环境造成污染和长期危害。
2.4.2 水土环境污染
矿山开采废水矿坑地下水、选矿、冶炼污水、尾矿渗漏水等,都会造成矿区水源与地下水的污染,同时废液中的重金属污染元素、有毒有害元素的存在,也会长期存留在土壤中,形成持久性的环境灾害。矿业废水量大,多数来不及处理,直接被无序排放进入环境水体,直接或间接造成区域性水土环境污染,致使矿区地表水、地下水源、农田遭受长期污染。这种如此危害性常常是潜在性的,其危害性更大。
2.4.3 土地退化
露天开采和掘坑开采是水土流失和土地沙化的一个影响因素。在露天开采和掘坑开采过程中,地表植被、土坡土体的破坏,尾矿的扩展都会导致水土流失和土地退化。而大量的采矿排水,致使土地盐碱化。
3、矿山地质灾害的勘查方法
由于矿山的地质灾害都在深部发生,勘查多采用遥感信息技术与物理勘查方法。
3.1 地球信息技术综合方法
目前的信息技术主要是利用遥感集合“3S”技术,及时掌握地质灾害可能的分布、发生地点与区域。如利用全球卫星定位系统对地质灾害发生的高危点位精确定位,并利用遥感卫星进行叠加分析,预测灾变发生趋势。
3.2 地球物理勘查方法
主要指应用物理手段,探测岩土圈层相关信息,确定采空区、断层位移、磁场变化等可能的灾害伴发信息,对地质灾害进行提前分析与预测。地球物理勘查矿山地质灾害的方法主要包括高密度电阻率法、视电阻率法、瞬变电磁法、浅层地震法等。这些方法是预测潜在矿山地质灾害重要技术手段。
3.3 环境化学勘测方法
在矿山地质灾害预防过程中,人们也常常使用地球化学勘查方法。例如对矿区环境污染的监测,化学探测方法具有不可替代的优势。这种方法的应用能够有效确定污染因素、预测污染趋势、追溯污染源、划分污染区,为污染治理方案的制定提供重要的科学依据和技术支持。
4、矿山地质灾害的防治措施
综上所述,矿山地质灾害由于时空特点与产生条件各有特点,随着矿山地质勘查的手段逐步应用,我们应针对上述分类和勘查手段,采取有力的防治措施,才能防止矿山地质灾害的发生,有效地减少人员伤亡和财产损失。根据矿山地质灾害发生的特点,有些矿山地质灾害我们能从主观上加以预防,有些地质灾害由自然诱因引起,我们不可能有效预防,因此我们制定具体的防治手段应包括如措施:
(1) 建立和完善矿山开采前的风险评估与环境评估,并制定环境保护与恢复治理的政策法规和规划体系。做到开采前严格评估,开产中积极防范,开采后积极恢复,把矿山地质环境恢复与土地复恳纳入法规,强制推行。
(2) 加强宣传,普及矿山地质灾害防治知识,提高矿山开采人员素质,增强其对地质灾害的危机感与警觉性。提高矿山生产过程中全员防灾、减灾技能与手段,强化矿山地质灾害的防、险避险、抢险培训。
(3) 开发与应用先进的信息化、地球物理勘查手段、地球化学勘查手段,对矿山地质进行严密监视,对可能发生的潜在灾害施行实时监测、动态监测,建立矿山地质灾害监测系统,实现矿山地质与环境生态动态跟踪与管理体系,避免重大人员财产损失。
(4) 加强矿坑、矿井边坡设计,进行边坡监测,坚固挡墙稳固边坡地质构造,开挖后如果出现开裂变形,及时做地质勘察,并做好预防措施。合理建设尾矿矿坝,形成稳定矿场与尾矿库,降低滑坡和塌方风险。
(5) 对于坑道开采,在坑道内一定要做好支护,做到边开采边支护,防止因矿顶坍塌、冒顶等产生的危害,尤其上方有住户处要预防引起上部地面开裂,同时做好坑道的排水设计,以防因矿坑涌水造成危害。
(6)加强矿山环境监督与检查,进行全面、系统的地质环境和地质灾害影响评估。对破坏生态环境的小矿、低产能矿场进行坚决关停。对于污染型采矿区,制定科学开采和“三废”排放方案,减少次生地质灾害的发生。进行矿场开采后生态环境恢复治理,对于可回填的废矿进行积极回填。
(7)对于闭坑矿山地质灾害的防治和生态环境恢复,应该及时进行治理和生态恢复工作,全面推进矿山地质灾害防治与环境综合治理,进行复垦,提高土地复垦率,结合生态措施实施矿山生态环境综合治理示范工程。弃渣场经处理后再敷表土、植草种树。通过上述地质环境恢复工作,减少水土流失,恢复矿山的生态功能,达到生态恢复和维护人类与环境和谐的目的。
(8)将矿山地质灾害防治工作纳入政府议事日程和国民经济发展规划、计划,按一定比例安排地质灾害防治经费,如建立矿山环境恢复治理、政府资助矿山环保、地质灾害调查防治等基金。
(9)在矿山开采区应严格禁止私采乱挖和越界开采,减少人为扰动,做好植被保护和水土保持工作,积极推行地质环境恢复方案及措施为防止水土流失、恢复植被和景观。监督与制止开采弃渣胡乱堆弃和不加处理排放,强制其必须统一堆放到开采境界线以外的矿山弃渣场内。
(10)加大防治工作的资金支持,加强应该矿山等相关企业对矿山地质灾害的关注度,预留地质灾害调度金,构建地质灾害、环境灾难补偿制和问责制。同时加强生态补偿制度,加大惩罚力度,用经济手段调节灾害防治力度。
5、结语
矿山地质灾害类型多,引发因素多样,不同类型的矿山地质灾害有着不同的形成机制和表现形式。针对不同矿区的地质环境特点,我们应该选择适当的矿山开采方案,并进行积极的地质灾害勘查方法,做到将灾害消灭在萌芽期。综观当前对矿山地质灾害类型、勘查技术方法和预防措施,查明矿山地质灾害特征,预测灾害体的发展变化,提出防治措施,为矿山防灾减灾提出合理建议。
参考文献:
[1]丁雅丽.唐山市体育场岩溶塌陷地质灾害治理工程实例[J].西部探矿工程,2002(1).
[2] 黄钊文.露天矿山地质灾害防治浅析[J].勘察、测绘与测试技术.2007,(8).
[3] 闫车杰.矿山地质灾害研究及防治探讨[J].中国地质,2004,13(3):66-68.
[4] 张琦.辽宁省主要矿山地质灾害及防治对策探讨[J].化工矿产地质,2004(1).
[5] 刘会平广东省的地质灾害与防治对策[J].自然灾害学报,2004(2):l0l-105.
[6] 岳 境,邹继兴.露天矿山地质灾害治理方案[J].河北理工学院学报,2007,(2).
[7] 张卫东.大周市矿山地质灾害的现状及防治对策[J].科技情报开发与经济,2008(1).
[8]郭君科,田绍义 等.高密度电阻率法技术与应用[J].黑龙江水利科技,2005(1):ll6-ll7.
1矿山地质灾害的常见类型
1.1地下水位变化引起的地质灾害
由于地下水位变化引起的地质灾害中,最常见的就是矿坑突水涌水,同时也是危害较大的一类地质灾害。在采矿过程中,需要对矿坑的涌水量进行估算再采取采矿措施,如果在对矿坑的涌水量估算之后地下水位突然发生变化,特别是当矿坑的实际涌水量大于估算值时,就会带来非常严重的后果。在采矿的过程中常常需要将老隆打穿,贯穿透水断层,如果在这个过程中突然遇到暗河或者蓄水溶洞,那么地下水或者地面水就会大量涌入到老隆。由于这个过程突发性非常强,并且涌入的地下水规模非常大,所以会造成严重的后果,井巷被淹,甚至对采矿人员的生命安全造成威胁。除了矿坑突水涌水之外,地下水位的改变也会引起坑内溃沙涌泥,这是伴随着矿坑突水发生时一种常见的灾害。如果在采矿的时候突然遇到蓄水溶洞,溶洞中除了水之外,还有大量的泥沙和石屑,溶洞中的泥沙和石屑也会和水一起涌入到坑内。除此之外,透水断层以及地裂缝的存在也会把一些沉积物涌入到坑内,导致大量的泥沙将坑堵塞,采矿人员以及采矿机械都会被泥沙所埋,最严重的时候甚至可以毁灭矿山。
1.2岩石体变形引起的地质灾害
在矿山地质工程中由于岩石体的变形也很容易引起地质灾害,其中最常见的就是采矿过程中发生的坍塌事件。在采矿过程中的采空区,如果保留的矿柱受到损害或者数量不足都会使矿柱的支撑能力受到影响,当支撑能力不够的时候就会发生地面的塌陷,在矿体埋藏的越浅的地区发生塌陷的概率就越大,如果埋藏的深度足够,在崩落的采空区没有及时回填也会发生大面积的塌陷。在岩溶的分布区,如果矿山排水疏干也会导致溶洞上方的地面塌陷。地面塌陷会对建筑物以及道路资源、耕田资源造成巨大的伤害,同时也会在塌陷之后将一些地表水或者地面水灌入坑内,导致淹井事故的发生,使得地质采矿要停产,带来了巨大的经济损失。另外,如果矿坑的周边的岩石受到很强的地壳应力,那么就会强烈收缩,而在采矿的过程中由于挖井等,会使矿坑周边的岩石出现广阔的空间,那么被强烈收缩的岩石受力就会突然释放,导致岩石破裂,分成很多碎片向四周喷射,对采矿人员造成危害。由于不合理开采会造成采矿场边坡失稳、岩崩以及滑坡现象的发生,尤其是在露天开采的地质工程中更为常见。在采矿过程中,由于采矿活动还可能引发地震的发生,只要遇到一个小地震就会对采矿的井下和地面造成非常严重的破坏。
1.3矿体内因引起的地质灾害
由于矿体内因引起的灾害主要有矿坑火灾、瓦斯爆炸以及地热,尤其是在煤矿资源的开采中非常常见。在采矿过程中,由于通风措施没有做好,在矿井内容易聚集很多的瓦斯,当瓦斯浓度到达一定的程度时就会发生爆炸,导致严重的后果,不仅整个矿井被毁,同时还会造成井内工作人员的伤亡。矿坑火灾常见于硫化矿床,硫化物在氧化的过程中会放热,放出的热量没有及时疏散,当热量聚集到某一程度的时候矿井内就会发生自燃现象,使矿山发生火灾,使底下矿产资源受到严重的损害。浪费了巨大的资源,同时还会导致农作物和树木的死亡,对环境造成了严重的危害。矿石在开采的过程中深度越大受到的地热也越大,由于地温非常高,使得采矿的环境非常恶劣,采矿过程受到严重影响。
2矿山地质灾害的防治措施
2.1重点防治区的地质灾害防治措施
为了做好重点防治区的地质灾害防治工作,首先,在矿山开采之前,要合理设计边坡的参数。同时在开采的过程中要通过扫描以及严格的监测等措施来及时了解矿区的边坡,从而稳固矿区边坡。为了防止开采的过程中出现岩石变形或者开裂导致的喷射现象,在开采之前一定要做好专业的地质工程勘察工作。同时还需要做好开采前的准备工作,例如设计合理的边坡坡度和渣场弃渣的方量,并做好灾害防护措施,做好拦渣以及挡墙的准备,如果在开采的过程中出现灾害可以及时处理,避免喷射现象带来的巨大损失,同时在开采的过程中要严格规范工作人员的操作,禁止乱弃。对于矿山中原来发生过灾害的区域,要特别做好预防工作,减少灾害的发生。在矿山开采的过程中要做好坑道的支护工作,避免塌陷现象发生。
2.2其他地质灾害防治措施
为了避免塌陷、边坡失稳以及滑坡现象的发生,需要在开采之前合理设计边坡参数,设置排水沟,做好边坡上的排水工作。开采过程中在一些重要的地段要做好拦挡岩石碎屑的措施,避免滚石现象的发生。同时加强开采过程中的现场管理工作,加强所有工作人员的安全意识,让所有的员工都能够重视矿山开采的安全,并且做好安全防护工作,规范工作人员的操作。在开采结束后要及时做好填平工作,可以通过植树造林等方式减少由于采矿对环境造成的危害。
3结语