首页 > 文章中心 > 对人工智能的思考

对人工智能的思考

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇对人工智能的思考范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

对人工智能的思考

对人工智能的思考范文第1篇

关键词:人工智能;异化;规范;生态文明观

中图分类号:TP18

文献标识码:A

一、人工智能技术的发展及其影响

人工智能技术研究开始于20世纪50年代中期,距今仅有60年的发展历程,但是其迅猛的发展速度,广泛的研究领域以及对人类产生的深远影响等令人惊叹。调查显示,77.45%的人认为现实生活中人工智能技术的影响较大,并且86.27%的人认为人工智能技术的发展对人类的影响利大于弊;认为人工智能技术对人类生活影响很小且弊大于利的人权占很小一部分。人工智能技术的发展和应用直接关系到人类社会生活,并且发挥着重要的作用。人工智能技术的发展方向和领域等由人类掌控着,所以人类应该尽可能地把人工智能技术的弊处降到最低以便更好地为人类造福。2016年3月份,围棋人工智能AlphaGo与韩国棋手李世h对弈,最终比分4∶1,人类惨败。4月份,中国科学技术大学正式了一款名为“佳佳”的机器人,据了解,机器人“佳佳”初步具备了人机对话理解、面部微表情、口型及躯体动作匹配、大范围动态环境自主定位导航和云服务等功能。而在这次正式亮相之前,“佳佳”就担纲主持了2016“首届全球华人机器人春晚”和“谁是棋王”半Q赛。人工智能技术确实给人类带来了诸多的便利,给人类生产生活带来便利;但是,人工智能技术的快速发展超乎人类的预测,引起了人类的恐慌和担忧。百度CEO李彦宏称,人工智能是“披着羊皮的狼”。毋庸置疑,科学技术是一把双刃剑,当人类醉心于科学技术所带来的福利中时,更应当注意其带来的负面作用。人类发明和创造科学技术最终是为了造福人类,而非受到科技的异化。

随着科技的发展,人工智能技术越来越成熟,在此整体趋势之下,不同的人群对人工智能技术的不断成熟与应用有着不同的看法。调查结果显示,在关于机器人会不会拥有人类的思维甚至超过人类的问题方面,27.45%的人认为机器人会拥有人类的思维和超过人类;而56.86%的人认为机器人不会拥有人类的思维和超过人类,小部分人对此不是很清楚。由于受到人工智能技术迅猛发展的冲击,如机器人保姆、AlphaGo围棋等智能产品对人类发展带来的威胁,一部分人仍然对人工智能技术的发展担忧甚至认为终有一天机器人将代替人类、征服人类、控制人类。但是,大部分的人在机器人是否能够超过人类方面,保持乐观积极的态度,认为机器人永远不会拥有人类的思维并且超越人类,因为人类是技术的主导者,人类掌握着技术的发展方向,技术终究是为了人类服务。这一看法肯定了人类的无止境的创新,然而,在人类醉心于技术创新的同时,应意识到某些创新确实超出了人类的预料,如AlphaGo与李世h围棋人机大战就是人类在技术面前失败的惨痛教训。因此,面对科技对人类的异化,人类要时刻保持警惕,适时地总结“技术异化”的缘由和解决对策。

二、人工智能技术发展面临的问题及其原因

随着技术的革新,人工智能技术的应用越来越广泛,与人们的日常生活联系也愈加密切。从智能手机的普及到自动驾驶汽车的研制成功,再到生产、建设、医疗等领域人工智能技术的应用,都表明了人工智能技术正悄无声息地改变着我们生活方式。诚然,人工智能技术使我们的生活更加丰富多彩,给我们带来了极大便利,但与此同时,人工智能技术也给社会带来了一系列不可忽视的问题:人工智能技术在社会生产领域的应用对劳动市场造成冲击;人工智能系统在收集、统计用户数据过程中个人隐私及信息安全方面的隐患;人类对人工智能产品的依赖引发的身心健康问题;人工智能引起的责任认定问题等。斯蒂芬・霍金在接受BBC采访时表示,“制造能够思考的机器无疑是对人类自身存在的巨大威胁。当人工智能发展完全,就是人类的末日。”表示同样担忧的还有特斯拉的创始人马斯克,他曾直言,“借助人工智能,我们将召唤出恶魔。在所有的故事里出现的拿着五芒星和圣水的家伙都确信他能够控制住恶魔,但事实上根本不行。”不可否认,人工智能技术是把双刃剑,有利亦有弊,争议从来就没有停止过,而最不容忽视的莫过于人工智能技术引发的一系列伦理困境,关于人工智能的伦理问题成了重中之重。

调查发现,47.55%的人认为人工智能所引发的伦理问题是因为人性的思考,占比较大;而22.55%的人认为是由于人们价值观念的改变;29.9%的人认为是利益分化与失衡以及一些其他的原因导致的。由此可以看出导致人工智能伦理困境的原因是多方面的。主要总结为以下几个方面。

第一,从技术层面来看,人工智能技术在现阶段仍然有很大的局限性。人工智能是对人脑的模仿,但人脑和机器还是存在本质区别的,人脑胜于人工智能的地方,就是具有逻辑思维、概念的抽象、辩证思维和形象思维。人工智能虽能进行大量的模仿,但由于不具备形象思维和逻辑思维,仅能放大人的悟性活动中的演绎方法,不可能真正具有智能,这决定了机器不能进行学习、思维、创造。此外,智能机器人也不具备情感智能,它们根本无法去判断自己行为的对错,也无法自动停止自己的某项行为,所以如果人工智能技术一旦被不法分子利用,后果不堪设想。可见,由于人工智能自身技术上的局限性导致的伦理问题已经影响到其未来发展。

第二,从规制层面来看,伦理规制的缺失和监督管理制度的不完善是导致伦理问题产生的重要原因。科技的发展目标是为人类谋求幸福,但我们必须认识到,无论是在科技的应用还是发展过程中总是存在一些难以控制的因素,倘若没有相应的伦理原则和伦理规制加以约束,后果难以想象。在目前人工智能领域,缺乏一套成体系的关于人工智能技术产品的从设计、研究、验收到投入使用的监督管理方案,也没有一个国际公认的权威性的规范及引导人工智能技术的发展及运用的组织或机构。现有的监督体制远远滞后于人工智能技术的发展速度,无法匹配技术发展的需要。缺乏相关监管制度的约束,人工智能技术就不可避免会被滥用,从而危害社会。

第三,从社会层面来看,公众对人工智能技术的误解也是原因之一。人工智能作为一门发展迅猛的新兴学科,属于人类研究领域的前沿。公众对人工智能技术的了解十分有限,调查显示,对人工智能技术只是了解水平较低的人较多,占62.75%,以致部分人在对人工智能技术没有真实了解的情况下,在接触到人工智能技术的负面新闻后就夸大其词,人云亦云,最终导致群众的恐慌心理,从而使得更多不了解人工智能技术的人开始害怕甚至排斥人工智能技术。我们必须清楚,人工智能是人脑的产物,虽然机器在某些领域会战胜人,但它们不具备主观能动性和创造思维,也不具备面对未知环境的反应能力,综合能力上,人工智能是无法超越人脑智能的。在李世h对弈AlphaGo的旷世之战中,尽管人工智能赢了棋,但人类赢得了未来。

三、人工智能技术的发展转向

人工智能技术的发展已经深入到人类社会生活的方方面面,其最终发展目标是为人类服务。但是,科学技术是把双刃剑,它在造福人类的同时,不可避免地会给人类带来灾难,因此,人类应该趋利避害,使人工智能和科学技术最大化地为人类服务。这就要求人类必须从主客体两个角度出发,为人工智能技术的健康发展找出路。

1.技术层面

(1)加强各个国家人工智能的对话交流与合作。人工智能自20世纪50年代被提出以来,尤其是近六十年来发展迅速,取得了许多丰硕的成果。如Deep Blue在国际象棋中击败了Garry Kasparov; Watson 战胜了Jeopardy的常胜冠军;AlphaGo 打败了顶尖围棋棋手李世h。从表面上看,人工智能取得了很大的进步,但深究这些人工智能战胜人类的案例,我们发现这些成功都是有限的,这些机器人的智能范围狭窄。造成这一现象的很大一部分原因就在于国际间人工智能技术的对话交流与合作还不够积极,所以加强各个国家人工智能的对话和交流迫在眉睫,同时也势在必行。

(2)跨学科交流,摆脱单一学科的局限性。从事人工智能这项工作的人必须懂得计算机知识、心理学和哲学。历史的经验告诉我们,一项科学要想走得长远就必须有正确的意识形态领域的指导思想的介入。在人工智能这项技术中,有些科学家们可能只关注经济利益而没有引进相应的伦理评价体系,最终使得技术预测不到位,没有哲学的介入,等真正出现问题时就晚了。所以要加强科学家与哲学家的沟通交流,令科学家能更多地思考伦理问题,提高哲学素养,在人工智能技术中融入更多的哲学思想,保证人工智能技术能朝着正确、健康方向发展。

(3)人工智能技术的发展,要与生态文明观相结合。在人工智能技术发展中,要注入更多的生态思想,这关系人民福祉、关乎民族未来的长远大计。在人工智能发展中,若是产生资源过度消耗、环境破坏、生态污染等全球性的环境问题时,人类必须制止并进行调整。人工智能技术要想发展得更好,前景更加明亮,前途更为平坦,就必须保持与生态文明观一致,与人类自身利益一致,为人类造福。

2.人类自身层面

(1)增强科学家道德责任感。科学技术本身并没有善恶性,而研发的科学家或是使用者有善恶性。人工智能将向何处发展,往往与研发人工智能的科学家息息相关。科学家应打破“个体化原理”,要融入社会中去,关注社会道德伦理问题,承担起道德责任,为自己、他人、社会负责,多去思考自己研发的技术可能带来的后果,并尽可能去避免,多多进行思考,严格履行科学家的道德责任。

(2)提高公众文化素养。调查发现,对人工智能技术了解水平较低的人较多,占62.75%;而非常了解的人较少,占4.41%;另外,对人工智能技术了解的人占21.08%,不了解的人占11.76%。由此可以看出,大部分的人对人工智能技术都能有所了解,但都不是很深入,而且仍有部分人对人工智能技术丝毫不了解,所以,人工智能技术对于个体的影响是比较微小的,其发展还没有深入到个人的日常生活中。特别是在一些关于人工智能的科幻电影的渲染,可能使那些对于人工智能技术并不了解或是一知半解的人产生偏见。在日常生活中,人工智能给人类带来了极大的便利。通过提高公众的文化素养,使公众正确认识人工智能技术,将是缓解甚至是解决人工智能技术某些伦理问题的重要途径之一。

(3)加大监督力度。人类需要通过建立一个完善的监督系统引导人工智能技术的发展。对于每项新的人工智能技术产品从产生到使用的各个环节,都要做好监督工作,以此来减少人工智能技术的负面影响,缓解甚至减少人工智能技术的伦理问题。

3.道德法律用

(1)通过立法规范人工智能技术的发展。调查发现,90.69%的人认为有必要对人工智能技术所引发的科技伦理问题实行法治,由此可以看出,要想保证科技的良好健康发展,必须要建立健全相关法律条例。然而我国在这一方面的法律还存在很大的漏洞,相关法律条文滞后于人工智能的发展,并未颁布一套完整的关于人工智能的法律体系。没有规矩不成方圆,在人工智能领域亦是如此。我们都无法预测将来人工智能将发展到何种地步,这时就需要人类预先加以适当的限制,利用法律法规加以正确引导,使其朝安全、为人类造福的方向发展。

(2)构建人工智能技术伦理准则并确立最高发展原则。要构建以为人类造福为最终目的的伦理准则。人工智能技术的伦理问题已经给人类造成了很多负面影响,而要防止其带来更多负面影响,构建合适的人工智能技术伦理准则势在必行。

此外,要确立以人为本的最高发展原则 。一切科学技术的发展都应把人的发展作为出发点。人工智能的发展也是如此,要将以人为本、为人类服务为出发点,并作为最高发展原则。

四、结语

科学技术是把双刃剑,人类只有消除人工智能技术的潜在威胁,发挥人工智能技术最大化效用,避免伦理困境重演,才能实现人机交互的良性发展,实现人工智能与人类的良性互动。

参考文献:

[1]王文杰,叶世伟.人工智能原理与应用[M].北京:人民邮电出版社,2004.

[2]甘绍平.人权伦理学[M].北京:中国发展出版社,2009.

[3]杨怀中.现代科技伦理学概论:高科技伦理研究[M].武汉:湖北人民出版社,2004.

[4]王志良.人工情感[M].北京:机械工业出版社,2009.

[5]邹 蕾,张先锋.人工智能及其发展应用[J].信息网络安全,2012(2).

[6]王 毅.基于仿人机器人的人机交互与合作研究[D].北京:北京科技大学,2015.

[7]田金萍.人工智能发展综述[J].科技广场,2007(1).

[8]郝勇胜.对人工智能研究的哲学反思[D].太原:太原科技大学,2012.

[9]龚 园.关于人工智能的哲学思考[D].武汉:武汉科技大学,2010.

对人工智能的思考范文第2篇

【关键词】人工智能 发去趋势 信息

人工智能并非人的智能,其更像是人的思考,甚至有可能超过人的智能。通过阅读大量的资料可以发现,人工智能在发展过程中遇到过很多问题,由于现代人们还为完全掌握人脑的复杂度,因此人工智能的发展正在一步一步缓慢前行。

1 国内外研究现状

1.1 国内研究

我国对人工智能的研究与发达国家相比较为落后,具体研究主要集中在软件方面,特别是在仿生学领域的应用,目前已经处于设计领先行列,为世界人工智能发展做出了巨大贡献。但是,由于发展较晚,与美国等发达国家相比,还存在一定差距,因此要对发达国家的成功经验进行借鉴。

1.2 国外研究

欧美在人工智能的研究上处于世界领先行列,在世界人工智能上具有领导作用。以Google企业代表,其在人工智能上的发展,一次又一次的刷新了人们对人工智能的认识。

2 人工智能的应用领域

2.1 问题求解

从近几年人工智能的发展情况来看,其一项重要的突破就是发展了能够对问题进行求解的程序。下棋程度中应用的一些技术手段,例如,在下棋过程中,向前看几步,将一个复杂的问题进行分解,从而成一个容易解决的小问题。一些程序甚至可以通过实战经验对自身的性能进行改良。

2.2 自动程序设计

程序设计是人工智能的一个关键研究分支,人们从未停止对该项内容的研究。现阶段,人们已经研究出了可以依据不同目的描述,编写微机程序的自动程序设计系统,但是目前在该方面取得成绩有限。在研究自动程序过程中,一方面可以有效的促进半自动软件开发系统的发展,另一方面也可以通过改进自身编码进行学习的人工智能系统,从而使其能够有更加长远的发展。通过自动完成一个特定程度的编写,证明一个给定程序获得的某些制定结果与指定结果的任务两者之间有着紧密联系。

2.3 机器学习

人工智能研究的一个最为关键的方面就是机器的学习能力,同时其也是人工智能最为突出的一个表现手段。从人工智能出现至今,人们对在机器学习方面的研究取得了很大发展。获取知识的根本方式就是学习,同时学习也是人类智能的一项关键途径。而机器学习,则是使微机具有机器智能的途径。

2.4 智能检索

科技飞速发展的今天,人类已经进入到了大数据时代,大量的数据给人们的生活和工作带来的一定的改变。一方面,大量的数据可以为人们的生活和工作提供更支持,另一方面也增加了使用难度,主要集中体现在检索上。针对海量数据的检索,采用传统的人力检索和传统检索系统,显然已经无法完成检索工作。通过阅读资料可以发现,研究人工智能检索模块已经成为了确保科技持续稳定发展的一个关键前提。例如,目前已经比较成熟的技术――数据库系统,其就是一个能够存储大量指定科学知识的微机软件系统,通过对其进行应用,能够回答用户提出的关于本学科的大量问题。

3 人工智能未来的发展趋势

3.1 语言翻译

在计算机网络快速发展背景下,可以通过对人工智能进行应用,实现对语言的翻译。但是,通过了解可以发现,目前语言技术并不成熟,在具体应用过程中还存在一定问题,无法完全克服语言障碍,也就说还无法将任意输入的语言,转换为高质量的译文,无法体现体现自然语言中的暧昧、模糊成份,更加无法实现对整片文章的理想化翻译,但是,相信随着人们对该内容研究的不断深入,以及人工智能和语言技术两者的不断进步与发展,理想的语言翻译在不久的将来会得以实现。

3.2 自适应系统

通过自适应系统不仅能够对完整的信息进行处理,而且也可以实现对残缺信息的处理,甚至可以通过智能化完成对残缺信息的补充。此外,通过对目前人工智能研究的大量资料进行阅读可以发现,在进行自适应系统发展过程中,还需要大量的相关信息的支撑。有学者认为,首先,要发展理解上下文以及相应的处理技术,从而数据、信息等各项内容的处理变得更加准确、成熟、稳定;其次,适当的发展多路学习机制,通过该方式,可以使自适应系统能够在日常的运行过程,吸取更多的经验,通过经验的积累,适应不断变化的环境;最后,应当在现有技术的支持下,努力发展自动进化机制,通过该方式使人工智能可以在应用过程中,能够不断学习,使其能够有传统单一被动处理信息变为主动智能处理,甚至使其在应用中能够具有一定预判能力。

3.3 服务人类

人工智能是由人类创造的,人们创造人工智能的最初目的就是使其为人类服务。人工智能在未来的发展过程中,也要朝着这一趋势进行,这是大量从事人工智能研究工作人员总结的经验。从人们对人工智能的研究情况来看,也正朝着这个方向进行探索,因为这是人类发展人工智能的初衷。例如,在社会生产中可以对人工智能进行应用,在工厂生产中,对全自动化智能生产线进行合理应用,一方面可以提高生产的安全性,另一方面也可以使生产效率得到进一步提升。目前,在人们的日常生活中,人工智能也随处可见,例如医疗辅助机器人,扫地机器人等,人工智能在这些方面的应用,使人们的生活变得更加便利,因此日后人们在对人工智能的研究上,应当朝着该方面进行。

4 结束语

人工智能自从被提出以来,就得到了全世界的重视,长期以来都处于世界科技发展的前沿,其在具体发展过程中并非独立进行的,在一定程度上依赖网路、信息、计算机、精密制造等多项技术,并且对不同领域的发展也会造成一定影响,在一定程度上对社会的发展有着促进作用。

参考文献

[1]万邦睿,黄应红.人工智能在物联网发展中的应用前景分析[J].中国新通信,2014(24):73.

[2]李勇.人工智能发展推动信息安全范式转移――基于百度无人驾驶汽车的案例分析[J].信息安全研究,2016(11):958-968.

[3]陈娟.基于人工智能Agent技术发展现状分析[J].电脑知识与技术,2016(03):195-196.

对人工智能的思考范文第3篇

 

一、网站的构建 

 

1.网站框架设计 

我国高中阶段人工智能教育还处于起步阶段,据调查,全国已开设人工智能课程的中学不超过十所。事实上,对于人工智能这一前沿学科,大部分信息技术教师还缺乏足够的了解,因此对于该课程的开设也一直处于观望状态。考虑到人工智能教育的实际情况以及网站的主要对象,我们以高中信息技术选修课教材《人工智能初步》为基础,按教学内容设置和划分栏目,同时又围绕“学人工智能、教人工智能、用人工智能、机器人专题”四大专题进行内容重组。当然,网站的基本架构并非一成不变,它需要在实际应用中进行检验与修正,最终实现网站的完美架构。依据上述思路建构的网站基本框架如图1所示。 

2.网站的栏目设计 

 

新闻栏目以图文的形式人工智能发展的最新情况,这是激发并维持广大师生关注人工智能的基础,也是师生获取最新信息的窗口。子栏目“中国动态”“欧美动态”等分别介绍了各地区最新的人工智能信息,尤其是机器人产品的新闻。子栏目“会议论坛”,“比赛通知”为师生、参与比赛提供服务。 

论文栏目是作为资源型网站的基础。子栏目“教学研究”主要面向从事人工智能教育的研究者和教师,探讨教学方法、分析教学案例、推荐教材和参考书,为更好的开展人工智能教学提供理论依据。子栏目“学习乐园”主要面向学生,展示活动实录、阐述学习感受,聆听专家意见,为更好的学习人工智能提供事实参考,教师也通过“学习乐园”来了解学生的所思所感所想。子栏目“赛事规则”介绍了各个地区和各级机器人比赛的一些规则,有利于师生更好的进行人工智能的教与学。 

资源、视频、图库、酷站:这四个栏目是资源型网站的核心。尤其是资源模块中的子栏目“电子书刊”“教学课件”“人工智能软件”分别以不同的文件格式向师生提供教与学的资源,使其能快速准确地获取符合需求的资源,免去了在因特网上盲目搜索出现大量冗余信息的麻烦。网站整合了文本、视频、图片等多媒体信息,以丰富多彩的形式呈现资源,增强了网站的吸引力和信息的可阅读性。 

爱问栏目是作为学习型网站的基础,也是本网站的一大特色。“爱问”是采用了模仿“百度知道系统”的程序设计,更注重知识的答疑解惑。我们将此栏目划分为“学人工智能”“教人工智能”“用人工智能”“机器人问题”四个子栏目,师生可根据各自的需要进行提问、回答问题、搜索问题等操作。同时,设立了积分制,激发师生提问和回答问题的热情。 

用户中心栏目是学习型网站的核心。作为一个专题网站,必然要十分强调学习的功能。子栏目“网络书签”的功能可以使学习者记录自己所浏览过的或所感兴趣的网页,便于在下次登陆后继续学习。在子栏目“信息”功能中,学习者可以新闻、论文、资源、爱问等信息,待管理员审核通过后即可在网站中显示出来。另外,教师也可在教学过程中通过此模块要求学生提交作业,便于教师随时随地的批改作业。 

 

二、网站的访问数据分析 

 

人工智能教育专题网站从开设至今将近8个月的时间,已经有超过1万的独立访客访问了本站,我们选取了最近访问的2000位独立访客进行研究。通过对地域、被检索方式、受访页面及回头率的分析,可为网站下一步的改进与完善提供依据,为其他人工智能教育类网站的建设,在网站的用户类型,网站的内容选择与更新,网站的推介宣传等方面提供参考与借鉴。 

 

1.地域分析 

在统计到的访问该网站的地域中,国外共有12个国家访问了本网站。国内除西藏、澳门之外,其他省份、直辖市、特别行政区都有访问过本网站,这为我们今后在高中普及人工智能教育提供了有力的依据。但是,通过图2的数据我们也可看到,各个地区间的访问量差距较大,并且访问量靠前的几个省份基本上是沿海地区,而中部和西部地区的访问量比较少,所以在今后的工作中不仅要加强网站本身的建设和宣传,更要把人工智能教育的理念推广到中部和西部地区,使那里的中小学师生也接触人工智能的知识,激发他们对信息技术美好前景的向往。 

2.被检索方式分析 

搜索引擎是网络上最常用的获取资源的方式。掌握用户使用搜索引擎的情况,有助于了解网站的被检索方式。统计搜索关键字的次数,有助于了解网站被检索访问的原因。在专题网站建设完成后,向“百度”、“Google”等大型搜索引擎系统提交收录网页申请是极其必要的,它有利于提高网站的知名度和访问量。而在网站中增加“人工智能”,“prolog 源程序”等文字内容,将会有利于用户在盲目搜索时能访问到该专题网站。 

3.受访页面分析 

受访页面是指用户访问该专题网站时所停留的页面。通过对受访页面的统计,使我们能够掌握用户相对较为关注网站的哪些内容。表1数据中“学人工智能”占23.82%,“资源下载”占了16.32%,表明用户对人工智能的知识还不是很了解,对人工智能的认识还停留在“学”的层面,远未达到“教”的程度。人工智能教育类网站在建设中,如果能提供大量的人工智能的基础知识以及丰富的可下载资源,将会显著提高网站的受欢迎度以及用户的认可度。 

4.回头率分析 

在网站访问统计中,通常将距离上次访问超过12小时的再次访问记录为一次回头。通过对回头率的统计(表略)看出该专题网站的粘性不是很高,尤其是3次回访以上的用户还不多。通过对部分用户访谈后了解到,网站的更新速度慢,资源较少,内容偏难是其不愿进行多次回访的主要原因。所以,人工智能教育类网站在维护期间要注意内容的时效性、丰富性、通俗性才能保证网站访问的可持续性。 

 

 

三、网站建设的若干思考 

 

目前国内外有关人工智能的专题网站不多,针对人工智能教育的网站更少。在可供借鉴的成熟案例较少、研究又处于刚起步阶段的情况下,有必要对我们的工作进行反思总结。通过上述访问数据的分析,以及在人工智能教育专题网站建设的准备阶段,实施阶段及运行阶段的实践,我们认为在建设人工智能教育类网站时应当注意以下几个问题。 

1. 充分关注用户信息 

访问量是综合类或门户类网站的生命线,应当尽可能地拓宽访问者的类型与层次。但人工智能作为一门新兴学科,其专题网站的学科性特点甚至比普通的专题学习网站还要突出,因此单从访问量上来说,它是无法和门户类网站相比的。所以在建设的初期首先就要考虑的网站的对象问题,也就是要关注哪类人访问了网站。只有准确的掌握了用户的信息才能更好提供用户需要的资源。 

在这里,人工智能教育专题网站是通过以下三种手段来获取用户信息的。 

第一,用户必须注册才能访问网站,注册的内容包括年龄、身份、学历,电子邮件等内容。 

第二,在网站中设立“网站调查”栏目,可以对“你是如何知道本站的”,“你觉得本站建设的如何”等内容教学在线调查。 

第三,通过“中国站长站”等专业的数据收集程序来获取用户基本信息,可收集到用户地域、受访问页面、用户回头率等信息。只有掌握了准确的用户信息,才能更好的为用户提供服务。 

2.与用户携手共建网上资源 

人工智能的子学科门类众多,仅高中教材《人工智能初步》中就有知识及其表达、推理与专家系统、人工智能语言与问题求解等多个主题。而且我国的人工智能研究相对薄弱,很多资料都是外文的。任何一个人要很熟练的掌握人工智能的各个内容是很困难也是不现实的。我们通过一年多的实践也体会到,仅仅依靠课题组成员很难保证网站资源库内容的全面性和针对性。所以在网站最新一次改版中,我们增加了用户的信息功能,使得用户自己可以新闻、添加文章,上传资源,只要经过管理员审核即可在网站中显示。 

另外,在人工智能教学过程中,我们也充分利用学生的优势,要求学生以作业的形式提交文本和视频资源,并将作业的数量和质量作为考察学生学习效果的一个指标。这些举措保证了网站内容更新的时效性和内容的针对性。用户所的就是用户所关注的,用户所关注的就是网站所要收集的。 

3.通过多种形式充分发挥网站作用 

目前,全国高中开设了“人工智能初步”选修课的学校极少,教师手头上可供选择的教材也只有5套。从专题网站上统计的数据来看,虽然网站目前的用户主要是教师,但“学人工智能”页面访问量却远多于“教人工智能”。从这些情况看,单靠几个人工智能教育类的专题网站无法从根本上解决高中人工智能教育现阶段所面临的窘境。所以,在条件允许的情况下,可以通过研修班、会议论坛等形式组织教师进行面对面的交流。 

例如,我们就在2007年5月25日至27日在浙江师范大学举办了全国首届“高中人工智能课程研修班”,来自全国十个省市的70余位信息技术教师及教研员参加了研修班的学习。在研修活动中,教师不仅学习了人工智能的知识,也对人工智能教育的现状及发展过程中遇到的问题做了充分了探讨和交流。本次研修活动结束后,人工智能教育专题网站则成了学员们交换信息、交流体会、共享资源的有效平台。 

 

四、结束语 

 

总之,借助专题网站的平台作用开展各种活动,不仅弥补了人工智能教育网站缺乏面对面交流和互动的缺点,也为把网站资源建设的更具针对性提供了有效帮助。 

 

参考文献: 

[1]张剑平. 关于人工智能教育的思考[J] .电化教育研究.2003,(1). 

[2]曹瑞敏. “中国海”学生专题学习网站应用[J] .中国电化教育.2005,(5). 

对人工智能的思考范文第4篇

关键词:人工智能 机器 学习 情感识别

中图分类号:TP18 文献标识码:A 文章编号:1674-098X(2016)06(a)-0077-02

人工智能是一门涵盖多学科知识,而又被当今社会广泛应用于多领域,给人带来便捷、高效的同时,又让业界为其担心的交叉学科知识的综合产物。随着各种智能机器人开始服务于各大领域,有超强力量的机械手臂,高效解决问题的专家系统,公众日常可接触到的可穿戴智能设备,从智能手机到各类功能的3D打印技术,从谷歌眼镜到全息投影,各类机器设备如雨后春笋不断涌出。

1 人工智能的发展

“人工智能”简称AI,是集心理认知,机器学习,情感识别,人机交互以及数据保存、决策等于一身的多学科技术。其最早被提出是由McCarthy在20世纪中叶的达特茅斯会议上,这也成为人工智能正式诞生的标志。在人工智能经历两个低谷后的最近一个阶段,从1993年开始,人工智能其实取得了一些里程碑似的成果。比如在1997年,国际象棋冠军卡斯帕罗夫被深蓝战胜;英国皇家学会举行的“2014图灵测试”中“尤金・古斯特曼”第一次“通过”图灵测试,而这一天恰为计算机科学之父阿兰・图灵(Alan Turing)逝世60周年纪念日。2015年以来,“人工智能”开始成为诸多业界人士关注的焦点之一。2016年3月AlphaGo在首尔以4∶1战胜围棋世界冠军李世石,继而引发了人工智能将如何改变人类社会的思考。

2 从AlphaGo看人工智能的“情感机制”与人类的关系

机器学习算法的本质是选择一个万能函数建立预测模型[1]。首先用户输入大量训练样本数据,机器对模型进行训练,选择可以使预测的模型达到最优的参数集,从而使模型能够更好地拟合训练样本数据的空间分布[2]。谷歌公司在训练AlphaGo时,收集了20万职业围棋高手的对局,在经过不同版本AlphaGo之间的自我对弈,生成了3 000多万个对局,包含了人类围棋领域所积累的所有丰富和全面的知识与经验。相比IBM“深蓝”战胜国际象棋卡斯帕罗夫,其依靠了强大的运算能力取得了胜利,AlphaGo的最大进步是从“计算加记忆”进化到“拟合加记忆”法则[2]。智能设备具有了海量数据存储和高速的计算本领,人机交互(human-computer interaction)系统研发过程遇到的瓶颈仍是识别和表达情感方面。

情感在人际交往中扮演着重要的角色,情绪的识别主要是识别人类传递情绪的信号。既可以通过语言直接传递,也可以通过语调、面目表情、姿势等进行表达。机器具有智能,“情感”是十分重要的一环。这要求机器具有对认知的解释与建构,而认知的关键问题则是自主和情感意识。

对人工智能的威胁霍金总结说:“人工智能在短时间内发展取决于应用它的人,长远来看到底其能否被控制是我们需要关注的内容。”针对人类对于“人工智能终将超越人类”的担忧可以概括为以下两点:(1)蠹生于木,而反食于木。恰如部分美国科幻片中所展现的场景,人类创造的机器因被赋予人类情感智力而脱离人类控制。(2)机器因其具有人类交互的情感且很少产生人工失误而逐渐取代人类的劳动,致使人类无用武之地而待业失业。从技术飞速发展过程来看,智能设备的应用往往只是其在某一功能极大化的使用,如,专家系统其解决的只是某一领域内复杂问题解决方案的决策提供;虚拟现实技术是生活场景的实体化展现,以方便用户更好地体验现实场景;服务领域的机器人,提供的只是某一行业的服务,恰如汽车提供的只是快速的代步工具而不能与人交流一样,智能机器只是发挥其某一单方面的优势,从而更好地辅助人类完成特定的工作。在未来社会,那些简单重复性的劳动将被机器所取代;此外,还有一些通过大量数据进行判别决策类的输出,从而更好地为人类提供建议;同时对社会生活中重大、复杂工业系统中的故障处理,这些存在危险的领域中有智能设备的存在其实质是对人类安全及人类价值的礼遇;而对于那些与人交流密切的服务领域内,则更需要人与人的沟通,才能更好地服务于人。这些机器的存在解放了人的身体,进而可以使人类投入更多精力在科研领域。而人工智能与人类之间的关系,可以用“共存”一词进行概括,即按劳分配,取长补短[2]。

3 机器学习理论

目前最受社会关注的智能算法,当属日本学者福岛教授基于Hubel Wiese的视觉认知模型提出的卷积神经网络模型(Convolution Neural Network,CNN),是一种深度监督学习下的机器学习模型。深度学习的概念来源于人工神经网络,常见的深度学习算法包括:受限波尔兹曼机(Restricted Boltzmann Machine,RBN),Deep Belief Networks(DBN),卷积网络(Convolutional Network),堆栈式自动编码器(Stacked Auto-encoders)。该算法的提出是为解决起初基于1943年,美国心理学家W.S.McCulloch和数学家W.A.Pitts生物神经元计算模型(M-P)[2]的早期人工神经网络中,网络层超过4层后,用传统反向传递算法训练而无法收敛的问题而提出。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成高层属性类别或特征,从而发现数据的分布特征。重要的人工神经网络算法包括:感知器神经网络(Perceptron Neural Network),反向传递(Back Propagation),Hopfield网络,自组织映射(Self-Organizing Map,SOM),学习矢量量化(Learning Vector Quantization,LVQ)。

简单介绍一下神经网络:

对应公式为,通过不同权重的多输入,得到输出,该单元也被称为逻辑回归模型。当多个单元相互关联,并进行分层后即形成了神经网络模型。

4 人工智能的未来

当前,人才辈出的社会促进技术手段的不断创新,大数据,物联网,虚拟现实、云计算等技术发展与机器人人工智能领域不断融合发展,这无疑将推动产业方式发生改变。

而针对人工智能,李开复老师针对机器越发智能化而带给人类的危机表示:人工智能的真实危机在于未来机器将养活无所事事的人。这也在激励着人类,机器的智能,在代替人类部分劳动后,需要我们潜心于高科技的发展,进而不被社会所淘汰。斯特罗斯说“人工智能之于人类,最需要担心的是其自发意识。无人机并不能杀人,指导无人机的坐标并投射地狱火导弹的人才能杀人。”这一说法表明其认为人类已经生活在后人工智能世界了,但人们还没有意识到人工智能都是我们的人。这足以表明,人工智能产品的设计,一方面是为人类带来了更加绿色,智能,方便的生活方式,而另一方面其法律规范意识,以及人才价值观及道德的培养更值得社会关注。

参考文献

[1] 于玲,吴铁军.LS-Ensem:一种用于回归的集成算法[J].计算机学报,2006(5):719-726.

对人工智能的思考范文第5篇

机器人真的能思考吗?人工非生命体能够拥有智能吗?世界各地对人工智能的研究很早就开始了,但对人工智能的真正实现,还得从计算机的诞生开始算起,因为人类直到这时才有可能以机器形态模拟人类的智能。其实,人工智能后来的研究进展并不如我们期待的那样迅速,因为它的基本理论还不完整――我们还不能从本质上解释我们的大脑为什么能思考,这种思考来自于什么,这种思考为何得以产生等一系列问题。但经过几十年的发展,人工智能正在以它巨大的力量影响着人们的生活。

实际上,在1950年,数学家阿兰・图灵便试图用一个小游戏来解答“机器人能否思考”这个问题:让一个人通过电报机分别与另一个人和一个电脑交谈,如果他分辨不出哪一个是电脑,那么,在阿兰・图灵看来,这个电脑就是会思考的。如今,由于人工智能的发明,Turing的这个游戏开始在网络上流行起来。

“你做梦么?”

“做。”

“那么,你能记住你的梦么?”

“我能非常清晰生动地回想起它们。”

“是怎么样的?”

“我还不想跟一个机器人瞎掰。”

想不到吧,以上这段风趣幽默的寻常对话,竟然出自于两位聊天机器人Alice和Jabberwacky!但无须怀疑,这种“把戏”对于现代的聊天机器人来说,简直是小菜一碟。要实现“聊天”也非常简单,编程者只要输入数量足够庞大的聊天话题数据库,就能让机器人之间顺利地进行“交流”。而我们要和机器人进行交谈,同样必须先把我们的思想“灌输”进机器人的“脑子”,它才会懂得回应我们丰富多彩的话题!