前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇课堂大数据分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
大数据必将给教育带来巨大的改变,曾经依靠经验和灵感的授课过程,将被以数据分析为主的决策分析所代替。而计算机教学既是大数据技术的传播载体,更是最应率先应用大数据技术的课程。无论如何,大数据已经就在我们眼前,已经悄然改变着教学过程,也必将深度改变学校的计算机教育模式。
(一)计算机教学内容的变化
随着大数据技术的发展和大数据分析的成熟,大数据技术及应用必然会成为各高校重要课程。现在,美国的学校已经开设相关课程,比如,大数据分析统计基础、大数据分布式计算、大数据挖掘与机器学习等。国内一些高校也正在尝试开设大数据课程,帮助学生了解大数据,学数据分析。下一步,大数据基础、大数据分析、大数据处理的核心技术等等,必将成为计算机专业的必学内容,也会成为高校重要的基础课程。另外,计算机智能教学系统和教育测评软件将更多地使用在教学中,以记录学生的学习轨迹。而计算机专业的教师也必须熟练掌握大数据技术和分析方法。
(二)计算机教学思维的变化
原来的计算机教学基本是灌输式教学,老师教授的是计算机基础知识、C语言编程的模式、数据库的基本架构,等等。大数据和互联网的发展必然会改变这种授课方式,使知识的接受方式呈现多元化倾向。随着移动互联的发展,学生可以随时随地通过互联网更便捷的获取学习内容。而课堂上单纯的照本宣科、按部就班将不能吸引学生的注意力。因此,教师必须转变教学思维,以更多的案例和互动式教学,引导学生去寻找解决问题的办法,寻找“芝麻开门”的钥匙,只有如此才能让学生有兴趣待在课堂。同时,大数据带来的将是对海量教学案例的数据分析,让教师对计算机教学的难点及教授方法优劣有了更加清晰的认识,不必依靠教学经验去判断教学效果,完全可以驾轻就熟地进行互动教学,启发学生寻找最优解决方案,将是大数据时代下计算机教学的突出特点,这是对计算机专业教学思维带来的革命性变化。
(三)计算机教学模式的变化
目前,计算机教学主要模式是备课—教授—上机—测试,教师主要的精力放在了课前备课。而大数据技术的应用,将会让教师把更多的精力放在课后分析上,形成“备课—教授—上机—测试—数据分析—改进”的模式。在这个模式中,课后的数据分析将是整个教学过程的关键环节。通过大数据分析,可以对一个班的学生进行整体学习行为评价,可以对学生上机测试情况进行细化分析,可以对每个学生的学习习惯进行学习评估,分析学生的学习中偏好、难点以及共同点等,从而得出学习过程中的规律,改进教学方式,提高教学质量。
(四)个性化教学的深入开展
大数据技术的发展,使建立覆盖学生学习全过程、全要素的信息库成为可能,学生大量的试卷、课堂表现留存,学生的学习经历及成长轨迹,学生的家庭情况等等,都将被涵盖在大数据分析中。另外,前述的计算机智能教学系统和教育测评软件,将详细记录学生每次答题的背景、过程和结果。这些信息让教学分析变得更加容易,教师可以利用数据挖掘的关联分析和演变分析等功能,依靠学生的某些学习特征,比如答题持续时间,具体回答步骤和内容(可以细化到每次击键和每个笔划),答对的要素和答错的要素等等,在学生管理数据库中挖掘有价值的数据,并分析学生的日常行为,研究各种行为的内在联系,来据此形成针对学生个性化的教学策略,以帮助学生在学习方面取得更大的突破。
二、小结
关键词:民办院校;法学教学改革;机遇
一、“大数据”简介
大数据给法学教学带来了对于如何分析学生学习情况的全新认知方式。
二、大数据为民办院校法学教学改革带来的新的发展机遇
民办院校的教师师资力量弱,学苗差,学生考研率低,就业率低。长春财经学院在法学教学改革中,引入翻转课堂教学模式。而大数据作为一种新的研究方式,可以为翻转课堂提供更好的数据分析。(一)辅助提升法学学情分析。利用大数据可以从海量的数据分析中,提供教学需要的学生学习情况的信息。促进教师进行教学改革,提升教学效率。1.大数据对学习过程进行监控大数据则可以通过对学生线上学习过程进行监控,为教师提供数据帮助教师掌握学生学习情况。如为了防止学生观看视频的学习过程中有偷懒行为,保证学生学习的效果以及成绩的真实性,超星等网络平台也采用了许多新的手段。2.大数据对学生学习效果提供统计数据大数据可以帮助教师对学习效果进行统计。如,提供随堂测验的统计数据等。在教学实践中,如何对学生的学习效果进行合理的评价,仍是一个需要进一步改革的问题,尤其是采用翻转课堂教学模式下。(二)辅助配置教学资源。大数据可以辅助教学资源的优化配置。在当前的教学改革工作中,要注重大数据的分析,特别是对于学情的分析,确保教学改革取得应有的效果。通过利用大数据对学生学习情况进行分析,查找规律,辅助教师评估每个学生的学习质量、效果及学习的困难点,从而合理分配教学资源。(三)促进教师和学生的良性互动。在网络信息时代,学生对于知识的需求量越来越大,社会对于学生的能力的要求也越来越高,要求上岗即能上手,因此,学生需要真正能够利用所学知识解决问题。而大数据可以更好的促进二者关系的良性互动。
三、大数据时代民办院校法学教学改革面临的主要挑战
在大数据时代,法学教学改革迎来了新的问题。当前,法学教学改革中面临着许多与大数据时代相关的挑战,其中较为典型的问题包括如下几个方面:(一)大数据对真实学情的掌控上,仍需完善。目前,超星尔雅平台已经建立起了教学互动平台,利用大数据对学生的网络学习过程及效果,及时进行统计分析。然而,在实践中,依然存在大数据无法掌控的问题,如不能真实的反映学生的学习效果。(二)如何运用大数据分析学情,仍需论证。目前,大多数的教师认为,目前大数据可以作为学情分析的参考,如分析学生的学习习惯,但不能以此作为认定学情分析的标准。综上,在不断的深入法学研究的方方面面,大数据为法学研究提供数据参考,也为我们法学教学提供数据分析,为法学教学的现代化提供有益的辅助支持。我们要提升重视现代化科技力量的运用。利用大数据对海量数据分析、整合,从而发现学生学情的新规律,提升法学教学水平,在运用大数据时,需要注意数据固有的局限性,对数据分析进行恰当合理的利用。
[参考文献]
[1]JohnGantzandDavidReinsel,“ExtractingValuefromChaos”,IDCiView[J],(Jun.,2011),pp.1-12.
关键词 泛在学习 学习生态 有效学习 英语学习 大数据
近年来,移动互联网、大数据等信息技术发展日新月异,已经成为推动教育变革的重要力量。移动通信终端的普及为学生营造了泛在英语学习环境,大数据技术开启了个性化智能教育时代,翻转课堂、MOOC、微课等新型教学模式层出不穷,虽然它们不能取代传统教学模式,但英语教师必须与时俱进,重视信息技术对传统英语课堂的改造和提升,以全新的视角思考英语教学的变革方向。
一、研究理论概述
1.泛在学习理论
泛在学习是指任何人在任何时间和任何地点都可以通过泛在网络实现任何知识内容的学习。泛在网络和泛在计算技术为人类实现随时随地的泛在学习提供了技术保障,信息技术和教育技术的融合发展正深刻改变着知识的传播方式和学生的学习方式,不断重构着教育和学习的生态环境。一方面,移动通信终端的多元化发展解除了传统英语学习对地点的约束,翻转课堂、MOOC等新型教学模式使学生可以自由地选择学习时间、进度、内容和学习方式。另一方面,传统教学设备正在向数字教学设备变迁,教育领域信息基础设施建设有效地推动跨区域教学资源整合,海量的多媒体教学内容必须和学生的碎片化时间有效结合,教师需要针对不同学情的学生进行精准施策和差异化施策。
2.学习生态理论
学习生态是由学习群体及其所处的环境共同构成的生态系统。系统由信息技术、多媒体教学设施等支撑,通过以合作、交流、共享、互动为特征的教育实践,实现知识信息传递和有效学习,从而促进系统的不断优化。学生与学习环境、学生和学习群体之间密切联系、相互作用,通过知识的吸纳、内化、创新、外化、反馈等过程实现有效学习[1]。在泛在学习的背景下,学习生态研究的是教育信息、学习主体、教师、教育信息环境之间相互作用的生态系统,需要从教育信息化建设和应用的视角研究各个生态系统成员之间的相互作用规律,维护生态系统的平衡发展。
3.有效学习理论
有效学习是指学生在教师的指导下,针对学习内容采取适合自己的学习策略,积极主动地参与到学习过程中,高效率地完成知识建构,从而实现学习目标并优化自身知识结构的学习行为。有效学习是对学习内容、学习方法、学习过程、学习结果的价值追求[2],学生可以实现对知识的深层次理解和灵活应用。学习内容的优化在大数据背景下表现为对海量学习内容的筛选、清洗与转化[3],使之满足学生的学习需要。学习方法调整是建立在对学生学习情况进行多元评价的基础上,根据学生个人学习偏好、认知习惯、学习方式、情感态度因素、学习内容的变化而动态进行的。学习过程的积极参与是指学生能够积极主动地学习,充分和师生进行合作、交流,善于提出问题、分析问题和解决问题。学习评价是学生改变学习计划、优化学习方法的重要手段,对学生学习可以起到引导、激励、启示和教育作用。
二、当前英语泛在学习模式存在的主要问题
1.传统课堂教学和线上教学环节缺乏有效衔接
首先,魍晨翁媒萄Ш拖呱辖萄г诮萄Ы谧唷⒅识范围上没有有效衔接。例如,学生不知道如何在线上学习课堂上没有掌握的知识点,或者在线上环节重复学习课堂中已经掌握的知识点。其次,缺乏对课堂英语学习和个性化英语自主学习的融合创新设计。在传统课堂教学中,整齐划一的教学标准无法满足英语学习分层分级的差异化教学要求。不同学情的学生对学习时间、空间、内容、方式的需求不尽相同,教师在教学中没能和学生线上学习的大数据分析结果进行有效的融合对接,仅根据自身的教学经验和主观判断作为实施因材施教的依据,因此其决策缺乏精准性和稳定性。
2.泛在学习缺乏生态性系统设计,学生英语泛在学习的用户黏性不高
当前泛在学习过程特别是在线学习过程缺乏师生互动性、社交互动性、线上线下互动性。泛在学习仅停留在将文字、图像、视频等教学资料数字化、网络化、集成化和泛在化的阶段,这在某种程度上增加了学生英语学习的选择性和便利性,但缺乏针对不同学生的学习黏性设计,因此泛在学习效果并不理想。
3.英语泛在学习体系缺乏具有“参与感”和“现场感”的语言学习环境
建构主义理论认为,知识的获得是在学习环境的特定情境作用下,借助教师的帮助与学习伙伴的协作,通过意义的建构过程实现的。因此在英语泛在学习过程中,必须增强学生在特定情境下的沟通和交际活动的参与性[4]。例如,如果在英语课程设计和在线学习设计环节,鼓励学生广泛参与学习内容、学习方法、学习偏好的设计,就会让学生感受到教师对学生的爱与尊重,从而增强学生学习的主动性和积极性,使不同学情的学生都能在学习过程中体验自我实现感,实现自主学习。另外,教师缺乏对学生多元需求的感知和把握,缺乏语言锻炼的“现场感”设计,使学生无法在接近真实生活情境的语言环境中得到语言交际锻炼。
三、基于大数据分析的英语泛在学习生态系统
移动通信和大数据分析技术的发展为有效解决当前英语泛在学习模式存在的问题提供新的方式和途径。基于大数据分析的英语泛在学习生态系统以学生的英语学习需求、特征、习惯、喜好等大数据挖掘为切入点,联合学校、互联网教育机构、教材编写人员、教师、信息化支撑机构、教育管理机构、在校学生和在职学员等生态系统成员共同把泛在学习落实到教学环境、模式设计、资源开发、评价机制和管理机制等工作中,不仅仅是教育内容资源和信息的共享空间,而且是实施素质教育和个性化学习的公共服务平台。因此,本文构建了基于大数据分析的英语泛在学习生态系统,主要包括大数据采集、大数据存储、大数据分析、大数据应用四个子系统,并构建了系统体系结构模型(图1)。
1.大数据采集子系统
首先,大数据采集子系统要实现数据、文字、图像、音频、视频、多媒体等结构化数据和非结构化数据采集,实现跨区域、跨机构、跨教学环节的数据互联互通和数据采集功能,解决教育数据资源配置效率不高的问题。其次,实现英语教学设计、教学实施、课程内容建设、网络学习内容资源建设、语料库建设、学生学习认知过程监控、学生学习情感态度监控和学习评价等全教学链条的数据采集功能,为生态系统成员之间的共生发展提供良好的数据资源基础。
英语教学设计数据主要采集教师按照教学大纲和教学目标要求对不同学生制定的学习内容、学习进度、学习路径等数据,厘清学生在课堂上和网络上分别学什么、在哪学、怎么学的问题。教学过程数据主要采集教师在教学中帮助学生解决英语学习问题的经验、做法和策略,包括情感态度、认知因素的调控、语言情境的构建、师生的有效互动等。课程内容数据主要是采集教师、学校、互联网教育机构课程教学内容数据,包括教材内容、课件、题库、案例等授课内容资料,以及以上资料经过碎片化处理的数据资料。
网络资源数据库主要采集互联网、校园网上英语学习方面的相关资料。英语语料库数据主要采集中国学习者英语语料库、美国当代英语语料库等语料库内容,以及英语教材、英美小说、散文、演说词、电影剧本、新闻稿等英文自然语料。学习行为数据库主要采集学生课堂学习行为和线上学习行为数据。课堂学习行为包括是否预习、复习等,线上学习行为数据采集学习日志、学习习惯、学习时长和学习路径等。学习评价数据主要采集教师或者在线学习系统对学生的学习能力、学习方法、学习策略运用、学习过程和学习结果的评价数据。学习情感态度数据主要是通过问卷、访谈等方式采集影响学生英语语言习得的动机、态度、焦虑、自信等指标。
2.大数据存储子系统
大数据存储子系统主要实现对大数据采集子系统采集的海量结构化、非结构化数据进行数据清理、归档、压缩,实现一体化数据存储。可以实现跨区域、跨系统的英语泛在学习数据的融合,解决不同教学机构、数据结构、操作系统带来的信息孤岛问题。英语学习数据仓库是指集成了大数据分析子系统和应用子系统决策分析所需的泛在学习数据,这些数据是按照一定的英语学习主题进行组织,是在对原有分散的各类英语泛在学习数据库数据进行加工、汇总和整理后得到的,有效地消除了各类源数据中的不一致性,所以英语学习数据仓库的信息均是关于学生英语泛在学习全局情况的一致性信息。数据仓库的这些全局性信息同r通过网络云平台实现英语泛在学习数据的云端存储,可以直接由大数据应用子系统调用。
3.大数据分析子系统
认知因素和情感因素是影响英语习得效果的两个重要方面。大数据分析子系统首先结合学生应该达到的学习目标对学生个体的英语学习认知行为和学习的情感态度进行数据挖掘,分析学生的动机、态度、焦虑、自信、兴趣等情感因素,以及学习毅力、能力、习惯、方法、英语水平和常犯错误等认知行为因素,对数据挖掘结果进行聚类运算和分类处理,根据学生的学习认知行为和学习态度情况将学生细分,以识别不同学生之间相似的泛在学习需求,以及某个学生个体在不同学习阶段泛在学习需求的差异性。同时,大数据分析子系统会对学生的学习过程和学习结果进行动态综合评价,并根据学习评价结果判断学习方案的优劣,有针对性地进行线上和线下学习方案的调整。
4.大数据应用子系统
大数据应用子系统包括学习信息推送系统、学习信息定制系统、在线互动学习系统、语言情境仿真系统、知识关联推荐系统、知识精准搜索系统、知识树形管理系统和娱乐在线学习系统等应用。学生可以通过学习终端连接到相关应用系统进行英语语言知识的有效学习。学习信息推荐系统自动推荐给学生的学习信息是学生应掌握而目前未掌握的英语知识。学习信息定制系统可以满足学生根据自身学习需求而定制某类主题的学习信息。学生一方面通过在线互动学习系统可以和辅导教师进行交流互动,解决学习中遇到的问题,另一方面可以通过社交软件实现和其他学习者的沟通和交流,共享英语学习经验。
语言情境仿真系统可以实现某类主题的英语学习情境的在线仿真,让学生在接近真实环境的英语语言情境中进行英语交际锻炼。知识关联推荐系统是根据学生所学知识点,自动关联推荐对应的拓展知识点。知识精准搜索系统可以帮助学生快速实现英语知识的精准有效搜索,从而进行有针对性的学习。知识树形管理系统可以实现学生已掌握知识和未掌握知识的树形目录管理,实现线上学习和课堂学习知识管理的无缝链接。
基于大数据分析的英语泛在学习生态系统有利于充分发挥信息技术对传统英语教育的改造提升作用,可以有效促进信息技术与教学过程、内容、方法和教学评价体系的深度融合。在生态系统的价值取向上注重以促进学生全面健康发展为中心,注重需求导向的个性化学生培养模式。在学生习得效果评价体系上注重加强学习过程评估,强调过程评估和结果评估相结合。系统注重充分挖掘学生的个体差异,充分挖掘学生的学习潜能,围绕学生英语学习习惯的形成和学习情感态度的培养,以现代信息技术为辅助手段,将英语语言知识进行碎片化、情境化、可视化处理,通过采取教育信息推送、关联推荐和定制化相结合的方式实现知识的在线传播,给学生提供个性化、定制化的英语学习信息服务,带给学生全新的英语泛在学习体验。
参考文献
[1] 张豪锋,卜彩丽.略论学习生态系统[J].中国远程教育,2007(4).
[2] 曹贞.以有效学习为目标的大学课堂教学[J].教育与职业,2007(26).
[3] 陈明选,陈舒.论信息化环境下大学生的有效学习[J].高等教育研究,2013(9).
课堂教学优化研究是高校教学改革中一个亟待解决的热点问题,它直接关系到教学改革成功与否。大数据环境下教学模式的创新与改革是时展的必然要求,如何构建智慧学习环境、实现新的教学形态和学习模式是新形势下教学模式改革的重要内容。一方面,是时展的必然要求。大数据是教育未来的根基,没有数据的留存和深度挖掘,教育信息化只能流于形式,每一次技术的革命都革新了教育的一个时代。另一方面,提高教学创新与改革的成效。大数据环境下课堂教学已经发展成为新形?菹陆萄Ц母锏慕萄?模式。
1 大数据给课堂教学模式带来的影响和挑战
1.1 “大数据”提供新的教育平台
自2011年开始美国教育领域率先掀起了在线教育的改革浪潮,智能学习平台在全球逐渐兴起,如Coursera等。全球多所高校通过在线教育平台免费开放课程,实现了教育资源的共享和交流。这种在线学习平台改变了传统的面对面教学模式,必将给现代教学改革带来深刻的影响。
1.2 “大数据”发展新的教学模式
大数据时代线上学习逐渐成为学习知识的主要途径,并且能轻而易举获取最优秀的教学资源。除此之外,它还能对学习者的学习行为自动进行提示、诱导和评价,进而弥补了缺乏面对面交流指导的不足。通过智能分析、整合大量的在线学习行为,它能很轻易地掌握学习规律和特征,然后针对具体学习者提供有针对性的辅导,最终实现在线学习和即时交流学习心得,以及实现学习互动。
1.3 “大数据”重建教学评价方式
传统教学评价活动主要是学生根据任课教师的授课表现进行评价,以及教师依据学生考试成绩和平时成绩等对学生进行评价。但是,传统教学评价活动往往缺乏沟通的及时性和互动性,教学评价结果无法实现即时反馈。比如教师无法明确知道哪些教学方式是最受学生欢迎和接受的。而大数据技术通过分析师生长期教学行为,得出具有个性化的教学行为和规律。“大数据”评价方式从技术层面以更科学的方式归纳总结教学活动规律,它实现了过程导向评价而非结果导向评价。
2 大数据环境下教学模式创新的动力机制分析
近年来随着技术的不断成熟发展,“大数据”为传统教学模式的创新和改革注入了新的活力和动力。“大数据”环境下教学模式的创新,主要通过三个层面的三种转变来实现:一是教师层面从经验式教学向数据分析式教学转变;二是学生层面从依赖课堂和教师向分析自身学习行为转变;三是媒介层面从简单、单一的工具向多样、复杂的多媒体介质转变。
2.1 教师层面:从传统教学经验转向海量数据理性分析
传统教育领域主张,由富有教学经验的几十年老教师通过传、帮、带年轻教师的方式发展教师队伍。这一主张在今日仍然被广泛应用。这主要是因为,老教师经过多年教学实践形成和积累了丰富的教学经验,而这种教学经验的多少、优劣与教师的教学质量紧密相关。归根结底,教学经验的积累和运用仍然是属于有限理性范畴。在大数据时代,计算机会对存储的海量教学记录进行分析,并且能及时为有需要的教师提供相应的教学解决方案,此种教学解决方案是建立在理性的数据分析基础上的。因此,在大数据时代教师的授课方式也将迎来全新的转变,教学经验在教学活动中的优势地位将得以改变,逐渐向教学案例理性分析转变。
2.2 学生层面:从依赖于课堂和教师转向对自身学习过程的数据分析
如今的教学授课方式仍然是“一对多”的教学模式,这种“大锅饭”式集体授课方式在有限的时空范围内无法真正实现“因材施教”。在传统课堂教学中,授课教师无法照顾到每个个体差异而提供相应的教学措施,教师对课堂教学节奏的把握仍然是基于教师的经验判断,教学过程仍然是按部就班地开展。在大数据环境下实现对个体学习数据的分析是完全可能的,也就是数字化学习过程,而通过现代媒介工具则是完全可以实现数字化学习过程的。比如,通过测试题库的完成时间和答题准确率等学习记录数据,计算机针对数据进行分析,进而发现个体学生需要重新掌握哪些知识点,哪些知识点又是需要进一步巩固的,这样,学生的学习行为与知识点建立了联系,而大数据又能因人而异提供有效的指导,使每个个体能够有的放矢。
2.3 媒介层面:从简单、单一的工具转向丰富、多样的多媒体介质
传统教学模式下教材是主要的学习资源,而板书、PPT展示是主要的授课手段,这些学习载体和工具都是单向沟通的,知识接收者的信息反馈并不畅通,更别提挖掘和分析知识接收者的学习行为了。随着信息技术的发展,数据量、数据处理能力都得以质的发展,这都是依靠现代丰富的、多样的媒介工具和分析工具而实现的。通过这些工具和媒介,知识传播者和知识接收者之间的界限被打破,两者可以实现即时的沟通和交流,能更贴近接收者,理解接收者的需求。
3 “大数据”教学模式的特征分析
3.1 注重教学的预测性判断
“大数据”对传统教学活动和教学过程进行了改良,一方面“大数据”通过大量数据分析会对教学活动出现的新情况进行调整;另一方面,新知识点和新教学法随时会被挖掘出来,教学内容和知识更具有前瞻性。“大数据”的重要功能,是在复杂的教学过程中根据海量数据进行分析,进而归纳总结出具有预测性的内容。比如个体学生采用什么样的方式巩固知识和活学活用更为有效,何种教学方式与当前学生学习特征更为匹配等等。此外,通过对教学数据的分析,可以总结出学生的学习行为特征和倾向,以有效预防教学过程中不适行为的出现。
3.2 教师的专业知识与数据分析能力并重
教师的专业知识不仅是影响教学活动重要因素之一,而且还是学生衡量教师教学能力的重要标准之一。教师的专业知识要求在任何时候都是占有重要地位的,但是在大数据时代下教师还需掌握教学数据分析的能力。如何在海量数据中挖掘出具有教学意义和教学价值的知识和内容,是教师在今后教学活动和教学过程中必须掌握的一项技巧和任务。通过对教学数据的挖掘、分析和解读,对与授课对象相关的数据分析,以及如何有效利用有用数据应用到具体教学活动中,促进学生可持续发展,是极其重要的。
3.3 个性化教学成为主流,真正实现因材施教
就技术层面而言,“大数据”可以实现对学习行为特征、学习兴趣爱好,甚至学习态度的统计分析。从这个角度而言,未来的教学必将是精准化的个性化教学,对个体学生的教学活动和教学过程都可以建立在过去数据的分析基础上。教师可以通过大数据轻而易举地掌握个体学生的学习特征,了解到个体学生的特长与短处,真正从细节上掌握学生学习规律,进而真正实现因材施教。
[关键词]大数据 大学生 个性化就业指导
[作者简介]张家明(1976- ),男,湖北武汉人,武汉理工大学信息工程学院,副教授,硕士,研究方向为高教管理和大学生思想政治教育。(湖北 武汉 430070)
[中图分类号]G647 [文献标识码]A [文章编号]1004-3985(2014)24-0098-02
20世纪60年代初,美国麻省理工学院的气象学家爱德华・洛仑兹在研究时发现,当系统产生随机行为时,系统的初始条件取值稍有变化,所求的结果随时间的推移,前后两者就会相差越来越大,即产生随机行为的系统具有对系统初始条件的敏感依赖性。这就是“西双版纳的蝴蝶扇扇翅膀,日本就可能刮起飓风”。
西双版纳与日本相距万里,但仅仅是蝴蝶展翅这样微小的动作,也能够造成日本飓风这样巨大的影响。它所表达的理念是,耗散结构的运作,对于起始状态极为敏感,绝不能等闲视之。这就是“蝴蝶效应”,即初始条件的细微变化导致系统未来长期行为巨大差异的系统特征。因此,没有任何东西能够比蝴蝶效应更完美地表达出信息时代的“大数据资产”的高校教育管理战略思想,所有重大的变化,都只不过是一系列数据积累的结果,而这一系列数据最原始的出发点,就是蝴蝶效应中蝴蝶摆动的那几次小小的动作。
一、大数据技术应用于大学生个性化就业指导的重要性
随着因特网、物联网、云计算、移动互联网、手机、平板电脑等数据来源和数据承载方式的飞速发展,全球数据量出现爆炸式增长,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据时代已经来临,2013年也被称为中国的大数据元年。高等学校作为人才最密集、思维最活跃、网络技术知识运用广泛的前沿阵地,高校的教育、管理和服务模式以及师生的思维方式、行为观念、学习习惯等必将受到大数据浪潮的深刻影响。
据统计2013年高校毕业生总数达699万人,目前国内整体就业形势仍然不容乐观。如何做到查明毕业生情况、了解就业市场趋势,是高校开展大学生就业服务工作的难点之一。本文以大数据时代为背景,通过大数据分析技术创新高校大学生就业工作,实现就业指导从共到个性化服务,从粗放服务到精准服务的转变。
当前,学校就业管理部门通过历年就业白皮书掌握毕业生资源基本信息、用人单位与招聘需求信息、毕业生流向、毕业生求职意向和择业行为调查、毕业生对就业工作意见等海量数据;另外,高校学工部、教务处、校园一卡通中心、相关学院部门等具有完备的学生基本信息、成绩、校园卡消费、图书馆借阅以及学生日常表现、性格特点、兴趣爱好、奖惩情况、与家长沟通等个性信息。此外,互联网上的微博、微信、QQ空间、QQ群、人人网、飞信以及校内外各类BBS贴吧和搜索引擎也蕴含着学生大量的思想状况、情绪波动、交友择业等动态信息。本文在分析上述大学生海量数据基础上,完善针对大学生个性化就业指导的大数据模型及相应分析算法,为大学生个性化就业指导提供更加客观、科学、准确的数据、算法和模型支撑。通过大数据技术预测学生的就业行为趋势,对其提供更有针对性的就业指导服务。
二、高校大学生个性化就业指导大数据分析
1.多样数据的定义和获取。多样数据应首先包含传统就业数据,即就业形势分析、就业政策、求职技巧、就业推荐信息、就业讲座信息、招聘单位、招聘会信息等;其次,个性化就业指导是根据学生的个性化信息进行“靶向”指导,需要了解学生的基本信息,包括主修专业、学习成绩、兴趣爱好、培训经历、就业意向等尽可能全面的个人信息;再次,多样数据应包括已毕业、就业学生的个人基本信息、就业去向、当前发展以及就业行业、岗位数据,囊括岗位性质、基本要求、素质要求、发展前景、成长路径等信息;最后,多样数据应包含获取的网络海量,此类信息将作为数据分析参照,为学生个性化就业提供相关性参考。
大数据的基础是海量信息数据,要进一步拓展多样数据的采集途径,并且使采集来的存储数据易于提取,能够被按照一定的条件搜索出来。另外整合学校不同部门的资源信息,同时将收集网络海量信息以期达到最大效果。
2.面向大学生个性化就业指导的大数据模型及分析方法。获取大量个性化就业指导多样数据后,便可以开始进行就业指导“大数据”分析操作,即建立分析模型、构造数据算法进行数据分析。面向就业指导的大数据分析模型应具有全面性,尽可能掌握限定范围内的“全样”而非“抽样”;分析模型更加注重效率,注重分析结果的时效性和动态变化而非精确性;对学生进行个性化就业指导更注重相关性而非确定指向性或因果性。
3.大数据分析原型系统的设计开发。通过原型系统的大数据分析,指出当前大学生的就业需求和趋向,分析学生就业单位的普遍水准和质量,为就业管理部门协调组织用人单位来校招聘提供重要参考;同时对学生个性化信息的分析,可以帮助就业指导人员实施个性化就业指导,增强就业指导的针对性和有效性。原型系统设计和测试初期以电子信息类大学生为例,“全样”采集电子信息类在校学生和毕业两年内学生的基本信息,收集学生的个性信息及相关网络数据,整理历年来电子信息类用人单位信息,进行大数据分析实测。
4.加强就业指导中的思想政治教育工作。当前就业单位对大学毕业生的就业能力和职业素养要求越来越高,大学生思想观念不断变化,大学生就业指导工作已由单纯的就业指导转为世界观、价值观、人生观和职业道德的思想政治教育。个性化就业指导首先是对学生择业观念的教育引导,帮助大学生树立正确就业观念,避免盲目跟风、随波逐流、人云亦云的就业思想,同时提高对数据信息的敏感性,主动收集、整理并认真分析。
三、大学生个性化就业指导大数据分析应注意的问题及建议
1.大数据分析应防止“三脱钩”问题。首先,防止大数据与大学生个体脱钩。随着互联网的发展,大数据时代的到来,谁掌握了大数据分析,谁就掌握了主动权,将大数据分析应用到大学生就业指导,就是掌握了信息化时代对大学生就业指导的主动权,实现更高效、更准确、更个性的就业指导。但是,面对大数据的浪潮,我们应该保持冷静,大数据的载体是大学生,不能只见数据而不见人,防止变大数据分析这一手段为目的,本末倒置。明确认识到大数据的背后是大学生的思想行为,涉及的是大学生的思维方式、行为习惯。大数据分析的最终目的不是数据的积累和模型的建立,核心价值在于引导大学生树立正确的世界观、人生观和价值观,促进大学生健康成长、成才。
其次,防止大数据与真实性脱钩。大数据时代,大学生获取信息量大、速度快,但是信息的价值密度低,大学生自身的价值体系并没完全成熟,无法准确理性判断信息的真伪,这直接影响大学生在互联网上各种平台如微博、QQ、人人网等即兴发表的言论的真实性。海量信息必然影响信息的质量,当我们将大数据分析应用于大学生个性化服务和指导时,也应注意分析搜集到的大学生信息的准确性,如果大数据本身存在偏差,必然使大数据分析的价值效应大大降低。
最后,防止大数据分析与社会实际脱钩。大数据分析的价值在于现实应用,即通过大学生全方位信息的掌握,全面认识大学生个体的优势与劣势,了解社会发展趋势及就业市场人才需求,更加科学地指导大学生实现适合自身特点的和谐性就业,实现学生、学校和社会的多方共赢。我们应该注意,大数据分析不能脱离社会实际,尤其是高校的大数据分析不能忽视学生个体的特殊性和本校、本地以及就业市场的现实条件,在避免抹杀大学生个性的同时,要更加注重防止大学生的成长成才与社会需求脱钩。
2.大学生个性化就业指导的大数据分析要努力增强科学性。高校中的大数据分析应用无疑能引发高校的“蝴蝶效应”,产生一系列翻天覆地的变革,变革意味着创新,而在创新过程中,由于新事物自身还不完善,对新事物的了解不透彻,容易迷失在信息的海洋,出现如上所述各种问题。鉴于此,大数据分析在大学生个性化就业指导中的应用如下:
首先,应该增强大数据分析的针对性。增强现实针对性,就是要将大数据分析及各种系统与模型的建立与大学生的需要结合起来。大数据分析是将高校的大学生就业指导与大学生需求紧密联系起来的桥梁,是为大学生成长成才服务的,我们不能一味追求大数据的“大”,而应该根据大数据分析和模型,了解大学生的现状,满足大学生的需求,实现学校与大学生的良性互动,指导大学生树立正确的就业观和成才观,从而使大学生走出校门后,能与社会所需人才岗位无缝对接,并在工作中体现自身的人生价值。
其次,要增强大数据分析的准确性。信息化时代,大学生思想活跃,对大学生的指导和教育难度必然加大,应组织各类别专业力量找准入口,拓宽渠道,搜集、甄选数据。充分利用辅导员长期在一线获得的大量实际信息以及学工部、教务处等记录的学生信息,通过与网络信息对比结合,准确提炼,分析加工各种信息,筛选出有价值的数据,提高大数据分析的准确性和客观性。此外,还需要培养一支专业队伍,为大学生个性化就业指导提供专业的数据分析和智力支持。
最后,要增强大数据分析的系统性。当前大学生就业难成为社会一大难题,这一问题使得高校就业指导必须进行调整,大数据分析的应用无疑为就业指导提供了新的技术和方法。但大数据分析尚处于初步发展阶段,我们应该建立一套有序、动态、系统的运行管理机制,随时根据大学生和外界的变化,对数据系统进行合理调整。大数据分析的应用还要设立一套严格的标准,这样才能保证大数据的分析应用不脱离客观现实,提高大数据分析对大学生个性化就业指导的科学化水平。数据分析模型建立后,还要注意与社会各类系统的信息共享,建立完善反馈机制,不断为数据分析模型增添新鲜血液,保持数据分析模型的持续生命力。
四、结束语
“大数据的核心就是预测。”大数据的主要功能就是通过数据算法分析海量数据,预测出事情发生的可能性,但目前大数据应用于大学生个性化就业指导方面还存在一些问题,笔者下一步加强和改进的计划包括:拓展多样数据采集途径和完善大数据分析模型及算法,结合大数据技术建立主动学习的“就业云课堂”,为大学生个性化就业指导提供更加客观、科学、准确的数据、算法和模型支撑,最终预测学生就业行为趋势,实现大学生的个性化服务就业指导服务。
[参考文献]
[1]胡逸.运用大数据技术促进大学生就业[N].中国组织人事报,2013-09-04.
[2]梁家峰.适应与创新:大数据时代的高校思想政治教育工作[J].思想教育研究,2013(6).
[3]桑庆兵.大数据在高校的应用与思考[J].南通纺织职业技术学院学报,2013(2).