首页 > 文章中心 > 风险评估风险点

风险评估风险点

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇风险评估风险点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

风险评估风险点

风险评估风险点范文第1篇

一、城市公共安全风险评估的实践探索

(一)探索意义

我国城市公共安全风险评估作为风险评估中国化的一个具体实践范畴,具有世界城市公共安全风险评估的一般性特征,同时又是一种有着特定内涵背景与现实要求的举措。

开展公共安全风险评估,是我国城市对接世界先进城市公共安全管理大趋势的主动作为。随着经济全球化和互联网时代的到来,人类社会已进入了高风险时期。城市更是处于“风险胶囊”之中,人口高度密集、快速流动,经济要素高度积聚,政治、文化及国际交往活动频繁,往往成为公共安全风险的重灾区。世界先进城市是一个全面且本质安全的城市,虽然它们的公共安全管理措施各有千秋,但将风险评估纳入政府管理职能体系,把风险评估作为风险管理的第一道防线和核心分析框架[1]却是共同选择。英国伦敦、日本东京、美国纽约等国际化大都市结合各自的市情,建立了各具特色的城市风险评估体系,[2]其常态运作效用显著。我国城市正在朝着“安全发展示范城市”这一目标努力,然而,城市公共安全领域仍存在着诸多不安全的因素,屡屡发生重大安全事件。这些事件暴露了在公共安全风险评估上存在的诸多问题。开展公共安全风险评估,正是基于对风险评估发展趋势的前瞻预判,因势而谋,顺势而为。

开展公共安全风险评估,是城市政府落实国家法律规定,履行政府社会管理和公共服务职能的根本要求。中央从国家长治久安的高度,强调开展风险评估的重要性及迫切性,对风险评估作了明确部署。2007年11月施行的《中华人民共和国突发事件应对法》第5条规定“国家建立重大突发事件风险评估体系,对可能发生的突发事件进行综合性评估,减少重大突发事件的发生,最大限度地减轻重大突发事件的影响”。第20条要求“省级和设区的市级人民政府应当对本行政区域内容易引发特别重大、重大突发事件的危险源、危险区域进行调查、登记、风险评估”。这就需要城市政府对照中央的新要求,找出城市政府职能存在的短板,拿出有效举措,力争有所突破。

(二)探索概貌

一些城市对风险评估进行了积极实践并取得了一定经验,探索主要从五个方面展开。

一是专项风险评估。一些城市早在上个世纪90年代就组织专业团队或第三方机构对城市安全进行专项风险评估(如火灾风险)。近年来主要集中在两个领域。其一是社区灾害风险评估。2009~2011年,上海市民政局探索建立上海市社区综合风险评估模型,包括社区风险评估模型的开发以及社区风险地图的绘制两部分。社区风险评估模型的开发主要包括社区脆弱性评估、社区致灾因子评估以及社区减灾能力评价三部分。社区风险地图包括五类内容:危险源、重要区域、脆弱性区域、安全场所以及应对措施。[3]其二是安全生产领域。天津港“8・12”爆炸事故后,2015年11月滨海新区启动城市安全风险评估。2016年8月完成全区城市安全风险评估,形成滨海新区《城市安全风险评估报告》《城市安全风险电子地图》以及多套方案。《城市安全风险评估报告》主要对滨海新区的危险化学品工业风险单元、危险品运输风险单元、人员密集场所风险单元、其他风险单元等4大类35小类的城市安全风险源进行了定性定量分析,在风险评估的基础上对各类风险源进行了分级,评估了各区域中各类安全风险的安全分布。根据评估结果,制作形成了《滨海新区城市安全风险电子地图》,将各类、各级别的风险源绘制在一张电子地图上。广州市安监局历时1年时间于2016年6月完成《广州城市安全风险评估》,这是全国范围内首次针对城市级别安全生产全领域开展的风险评估工作。评估将广州市的城市安全单元分解为工业风险单元、城市人员密集场所单元、城市公共设施单元等3类风险单元,34种风险源进行了风险评估和分级,辨识出各种风险源中的一级特别高风险单元和二级高风险单元,并采用科学的方法评估了广州市城市整体和各区的安全风险水平,明晰了重大事故风险构成,并绘制了广州市城市安全风险地图。

二是大型公共活动风险评估。风险评估作为一种有效的管理手段,在最近几年我国大型公共活动中得到了广泛运用。2008年北京奥运会首次引入了风险评估,形成了73份风险评估报告。[4]北京奥组会依据这些风险评估报告,构成了多层次、全方位的“五个一”(一个根本、一个原则、一个机制、一个保障、一个关键)的奥运风险管理体系。2010年上海世博会的风险评估[5]也卓有成效。评估分为自然灾害、事故灾害、公共卫生、社会安全和新闻管理五大类,每一大类都内含若干小类。专业管理部门根据自身的职责范围,开展专项的风险识别和评估。例如,上海气象局完成了《上海世博会气象灾害风险初始评估报告》《上海世博会恶劣天气风险评估报告》《世博轴阳光谷气象灾害安全评估报告》《上海世博会开幕式恶劣天气风险评估报告》等风险评估报告,为相关部门及时整改提供依据。

2011年第26届世界大学生夏季运动会在深圳市举办。按照统一部署,各区、各部门和单位针对辖区和工作领域范围内各类风险进行全面排查,分析评估。深圳市气象部门全面开展气象灾害风险评估。大运会主赛区龙岗赛区委员会组织专门的科研学术机构对赛区内各类风险和重大危险源(点)进行了全面调查和深入分析,对可能发生的30种风险进行评估,完成了《龙岗赛区突发事件风险评估报告》。医疗卫生指挥部形成《大运会突发公共卫生事件风险评估技术报告》。其他专项指挥部和赛区均开展了风险分析和评估工作,为总指挥部的决策提供了有力支持。[6]

三是重大工程、重大决策和重大事项风险评估。2004年汉源事件发生后,四川省遂宁市于次年在全国率先探索率先建立重大工程建设项目稳定风险评估制度。2007年4月,中央维护稳定工作领导小组决定在全国推广遂宁经验。随后,很多城市把重大事项社会稳定风险评估制度建设引入维稳工作中,在组织领导体制、评估内容和流程等方面具有不同的特色,形成了不同特点的评估模式。

四是中德灾害风险管理合作项目试点风险评估。国家行政学院和有关地方政府通过项目试点,引入了德国等发达国家在风险评估工作中的先进做法,并且将国外经验本土化,从风险评估参数体系、各参数临界值设定、风险发生可能性判定到风险矩阵图标绘,形成了一整套适应试点地的风险评估体系。公共风险治理与预案优化子项目于2010年12月在重庆市九龙坡区启动,九龙坡区对辖区内自然灾害类、事故灾害难的风险点、危险源进行全面排查、识别和登记。[7]另一个子项目于2011年10月在深圳市宝安区启动,形成了宝安区的风险评估模型。该模型将整个风险管理流程有机串联起来,而且在风险损害计量中充分考虑各类影响,创新提出风险值和风险图谱概念。[8]

五是城市全区域全类别的风险评估。2012年10月,深圳启动全市公共安全评估,成为我国最早开展城市公共安全评估的地区。市应急办组织四家专业机构,对全市自然灾害、公共卫生、事故灾难、社会安全等公共安全领域进行评估,于2013年4月完成了各类别评估报告、《城市公共安全白皮书》的编制工作。[9]对识别出的每一项风险,综合分析风险发生的可能性和后果严重性,对照风险矩阵图,评定风险等级,确定风险大小。风险发生的可能性,由低到高分为低等级、中等级、高等级、极高等级4个等级。评估结果是共识别公共安全风险源138项,其中,中低等级风险87项,高等级风险46项,极高等级风险5项,全市公共安全总体风险为中等偏高水平,在洪涝灾害、地质灾害、火灾事故、交通事故、生产安全事故、等方面,面临较高风险。

二、城市公共安全风险评估的现实难题

(一)风险评估缺少顶层设计,准备工作不到位

由于我国城市公共安全管理的重点在于应急管理,导致对风险评估的重要性认识不足、重视不够,仅将风险评估作为应急管理的一种手段,没有从城市公共安全管理战略高度对风险评估进行统一谋划和系统化设计。

一是基础理论研究供给不足。我国学术界对城市公共安全风险评估的研究还在探索阶段,没有提出一套成熟的理论框架,尤其是通过经验研究的方式展现评估机制在理论和实践两方面存在问题的研究还比较少,缺少能够进入政府决策的应用性、实战性的成果。开展风险评估的城市很少组织专门的课题研究,评估缺乏科学系统的理论支撑和指导,评估原则、评估指标体系、评估模型、评估依据、评估技术与方法、评估程序等没有规范化、标准化。

二是制度供给不足。我国还没有出台一部公共安全风险评估的法律法规,只是在《突发事件应对法》《安全生产法》等法律的个别条文中有所涉及。城市风险评估只是政府系统内部的工作指导类的规则制度,并非由立法机关等部门制定的正式法律法规。

三是人才供给不足。政府部门自身力量并不足以开展风险评估工作,从事风险评估的人员大多数是临时抽调的,不具有专业背景。风险评估业务培训少方式单一,政府部门工作人员对风险评估业务了解不深、流程不熟,难以满足评估需求。特别是培训内容主要讲评估怎么操作、风险等级分数怎么划定等技术性问题,评估的理论依据很少涉及,很多评估工作者对风险评估的内在逻辑与学理基础缺乏必要的认识,在实际评估中“知其然而不知其所以然”,容易造成评估的盲目性。

(二)风险评估主体单一,落实“政府主导、专业评估、公众参与”原则不严

一是出现了评估的决策者与实施者合二为一的现象。安全评估工作领导小组、市应急办、相关职能部门和各区政府主导和掌控整个评估,既负责提出评估动议,也负责召集专家学者和基层代表参与评估,难免会将自己的倾向性意见渗透其中,使评估陷入“既当运动员又当裁判员”窘境,必然影响风险评估的客观性、中立性。

二是专业团队和专业机构的独立性和客观性不够。牵头开展专项风险评估工作的是由市应急委、安委会各成员单位的各类专家、专业人员为骨干组成评估队伍,他们来自体制内,存在着附和政府决策的可能性。通过政府采购的方式,引入了专业机构,但它们的评估经费来源于政府,主要利用相关部门和各区的各类风险评估的结果,只是对存在空白和模糊的领域和区域进行补充调研和评估。

三是公众的角色只是被动的意见的收集对象,而不是主动的评估参与者。政府部门通过政府网站和新闻媒体,公开征集深圳市公共安全评估和公共安全体系的建设意见和建议。然而这种方式过于简单,没有多途径、多渠道广泛征求意见,公众对评估结果的影响力极为有限。评估报告没有公开供公众和媒体查询,公众只能从报纸电视等媒介了解到的评估结果信息往往是零星的、不及时的、不完整的、不连续的。政府对评估结果运用情况的公开就更少了。

(三)评估体系不完善,影响了风险评估的科学性

一是评估方法的局限性。中华人民共和国国家标准《风险管理风险评估技术》(标准编号:GB/T27921-2011)中列出的风险评估技术共有31种,有定量的、半定量的、定性的及其组合。城市公共安全风险评估所采用的方法以宏观定性为主,具体有比较分析法、专家打分法、风险矩阵法。专家打分法依靠专家的主观判断,会因专家专业背景、工作经验的不同以及对自己研究领域内容特别的关注,导致风险判断的偏移和评估结果的偏倚。风险矩阵法虽通过对风险因素发生的概率和影响程度进行量化评分,使得风险评估从定性分析转向半定量分析,但对事件发生可能性及影响因素的定量分级仍为经验性判断,分级缺少量化指标。这些方法与定量分析相比虽然简单且易于操作,但却影响到评估结果的精确度。

二是没有建立统一的风险评估指标体系。由于影响城市公共安全因素的不确定性和复杂性,对城市公共安全风险评估指标选取与设置、评估指标的权重衡量确实有难度,但这并不意味着不需要建立统一的风险评估指标体系。一些城市虽然统一了风险评估的技术路线、风险确定的基本方法,但没有建立统一的评估指标体系和评估模型,这势必影响对风险的评价精度,使评估结果难以具有可预测性与权威性。

(四)评估有空白

一是城市的重大风险源没有纳入评估范围。最大的风险就是不知道风险,深圳光明“12・20”滑坡事故印证了这句话。深圳的淤泥渣土临时受纳场成了风险评估的“漏网之鱼”,说明没有做到“应评尽评”,导致在决策方案中没有考虑采取有效措施予以防控。

二是忽视风险变化。每年由于内外部环境的变化,城市风险是流动的,旧风险消失了,新风险却出现了。因此,风险评估并不是一个线性的过程,而是根据情形不断改变,不可以一评了之。但很多城市政府由于缺乏风险动态捕获机制,对新出现的风险变化,忽视了动态监测与跟踪评估。

(五)把控评估的“结果导向”不牢,评估结果的应用“虚化空转”

风险评估只是一种管理手段,其目的和价值不仅要发现风险,而且要建立机制,制定风险减缓的决策和措施,[12]有效控制、化解风险。城市公共安全风险评估在这方面存在的缺陷有:评估中落实防范、化解和处置措施的牵头部门和配合部门仍不明确,容易造成评估后的防范化解和动态跟踪等工作难以有效落实;风险评估是制定应急预案的基础和依据,然而,应急预案并没有按照评估结果进行修订;分析和开发利用不够,评估的功能作用难以发挥。

三、完善城市公共安全风险评估的对策建议

为解决城市公共安全风险评估中出现的上述问题,我们提出以下几点对策性建议。

(一)深化认识,筑牢城市公共安全风险评估的“地基”

城市政府要从落实“安全第一,预防为主”原则的高度来认识城市公共安全风险评估的战略地位,增强打牢城市公共安全风险评估“地基”的内生动力。

一是加强学术研究,为城市公共安全风险评估持续、健康发展提供理论保障。加快对国外先进评估理论、方法的吸收和消化。在借鉴国外先进理论、方法的基础上,构建中国城市特色的公共安全风险评估理论体系。城市政府应该通过政策扶持、课题扶持等手段引导城市的学术力量进入风险评估领域,对发表的基础理论和方法研究成果给予奖励。

二是完善法律法规体系,为城市公共安全风险评估持续、健康发展提供制度保障。城市政府要依据国家公共安全法制的要求,针对风险源的特点,适时把风险评估这一行政行为逐步上升为法规,同时颁布风险评估配套文件,规范评估事项、主体、指标内容、流程、结果运用及责任认定等具体的环节与内容,形成完整的制度框架。

三是尽快健全教育和培训体系,为城市公共安全风险评估持续、健康发展提供人才保障。在城市高校设立专门的“城市公共安全风险科技评估”专业,鼓励高校、科研院所培养城市公共安全风险评估方面的高层次人才。城市党校和行政学院把城市公共安全风险评估作为一门主要课程来建设,加强对各级领导干部的培训,让干部自觉把风险评估作为一种重要的工作方法和工作技能。

(二)实行“开放透明”评估,将一元主导的行政化评估转型升级为多元化评估

一是建立一个良好的协同评估模式。建立决策与评估职能相分离制度,保证评估的独立性、客观性。城市政府要破除“一元评估”思维,改善评估的开放性,通过制定相应的政策措施,引导公众和专业机构有序参与风险评估和提供评估服务,让更多的社会主体进入评估体系。

二是提高专业评估机构的公信力。一方面,专业机构要坚持公共利益最大化的价值取向,加强行业自律,增强评估的责任心和使命感,使评估不受自身利益和政府利益的驱使。另一方面,政府要加强对专业机构的监管,建立针对专业机构的“黑名单制度”,对评估机构进行跟踪监测,将不能胜任的评估机构纳入黑名单,通过淘汰机制净化第三方评估环境。

三是以完善的法律制度提高风险评估的透明度,避免吸纳公众参与风险评估的随意性与主观选择性。从评估的目标规划、指标设计、实际评估,到结果反馈等环节和过程中的公众参与,都要科学规范一系列制度化的程序,最大限度地让公众真正参与评估,充分保障公众的知情权、表达权和监督权。遵循“公开是原则、不公开是例外”的原则,开展精细化风险沟通,除不宜公开的敏感信息外,将风险评估报告通过本区域内的主流电视台、报社和广播电台配合政府门户网站消息,并且在公示日期范围内多时段、多频率地重复,以达到公众充分知晓的目的,确保在“阳光”下防范和纠正评估中可能出现的偏见或错误。

(三)完善评估体系,提高风险评估的科学性

一是积极探索风险评估方法。城市公共安全风险强调空间异质性、综合性,注重多重风险的分析。因此,风险评估方法应坚持定量分析与定性分析相结合的原则,综合运用风险矩阵分析、分析流程图、数学建型、情景构建等方法,对城市可能承受的各种风险进行分析和计算。充分运用无线通讯技术(GPRS)、地理信息技术(GIS)、数据库技术等信息技术,开发风险评估工具,将可规范化的内容如评估表格、评估要素、评估流程、评估模型等,开发形成辅助评估框架或评估工具,不断提高风险评估质量。

二是构建“双维度”指标体系。目前在国际上有三种主要的公共安全评价框架:单纯能力评价、单纯脆弱性评价、能力与脆弱性综合评价。[10]城市公共安全风险评估涉及到多种类型的事件事故,同时还体现了城市系统对突发状况做出的反应。所以在构建城市公共安全风险评估指标体系时,需要从公共安全涉及领域与影响两个维度综合考虑。领域维度方面采用公共安全突发事件的分类方法,将其分为自然灾害、事故灾害、公共卫生、社会安全,每一类又分若干种。影响维度细分脆弱性与能力两个方面。脆弱性评估是针对人类社会经济系统对致灾因子的敏感(反映)程度。能力评估指可能受到危害的城市系统,通过抵御或变革,从而在职能和结构上达到或保持可接受水平的适应水平。分别从上述两个维度上对城市公共安全指标进行筛选,得到一套有可操作性、针对性强的城市公共安全风险评估指标体系。

(四)动态化精准化追踪风险,切实做到“应评尽评”

一是开展详细的风险调查,确保风险评估的全面性。全面开展城市风险点、危险源的普查工作,对所有可能影响城市公共安全的风险源、风险类型、可能危害、发生概率、影响范围等做到“情况清、底数明”,防止“想不到”的问题引发的安全风险。整合各类信息资源,完善城市隐患、风险数据库,编制城市安全风险清单,绘制城市安全风险分布电子地图,为城市安全决策提供可靠的信息支持。

二是追踪识别风险,确保评估的前瞻性。风险评估不仅是对已知风险的分析,更重要的是要前瞻性地考察风险的变化趋势以及可能出现的新的风险类别和性质。[11]要根据城市最新形势发展变化,不断查找公共安全风险评估的空白,组织专业机构定期、不定期开展风险评估工作,并使之成为政府的常规管理职能,每年编制和公布《风险登记册》,及时反馈风险变化的信息,持续优化改进风险评估。

(五)建立健全评估结果应用机制,避免评估报告“束之高阁”

一是将风险评估机制擢升为一种城市公共安全管理治道变革的重要工具。这就需要我们以风险评估为契机,着眼于政府治理方式创新,围绕政府职能转变,助推一种以风险防范为核心的新的治理范式的形成。[12]这种新的治理范式,化过程控制为结果导向,将风险评估融入城市公共安全管理乃至政府决策科学化、民主化、法治化建设的各项举措中,使风险评估机制真正成为政府自我纠错的倒逼机制。

二是选择适当的技术处置风险。根据薄弱评估结果,选择风险处置的办法。风险处置的4T策略主要包括风险保留、风险转移、风险降低、风险规避。[13]根据风险等级,采取不同的策略,“一风险一策”或多措并举,实现风险的标本兼治。

三是风险评估与应急预案要紧密衔接联动。应急预案的编制应与风险源辨识和风险评价形成前后对应的逻辑关系,要根据风险评价确定哪些是不可接受的风险,针对筛选出的不可接受的风险,再根据风险源的大小及城市的现实条件,建立起点、线、面相结合的预案体系,提高应急预案的针对性和操作性。

参考文献:

[美]保罗・布莱肯,等.突发事件战略管理:风险管理与风险评估[M].北京:中央编译出版社,2014.2.

钟开斌.国际化大都市风险管理:挑战与经验[J].中国应急管理,2011(4).

上海市民政局.加强社区风险评估工作[J].中国减灾,2013(3).

闪淳昌.应急管理:中国特色的运行模式与实践[M].北京:北京师范大学出版社,2011.244.

容志.风险防控视阈下的城市公共安全管理体系构建――基于上海世博会的实证分析[J].理论月刊,2012(4).

潘俊杰.大力提升安全发展质量为建设现代化国际化先进城市筑牢安全保障[J].中国应急管理,2014(10).

邹积亮.政府突发事件风险评估研究与实践[M].北京:国家行政学院出版社,2013.123.

孙玉卫,等.风险评估模型在深圳市宝安区中德灾害风险管理试点项目中的应用研究[J].中国应急管理,2012(4).

深圳市应急管理办公室.强化风险管理夯实安全基础――深圳市开展城市公共安全风险评估并公共安全白皮书[J].中国应急管理,2014(10).

朱正威,等.中国区域公共安全评价及其相关因素分析[J].中国行政管理,2006(1).

张树才.风险评估和事故调查改进探讨[J].安全健康和环境,2015(12).

风险评估风险点范文第2篇

1.1主要的评估方法

目前雷电灾害风险评估的方法大致可以分为三类:单体建(构)筑物雷击评估方法、区域雷击评估方法、区域雷击易损性评估方法,后两者亦可归为区域评估方法。单体建(构)筑物评估方法是针对单个建筑的雷击风险评估,评估建筑物或其内部电子信息系统遭受雷击损害的风险。在国外主要依据IEC61662、IEC62305-2、ITU-TK.39等标准进行评估,国内主要依据GB/T21714.2-2008及特定对象的评估标准GB50343《建筑物电子信息系统防雷技术规范》、QX3-2000《气象信息系统雷击电磁脉冲防护规范》等[2~3]。此方法是最早应用的雷电风险评估方法,比较成熟,适用于小型项目或项目建筑单体数不多时,能定量的评估单体建筑的雷击风险,对于大型项目不能科学的评估整体的风险等级和分布。区域雷电风险评估方法是对整个项目区域的雷电风险等级进行确认(如湖南省防雷中心开发的区域评估方法)或者对整个项目区域中每个子区域的雷电风险等级进行确认(如江苏、上海等地的区域评估方法),该方法有利于对整个项目进行整体把握及确认项目的重点防护区域,这样能更科学、更合理的统筹区域雷电灾害的防御,因而此方法能应用于大型项目的雷电灾害风险评估,当然这种方法属于定性的分析,是近几年才研究开发的,还处于探索改进阶段。区域雷击易损性评估方法是选取地区(市或县)的雷暴日数、雷电灾害频度、生命易损模数及经济易损模数等作为雷电风险指标,运用层次分析法来计算各个地区的雷击易损度,最后形成某个省或某个市的雷电风险区划图,为区域防灾减灾提供科学依据。此方法适用于省份或地级市的区域雷电风险划分。

1.2评估数学原理

单体建(构)筑物的评估是依据风险计算公式R=N·P·L进行定量计算分析,其中R是风险值,N是年危险事件次数,P是损害概率,L是损失率。区域雷电风险评估是运用模糊数学确定风险指标的隶属度,运用层次分析法确定风险指标的权重,风险计算公式为:R=Knj=1ΣQj×Gj,式中:K是修正指标;Qj是风险指标的权重;Gj是风险的隶属度。当然也有运用其他一些统计学的方法进行风险划分和归类[9]。

1.3评估方法的评价和建议

目前雷电灾害风险评估方法主要是以上三种,在实际业务当中因为针对的是具体项目,因而采用的是前两种评估方法。单体建筑风险评估和区域雷电风险评估各有各的优缺点和适用范围,针对目前各省份风险评估方法运用的实际情况,为了更好的评估项目雷电风险,提出更具实际指导意义的雷电防护措施,笔者认为在实际的雷电风险评估业务当中:①应当注重区域风险评估和单体建筑风险评估相结合、定性与定量相结合,通过区域风险评估可以给出项目的整体雷电风险等级或者区域中的防护重点子区域,再利用单体建筑风险评估可以进一步计算出项目风险等级高的区域或子区域中单体建筑的具体风险大小,依据这些计算结果提出的雷电防护措施将更具指导性意义;②应根据项目的特点选择合理的评估方法,因为有些行业已出台自己行业的风险评估方法,这时我们就应当结合行业评估标准进行评估;③目前的雷电风险评估业务基本上是方案评估,而风险评估分为预评估、方案评估及现状评估,由于随着项目的运营,项目的一些特性会发生变化,如项目的建筑特性、内存物、内部系统等等,这些变化会导致项目雷电风险值的变化,因而可以开展项目的雷击现状风险评估。当然以上只是个人的观点,纯粹从雷电风险评估业务发展方向而言,而雷电风险评估业务的发展还有赖于国家的相关政策。

2应用实例

2.1项目概况

湘西自治州公安局交警大队建设的麻栗场考试中心是我州较为大型的公共建设项目,总面积约为182772.5m2,占地200多亩,其中分为小车考试场地、大车桩考区、大车场内考试区、科目三发车区、停车区、模拟高速考区、监控候考大楼、考试业务用房、绿化区,考场内共分布77处摄像头。整个项目人员是一个密集区域,设备又是另一个密集区域,区域性特征十分明显。以前开展雷电灾害风险评估大部分是以计算保护建筑物及其内部人员设备为基础,而该项目不但需要保护建筑物内人员和设备,还需要保护建筑物外空旷场地的人员和设备的安全。

2.2评估方法和技术路线

由于该项目所涉及的区域面积大,并且仪器设备多(建筑相对少),根据前面对几种风险评估方法的探讨,选择区域雷电风险评估的方法进行评估。将整个项目分为六个区域,区域一:考试业务用房、监控候考大楼、停车区、发车区;区域二:小车考试区;区域三:大车桩考区;区域四:大车场内考试区;区域五:模拟高速公路考区、进出道路;区域六:绿化区。根据灾害的理论分析,灾害的发生是由致灾环境的危险性和承灾体的易损性及脆弱性决定的,具体到雷电,雷击风险是指人身和财产容易受到雷电伤害或破坏的程度,它直接反映了人身和财产在遭受雷电袭击时的脆弱性。就考试中心而言,其致灾因子是雷电,承灾体是处于地面上的人和物体,因而主要从人身安全和经济价值两方面来进行雷击风险的考虑,根据具体情况把区域内的主要风险划分为两类:R1人员伤亡损失风险、R2建筑物遭受雷击损失风险。区域性的雷击风险评估是对区域内各个子区域中各个风险类别的危险程度、可能造成的损失程度做出的预测性评价,在对考试中心进行雷击风险评估时,我们根据具体的情况选取四个主要的评估指标:G1气象指标、G2地物环境指标、G3承灾体的风险指标和K评估修正指标。其中,前两项指标着重于考虑雷电发生频率和雷击风险概率,反映致灾因子的时空分布情况,后两项指标主要表征致灾体(人和建筑物)的易损情况和建筑物本身的抗灾能力对雷击风险的影响。首先,对应于上述四个主要的评估指标,通过分别分析各个指标不同的影响因子,达到对四个主要指标评价的目的;然后,根据四个主要评估指标的评估结果,按照R1和R2两种风险类别,根据风险评估计算模型()计算出各自的风险值(总的风险值R=R1×QR1+R2×QR2),从而得出各个区域的雷击风险情况;最后,根据风险等级划分指标,对各个区域的风险进行等级划分,确定整个考试中心区的风险区划。

2.3评估结果

通过以上评估方法和技术路线分别估算出每个分区的风险值R,根据风险值R的大小,判断每个分区不同风险程度,可得以下区域色斑图。红色(区域一):极高风险区;黄色(区域二、三、四、五):高风险区;蓝色(区域六):中风险区。由图1可知:区域一为极高风险区,发生雷击后该区域所造成的人员伤亡以及经济损失概率最大,该区域内监控候考大楼、考试业务用房应按二类防雷建筑物来设计防直击雷保护措施,单栋按B级进行建筑物内电子信息系统的防雷;停车区、发车区属于露天人员密集场所,应重点考虑采取防直击雷等防护措施。区域二、三、四、五为高风险区,发生雷击后该区域所造成的人员伤亡以及经济损失仅次于区域一、使用性质均为考试考场和人员出入通道等,露天电子设备较多,人员走动密度较小,并且人员基本处于车内(较安全),故应以防护场地内的电子设备为重点,按实际设备情况具体设计相应的防雷保护措施。区域五内人员进出道路口有一门卫值班室,应考虑防直击雷以及防雷电感应等保护措施。其他道路因人员密度分布情况不详,建设方因根据实际投入使用后的情况,有针对性的采取相应的防雷保护措施。区域六为中风险区,发生雷击后该区域所造成的人员伤亡以及经济损失概率最小,该区域为项目区域内电子设备少,人员走动密度最小场地。

3结束语

风险评估风险点范文第3篇

以电网遭受雷害多影响因子作为研究重点,采用层次分析与模糊数学相结合理论,对高压电网展开雷害风险评估研究。以某地500kV高压电网为工程背景,以雷击跳闸率、雷击重合闸率、手动强送成功率、供电可靠性、线路重要性等级、运行时间、设备损害性指标为评估电网雷害风险的分析因子,将该地电网雷害风险等级定为Ⅲ级中等雷害风险,并对此提出针对性的防雷措施,以给工程实际提供指导与借鉴。

关键词:

电网雷害;风险评估;层次分析法;模糊数学理论;防雷措施

近些年来,随着国民经济的迅速发展与电力需求的不断增长,对输电线路供电可靠性的要求越来越高,电力生产的安全问题也越来越突出。对于输电线路来讲,雷击跳闸一直是影响高压送电线路供电可靠性的重要因素[1-2]。而大气雷电活动的随机性和复杂性,造成架空线路的雷击跳闸成为困扰安全供电的一个难题。尽管国家电网取得了快速的发展,但是相应的电网安全问题也开始越发突出,其中雷电灾害作为无法避免的外部灾害,给电网的安全运营带来了很大的风险。通常情况下,由于变电站安设有直击雷防护装置而使得雷电灾害对变电站的影响有限,其影响主要集中在高压输电线路。

架空输电线路防雷是电力系统防雷工作的重要方面,常用的防雷改进措施有[3]:架设避雷线、安装避雷针、加强线路绝缘、采用差绝缘方式、升高避雷线减小保护角、装设消雷器及预放电棒与负角保护针、使用接地降阻剂等。解决线路的雷害问题,要从实际出发因地制宜,综合治理。

通常而言,雷电灾害轻则造成输电线路同一输电通道多回线路相继跳闸、同塔双回线路同时闪络等故障,重则造成长时间电力供应中断甚至永久性故障。目前,对于高压输电线路遭受雷害的风险研究[4],相关学者及机构仅以雷击跳闸率作为高压输电线路遭受雷害的评价指标,这是不合理的,因为尽管雷击引起的线路跳闸次数较多,但因重合闸成功率较高,其占非计划停运比例要比其占跳闸比例低。此外,输电线路的雷电灾害影响因子不是单一的,它除了受雷击跳闸率控制,还与输电线路雷电活动强度、地闪密度、线路走廊雷电活动频率、地形地貌、输电线路对电网重要性程度等因子有关,需要考虑多因素影响结果[5]。因此,本文从电网遭受雷害的多影响因子作为出发点,采用层次分析与模糊数学相结合的理论,对其展开风险评估研究,并对此提出防雷措施,以给工程实际提供指导与借鉴。

1理论方法

1.1层次分析法20世纪70年代初,美国学者SattyT.L.提出了层次分析法[6],它是一种层次权重决策分析方法,该方法基于网络系统理论和多目标综合评价,能够将定量分析与定性分析相结合,对多目标、复杂问题展开准确的决策。层次分析总的来说包含4个步骤:建立层次结构模型、构造两两比较的判断矩阵、层次单排序及一致性检验、层次总排序及一致性检验。

1.2模糊数学法模糊数学又称Fuzzy数学,是研究和处理模糊性现象的一种数学理论和方法,1965年,模糊数学开始得到快速发展[7]。模糊数学法首先要求给出电网雷害影响因素集合U及雷害风险发生级别集合V,U中每一个单因素对应雷害风险级别V的模糊子集为单因素模糊矩阵R,再根据每个因素对目标贡献程度,得到权重矩阵A,最后对矩阵R进行关于A的模糊变换,得到目标事物的评判集B。

1.3综合评价层次分析的优点是能够定量地得到定性的因素的权重值,再结合模糊数学理论,才能够综合计算出要分析对象的结果。基于层次分析-模糊数学综合评价,首先要确定各层次各因素两两之间的权重。为避免对权重定性赋值带来的失准,SattyT.L.提出了一致判断矩阵法,该方法采用1~9标度法的相对尺度,以提高准确度,当一致性比率小于0.1时,认为能够得到满意的一致性[8]。

2电网雷害多影响因子分析

输电线路是电力系统的最重要的组成部分,由于它暴露在复杂多变的自然环境里面,因此很容易且无法避免受到外界环境的影响和损害,尤其是当雷雨天气发生时,输电线路易于遭受雷击,并发生停电事故。因此,要进行电网雷害研究,首先要确定影响电网雷害的因素有哪些。电网遭受雷害的影响因子不是单一的,也不是几个因子单独发生作用,而是多个因子发生耦合作用。根据目前国内外的研究成果[9-10],评估电网雷害风险的因子主要有雷击跳闸率、雷击重合闸率、手动强送成功率、供电可靠性、线路重要性等级、运行时间、设备损害性指标。据此,建立电网雷害多因子层次结构示意图,结构为:A为目标层,即:电网雷害风险;B为准则层,具体为B1(供电可靠性)、B2(运行时间)、B3(重要性等级)、B4(设备损害性);C为方案层,即:各个线路,具体为C1(线路1)、C2(线路2)…Cn(线路n)。层次结构示意图见图1。

3工程实例分析

3.1工程概况我国南方某地区500kV电网含有3条输电线路D、E、F,现以该地区这3条输电线路2007—2012年的实测数据,来分析预测该地区的雷害风险等级。3条输电线路的准则层实测数据占比如表1所示(以1为基数)。

3.2综合分析

3.2.1层次分析结构根据电网雷害多因子分析结果,结合应用实例表1数据,在Yaahp层次分析软件建立电网雷害风险等级的层次结构模型,层次结构模型如图2所示。对于层次结构模型中的电网雷害风险等级,本文划分为4个级别:Ⅰ级无风险、Ⅱ级低风险、Ⅲ级中等风险、Ⅳ级高风险。

3.2.2一致性检验矩阵在层次结构模型的基础上,结合1~9标度类型及专家系统意见,赋予B1~B4、C1~C3相应的权重分值,最终得到A-B、B1-C、B2-C、B3-C、B4-C5个判断矩阵。

3.2.3计算权重在矩阵判断一致性检验的基础上,进一步计算A-B、B-C排序的单排序权重值及6个因素的总排序权重值,权重计算结果如表2所示。把表2中的权重值用向量的形式表示,即得权重矩阵:A[0.475299,0.257689,0.267112]。

3.2.4隶属函数和模糊矩阵就每个雷害影响因素进行统计与分析,每个因素对应的不同雷害级别为一个隶属函数。本文定义该隶属函数为降半阶梯分布函数,取阶次k=1。分布函数的方程。3.2.5综合评判根据上述计算,现对模糊矩阵R进行关于权重矩阵A的模糊变换,最终得到目标事物的最终评判集B。根据模糊数学中的贴近度原理,所得到的评判集B=[B1,B2,B3,B4]=[Ⅰ,Ⅱ,Ⅲ,Ⅳ级雷害风险],其中最大隶属度Bi所在的位置即对应目标的最终评判级别。因此,该地区电网的最大隶属度为B3=0.902=Ⅲ级中等雷害风险,需要采取相应防雷害措施。

4输电线路的雷害原因分析

输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿[11]。这种过电压可分为直击雷过电压和感应雷过电压。输电线路感应雷过电压最大可达到400kV左右,它对35kV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁较小[12]。110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重危害线路安全运行。反击雷过电压是雷击杆顶或避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别。绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值、线路防雷保护方式、杆塔高度、特殊地形有关,主要发生在两边相。

5电网线路防雷措施

结合目前我国输电线路的电压等级、我国各地雷电活动的规律、线路所经区域的不同地形、地貌特点、土壤电阻率等自然条件,目前常用的防雷保护措施主要有以下几种[13-15]。(1)架设避雷线避雷线能够对雷电产生分流作用,降低杆塔顶端电位,同时,其对导线有耦合作用,对导线有屏蔽作用,它是高压及超高压输电线路基本的防雷手段。(2)改善接地网形式由于接地装置的接地电阻大小是防止雷击闪络的关键,因此可以通过改善接地网形式,降低杆塔的接地电阻值,对杆塔降低接地装置的工频接地电阻,是提高线路耐雷水平、防止雷电波反击的有效措施。(3)架设耦合地线架设耦合地线无法减少雷电绕击率,但其能够通过增加避雷线与导线间的耦合作用,来降低绝缘子串上电压,达到分流雷电流的目的,进而增加输电线路的耐雷水平。(4)适当提高杆塔的绝缘水平提高杆塔的绝缘水平,能够对防止绕击起到一定的作用,也能对防止雷击杆塔顶部的反击过电压产生效果。(5)采用不平衡绝缘方式当普通的防雷措施不能满足现代高压及超高压线路的防雷要求时,可以通过采用不平衡绝缘方式,以避免双回线路在遭受雷击时同时跳闸。(6)装设避雷器避雷线的架设在一定程度上降低了导线上的感应过电压,但不是完全消除,这就要求安装避雷器来将雷电流泄放到大地,从而限制过电压,保障输电线路及设备的安全。一般在线路交叉处、高度较高的杆塔顶端、终端塔上装设避雷器以限制过电压。

6结语

电网雷害尽管是小概率事件,但其具有随机性强,一旦发生损失大的特点,而输电线路的雷电灾害影响又是受诸如雷击跳闸率、雷电活动强度、地闪密度、线路走廊雷电活动频率、地形地貌、输电线路对电网重要性程度等多因子控制,因此在实际电网雷害风险评估中,需要考虑多因素耦合作用的结果。此外,还应结合高压输电线路运行经验以及系统运行方式,通过比较选取合理的防雷设计,以提高高压输电线路的耐雷水平。

参考文献

[1]赵淳,陈家宏,王剑,等.电网雷害风险评估技术研究[J].高电压技术,2011,37(12):3012-3021.

[2]马御棠,王磊,马仪,等.云南电网雷害风险分布图的绘制与应用[J].高压电器,2013,49(4):76-81.

[3]程宏波,何正友,胡海涛,等.高速铁路牵引供电系统雷电灾害风险评估及预警[J].铁道学报,2013,35(5):21-26.

[4]崔雪.用电负荷管理系统终端设备雷害风险评估[D].上海:上海交通大学,2009.

[5]张晓明,吴焯军,甘艳,等.一种基于改进层次分析法的输电线路雷害风险评估模型[J].电力建设,2012,33(8):35-39.

[6]赵焕臣.层次分析法[M].北京:科学出版社,1986.

[7]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2004.

[8]孙雷雷,王小霖,龚学毅.基于雷电定位数据的广州白云机场10kV配网雷击风险评估[J].电网与清洁能源,2014,30(3):40-47.

[9]赵淳,阮江军,李晓岚,等.输电线路综合防雷措施技术经济性评估[J].高电压技术,2011,37(2):290-297.

[10]李振,余占清,何金良,等.线路避雷器改善同塔多回线路防雷性能的分析[J].高电压技术,2011,37(12):3120-3128.

[11]方宏,周青.高压架空输电线路防雷措施的研究与实践[J].南京工程学院学报(自然科学版),2011,9(3):61-66.

[12]孙禔,孙鹏.湖北省高压输电线路防雷现状及综合防雷措施[J].中国电力,2006,39(2):35-38.

[13]莫付江,陈允平,阮江军.输电线路杆塔模型与防雷性能计算研究[J].电网技术,2004,28(21):80-84.

[14]高峰,周利军,曹晓斌,等.直流输电线路防雷侧针防护效果研究[J].电瓷避雷器,2012(6):56-61.

风险评估风险点范文第4篇

【关键词】电网运行 安全风险 在线评估 必要性

电网运行的安全稳定受到政府、产业界和学术界的特别关注。通过系统分析、在线安全管理、安全防御体系、系统保护、恢复计划等技术手段,我国在预防停电事故发生、减少停电影响范围和快速恢复供电方面取得了显著成效。然而,部分地区大面积停电事故仍时有发生,因而驾驭电网运行的能力还需要进一步提升。

国内外的电网运行控制标准通常都以确定的N-1/N-K后电网安全稳定作为约束安排运行方式/制定安全稳定控制措施。目前在线安全稳定综合防御系统大多以此为依据确定预测故障集,对于保证电网安全稳定运行发挥了极为重要的作用。然而,一方面,随着风电等新能源机组大规模接入,电网运行状态的不确定性增加和可预测性降低;另一方面,电网中各类扰动发生的概率存在时空差异,且与电网运行工况及外部自然环境和设备状态等因素密切相关。同时,电网运行的经济性越来越重要。因此,需审视以承受确定性的扰动作为电网运行安全稳定标准的合理性,要求掌控电网运行的理念从确保安全稳定运行转变为控制运行风险。

1电网运行安全风险在线评估的内涵

在工程界,比较经典的风险定义是[28]:R={〈Si,pi,xi〉}(1)式中:R为风险;Si为有危害的场景;pi为出现该场景的概率;xi为场景出现的后果,即危害的量度;i=1,2,…,N;N为有危害的场景数目。因此,我们可以从危害、场景和可能性三个方面来阐述电网运行安全风险的内涵。

1.1电网运行阶段的危害

(1)中断供电造成能量损失。供电是电力系统存在的重要目的,在电力被广泛应用的今天,供电的中断必会给社会各界的单位或个人带来不同程度的能量损失。

(2)造成直接经济损失。电力系统运行安全问题的出现在给用电客户带来经济损失的同时,造成安全隐患的负荷中断、设备损坏和机会成本更会带来直接的经济损失。

(3)电网运行超过稳定约束。表现在设备过载、母线电压越线和暂态失稳等方面。

1.2电网运行安全稳定问题的场景

上述观点从不同角度表述电网运行中出现的危害,归根结底则是出现安全稳定问题,导致不能正常供电和发电。纵观大体,电网出现安全稳定问题的场景有3类。

第一场景:电网元件运行正常但运行工况过渡到稳态后出现安全稳定问题。例如,母线电压越限、线路/主变过载和静态稳定性问题,即基态安全稳定问题。

第二场景:电网元件运行正常,但发电或负荷大幅度波动诱发安全稳定问题。风电等新能源大规模接入后这类情况可能会更多。

第三场景:电网元件故障,即故障下有安全稳定问题。

这3类场景之间有些关联,例如,在基态/故障下不存在安全稳定问题的运行方式,发电/负荷大幅度波动后形成新的运行方式,可能有安全稳定问题。

1.3电网运行安全风险的可能性

电网运行安全风险出现的可能性,要根据问题出现的场景进行分析。第一场景是关于导致运行方式的概率。第二场景针对风电等新能源机组出力和符合突变出现的特征。第三类场景则是基于电网运行方式、外部自然环境、设备状态和故障历史统计信息等内容对故障形态及演化规律进行了探究。

1.4运行安全风险的特点

与安全稳定性的特点类似,运行安全风险具有相对性和绝对性。相对性体现在:研究风险是针对考虑或预设的场景范畴,风险值则是相应前提条件下的结果,风险要通过比较才能更好地显示意义,比较不同场景下的风险,比较不同控制方案下的风险差异,比较控制代价与风险变化情况;从广义来看,电网运行的安全风险始终存在。

2 电网运行安全风险在线评估的特点

电网运行安全风险在线评估以实时运行工况和预测的运行方式为基础,并考虑发电出力和负荷变化等方面的不确定性,基于实测/预报的自然环境信息,还可结合设备运行状况,对当前、未来几分钟至几小时内的运行安全风险进行动态评估,从而在线监视和预测风险水平,为调度运行人员及时掌握风险水平和优化控制风险决策提供支持。综合分析风险评估和在线化2个方面的特征,电网运行安全风险在线评估具有以下特点:

(1)考虑的时间尺度短。这是电网运行安全在线评估的最大特点和优势,只需要几分钟到几小时就可以完成评估,对系统问题作出迅速反馈。

(2)候选场景集动态变化。要根据电网运行方式、自然环境和设备状态,动态调整候选场景,场景选取更具针对性。尤其是,间歇式新能源发电大规模并网后,显著增加了运行方式的不确定性。

(3)不确定性因素的时空特性。在不同的电网范围内,影响电网运行安全的不确定性因素有区别,不确定性内容和程度随时间变化。

(4)故障概率模型时变性。引发故障的主要外因不断变化,考虑的时间范围小,因而外部自然环境和设备状态成为故障概率建模的主要因素,而基于历史统计信息的故障概率模型不再占主导地位。

(5)风险指标的工程化要求高。调度运行人员对存在的安全风险要快速作出响应,含义应明确、清晰、易懂,指标变化能够准确、真实、直接反映电网运行安全风险程度。

(6)分析计算量动态变化显著。在线评估的场景数目和预想故障集要根据不确定性因素的动态变化情况进行在线调整,由此引起分析计算量大幅变化。

(7)计算效率要求高。风险评估分析计算量大,在线评估要求时效性强。

3 电网运行安全风险在线评估所要解决的问题

电网运行安全在线评估对于保证电力系统的顺利运行有着重要的作用,但在具体实施过程中仍存在着很多的重点和难点。本文针对实现在线评估的需要解决的几个关键问题进行了分析:

3.1选择合适的风险指标

风险指标与评估和控制决策方法以及效果密切相关电网运行中关注的方面很多,不必将这些要求都在指标体系中予以体现,可将某些方面作为约束条件。

3.2高校风险场景的动态生成与初选

风险评估的场景数量对效率有很大影响,而需要详细进行风险评估的场景不一定多。在初始场景之后的每个阶段有多种可能的场景,因而在后续阶段仍需选择场景。因此,快速、准确的风险场景生成和初选技术对实现在线风险评估非常重要。

3.3故障可能性时变模型

故障概率的准确性是影响风险评估结果可信度的关键因素之一因而备受关注。故障概率建模虽然已有一定基础,但仍有必要深人研究。

4 结语

风电等新能源机组大规模接入显著增加了电网运行的不确定性,按确定性的准则控制电网运行,难以适应现代电网运行的要求。基于风险管理和控制电网运行,能够促进电网运行的安全稳定性和经济性水平协调提升。在线安全稳定综合防御技术的工程应用为开展电网运行安全风险在线评估奠定了良好的基础。尽管完全实现电网运行安全风险在线评估的工程应用还有许多关键问题亟待解决,随着电网运行安全风险评估的线化研究的深入,能够在控制电网运行风险的实践中不断提升驾驭大电网安全经济运行的能力。

参考文献:

[1]王博,游大海,尹项根 等.基于多因素分析的复杂电力系统安全风险评估体系[J].电网技术,2011,35(1):40-45.

[2]余娟,李文沅,颜伟.静态电压稳定风险评估[J].中国电机工程学报,2009,29(28):40-46.

风险评估风险点范文第5篇

关键词: 电力系统;连锁故障;风险评估

随着经济的不断发展,电力系统的发展受到了严峻的考验。近年来世界各地发生了许多连锁停电事故,给各国的社会和经济带来很大的损失,因此对于大停电事故的研究是一个重要的问题,通过识别电力系统的临界特性,才能够进一步了解电力系统连锁故障的原因,针对原因采取解决方式,这对于提高电力系统的可靠性具有十分重要的意义。

1 电力系统连锁故障概述

电力系统连锁故障是由若干因果导致连续发生的事故,在一连串的事故当中,电力系统运行不断受到干扰,持续恶化,最终导致大停电事故。在美国、英国、澳大利亚等发达国家均相继发生过连锁大停电事故,在我国也发生过非常严重的大停电事故,这些事故给社会和经济带来了严重的损失,人民生活受到了很大的影响。

连锁故障所造成的后果非常严重,而且原因比较复杂。正常运行时的电网元件都有一定的初始负荷,当其中的一个元件或若干个元件发生故障时,就会导致其身上的负荷改变,引起负荷转移。由于每个元件的负荷都具有一定的限度,因此原本正常的元件被多余的负荷“排挤”,由于负荷过重,就会引发故障和大规模停电事故,而元凶正是连锁性故障。电力系统由于连锁性故障的影响而不断恶化,从不正常运行到因若干元件的连锁反应而彻底瘫痪。连锁性故障之所以不断扩大,主要就是将故障切除后,由于一些元件负荷过重或保护误动作,引起电力系统的不稳定,从而陷入瘫痪。

根据以往各大停电事故来看,他们共同的特点就是系统内的元件负荷不断增加最终导致系统处于临界状态或非临界状态。但即使是同一种故障,由于其发生概率的不同,所导致的后果也不同,从根本上来讲,电力系统的运行状态才是最重要的。

有效预防大停电事故的方法可以从以下两点入手。

1.1 针对小概率事故加大投资预防

可以专门针对某一类小概率事故增加投资进行预防,这样可以提高电力系统的防御能力。但小概率事故并不具备普遍性,对其进行预防并不能从根本上降低或缓解大停电事故的发生。而且,大量资金用于预防小概率事故,并不能提高电力行业的经济效益,反而损失的可能会更多。小概率事故并不是唯一和固定的原因,由于其不确定性,导致采取常规分析方法会加大结局的难度。

1.2 从运行和规划的角度研究释放系统压力

这种方式是从运行和规划的角度研究如何释放系统压力,使系统摆脱临界状态,降低系统的压力,改善系统的运行状态,从而有效降低系统发生连锁故障的风险。

2 连锁故障分析建模

如何更好的减小连锁故障的发生几率,就要从建立故障模型开始分析,通过各种数学模型分析连锁故障的机理和行为特点。只有从复杂的理论中找出合适的方法,才能够将理论与实际相结合,有效解决问题。通过对电力系统建模,进一步分析系统运行状态的演化过程,在这一过程中的深入电力系统所承受的各种压力,通过多角度分析电力系统处于临界状态下的风险。

在风险分析中常规技术问题的建模过程中,首先要模拟一个连锁事故链,确定初始负荷状态,接着模拟线路连锁过负荷传播机制,某一条或若干条线路由于负荷的重新分配导致连锁负荷的产生,经过很多次循环中,连锁负荷终会停止,系统崩溃,发生事故。模型主要用来计算和分析系统处于临界水平时的状态,从而明确事故的风险。

目前常见的连锁故障模型分为基于复杂网络理论的连锁故障模型和基于人工电力系统的连锁故障模型。复杂网络研究是对人们传统分析方法的一次革命,随着计算机技术的发展,复杂网络的研究正在日益受到重视。人工电力系统的连锁模型是本文分析的重点。

2.1 OPA模型

OPA模型是一种非常典型的数学模型,用线性规划的方法求解发电机功率调度问题,目标是使价值函数最小化。OPA模型模型采用蒙特卡罗仿真,对于发动机的输出功率和线路潮流的数值有着非常明确的界定,不能超过它们的极限值,系统必须要确保上述数值不能超标,而且还要实现功率平衡。这些约束条件导致产生连锁故障的概率增加,这就是OPA模型过于理想化的特点。在现实操作中,许多原因都是比较复杂的,电网也未必会按照模型的要求那样去实现。

2.2 CASCADE模型

CASCADE模型是一种比OPA模型还要简单化的模型,此模型所揭示的原因和现象并不能完全代表实际情况,尤其是对于连锁故障的分析并不具备普遍性,尤其是对于负荷转移和线路超负荷等情况并没有具体的体现和分析。

2.3 分支过程模型

分支过程模型与CASCADE模型相似,原理是从群体到同一类型的个体,让每个个体独立传播,与繁殖的理念类似。分支过程应用于各行各业,通过分支过程分析群体消亡的概率及世代数。

3 电力系统风险评估

电力系统风险评估是一种颇具挑战性的工作,风险评估是使设计人员和工程师以一系列的逻辑步骤和专业系统的方式去检查设备,从中找出产生事故的原因和存在的问题,根据问题采取相应的解决措施,提高设备的安全性和可靠性。实施风险定量评估可以全面的反应事故所造成的危害和发生的概率,对于整个系统而言也起到了很好的保护作用。

电力系统风险评估首先要确定元件停运模型,再选择系统失效状态,并评估其产生的后果,最后通过计算确定发生的可能性,系统状态的后果分析可以通过功率平衡或计算的方式来进行评估。

4 结束语

大面积停电事故给经济造成了巨大的损失,人民的生活也受到了极大的影响。所以必须要正视电力系统的可靠性和安全性问题,根据事故总结经验和教训。在多次事故中,连锁性传播是其共性,将不相关的事故不断延续下去,从而造成了大停电事故。大停电事故是电力系统内部迅速恶化最终崩溃的体现,因此学会识别系统的临界状态,有效释放系统的压力,这样才能够有效控制连锁故障。

分析研究系统临界状态和连锁故障是有效提高系统可靠性的关键因素。随着电力行业不断的发展,大规模建立电网是一种必然的趋势,在追求利益最大化的今天,必须要加强对连锁故障的分析和风险评估,消灭危险因素,从而有效防止大停电事故。

参考文献:

[1]袁季修,防御大停电的广域保护和紧急控制,北京:中国电力出版社,2007.

[2]郭永基,电力系统可靠性分析,北京:清华大学出版社,2003.

[3]易俊、周孝信,基于连锁故障搜索模型的降低电网发生连锁故障风险的方法,电网技术,2007,31(6).

[4]鲁宗相,电网复杂性及大停电事故的可靠性研究.电力系统自动化,2005,29(12):93-97.