前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇网络安全服务的价值范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
一、计算机网络的安全与攻击
计算机的网络安全攻击。计算机的网络安全是数据运行的重要任务,同时也是防火墙的重点内容。计算机的发展在时代的变迁中更加广泛,但同时运行过程中的威胁也会影响到计算机的使用。例如:数据方面、环境威胁、外力破坏、拒绝服务、程序攻击、端口破坏等。计算机网络的主体就是数据,在数据的运行中如果存在漏洞会给网络安全带来很大的隐患,比如在节点数据处若是进行攻击篡改会直接破坏数据的完整性,攻击者往往会选择数据内容进行操作、对其进行攻击泄露,还可植入木马病毒等,使得网络安全成为了问题;环境是网络运行的基础,用户在使用访问时会使用到网络环境,而环境却是开放共享的,攻击者可以对网络环境内的数据包进行处理,将攻击带入内网以破坏内网的防护功能;外力破坏主要就是木马、病毒的攻击,攻击者可以利用网站和邮箱等植入病毒,攻击使用者的计算机,导致网络系统故障;拒绝服务是攻击者利用系统的漏洞给计算机发送数据包,使得主机瘫痪不能使用任何服务,主要是由于计算机无法承担高负荷的数据存储因而休眠,无法对用户的请求作出反应;程序攻击是指攻击者应用辅助程序攻入程序内部,进而毁坏文件数据等;端口攻击却是攻击者从硬性的攻击路径着手,使得安全系统出现问题。以上的各种网络安全问题都需要使用防火墙技术,以减少被攻击的次数和程度,保证用户的数据及文件等的安全。
二、网络安全中的防火墙技术
(一)防火墙技术的基本概念
防火墙技术是保护内部网络安全的一道屏障,它是由多种硬件设备和软件的组合,是用来保障网络安全的装置。主要是根据预设的条件对计算机网络内的信息和数据进行监控,然后授权以及限制服务,再记录相关信息进行分析,明确每一次信息的交互以预防攻击。它具有几种属性:所以的信息都必须要经过防火墙、只有在受到网络安全保护的允许下才能通过它、并且能够对网络攻击的内容和信息进行记录并检测、而且它自身能够免疫各种攻击。防火墙有各种属性,能够对安全防护的策略进行筛选并让其通过、能够记录数据的信息并进行检测,以便及时预警、还能够容纳计算机的整体的信息并对其进行维护。而防火墙常用技术主要分为:状态检测、应用型防火墙和包过滤技术。前者是以网络为整体进行研究,分析数据流的信息并将其与网络中的数据进行区分,以查找不稳定的因素,但是时效性差;应用型的是用来保障内外网连接时的安全,使得用户在访问外网时能够更加的安全;包过滤技术就是将网络层作为保护的对象,按计算机网络的协议严格进行,以此来实现防护效果。
(二)防火墙的常用功能构件
它的常用功能构件主要是认证、访问控制、完整、审计、访问执行功能等。认证功能主要是对身份进行确认;访问控制功能是能够决定是否让此次文件传送经过防火墙到达目的地的功能,能够防止恶意的代码等;完整性功能是对传送文件时的不被注意的修改进行检测,虽然不能对它进行阻止,但是能进行标记,可以有效的防止基于网络上的窃听等;审计功能是能够连续的记录重要的系统事件,而重要事件的确定是由有效的安全策略决定的,有效的防火墙系统的所有的构件都需要统一的方式来记录。访问执行功能是执行认证和完整性等功能的,在通过这些功能的基础上就能将信息传到内网,这种功能能够减少网络边界系统的开销,使得系统的可靠性和防护能力有所提高。
三、防火墙的应用价值
防火墙在计算机网络安全中的广泛应用,充分的展现了它自身的价值。以下谈论几点:
(一)技术的价值
技术是防火墙技术中的一种,能够为网络系统提供服务,以便实现信息的交互功能。它是比较特殊的,能够在网络运行的各个项目中都发挥控制作用,分成高效。主要是在内外网信息交互中进行控制,只接受内网的请求而拒绝外网的访问,将内外网进行分割,拒绝混乱的信息,但是它的构建十分复杂,使得应用不易。虽然防护能力强,在账号管理和进行信息验证上十分有效,但是因使用复杂而无法广泛推广。
(二)过滤技术的价值
过滤技术是防火墙的选择过滤,能够对数据进行全面的检测,发现攻击行为或者危险的因素时及时的断开传送,因而能够进行预防并且有效控制风险信息的传送,以确保网络安全,这项技术不仅应用于计算机网络安全,而且在路由器使用上也有重要的价值。
(三)检测技术的价值
检测技术主要应用于计算机网络的状态方面,它在状态机制的基础上运行,能够将外网的数据作为整体进行准确的分析并将结果汇总记录成表,进而进行对比。如今检测技术广泛应用于各层次网络间获取网络连接状态的信息,拓展了网络安全的保护范围,使得网络环境能够更加的安全。
四、总结
随着计算机网络的使用愈加广泛,网络安全问题也需要重视。而防火墙技术是计算机网络安全的重要保障手段,科学的利用防火墙技术的原理,能够更加合理的阻止各种信息或数据的泄露问题,避免计算机遭到外部的攻击,确保网络环境的安全。将防火墙技术应用于计算机的网络安全方面能够更加有效的根据实际的情况对网络环境进行保护,发挥其自身的作用以实现保护计算机网络安全的目的。
计算机硕士论文参考文献
[1]马利.计算机网络安全中的防火墙技术应用研究[J].信息与电脑,2017,13(35):35.
关键词:计算机技术;网络安全;储存;云计算
在互联网信息技术快速发展的背景下,网络信息安全成为当下主要研究方向之一。云计算技术的有效应用,既为人们的需求带来较大的便利,同时也为用户的信息安全带来了一定的隐患。国家计算机网络与信息安全管理中心甘肃分中心作为地方网络安全治理的重要技术支撑单位,为了有效保护全省计算机网络储存信息的安全,必须要正确认识云计算技术,科学合理的应用,这样才能最大化保障数据的安全性[1],并且准确地监测、预警各类网络安全事件。现为对计算机网络安全存储中云计算技术的应用进行探究,本文将对云计算技术的概念及其发展现状进行论述,继而对计算机网络安全存储中云计算技术所涉及的关键技术进行分析,随后对其相关应用策略进行探究,以供广大计算机网络与信息安全管理从业者参考。
1 云计算技术的概念及发展现状
所谓“云计算技术”,即由分布式计算、网格计算、并行处理等技术发展而来的新型商业计算模型,在实际运作之时,其计算任务一般分布于大量计算机构成的资源池上,令各类应用系统能以实际需求为根据获取系统实际获取的计算能力、软件服务以及存储空间,并建立网络服务器集群,为各类用户提供硬件租借、各种类型的软件服务、数据存储、计算分析等各种类型的服务。举例而言,目前国内普遍使用的几类在线财务软件金蝶及用友等等,再例如国外谷歌曾的谷歌应用程序套装等,这些例子借可归纳入云计算技术的范畴之中,通俗来讲,云计算本身便是将本地计算机需求的计算任务“传送”至云端,由云端处储备的、运算能力远超本地计算机能力的计算机群对本地计算机需求的计算任务进行计算,进而将计算结果及其相关资源传送回本地计算机,这便是最初狭义的“云计算技术”。在发展现状方面,云计算技术通过其本身与以往模式大不相同的服务模式,在信息技术领域这滩“波澜不惊”的死水中惊起了漫天“波澜”,且这“波澜”一旦出现便几无休止,因而也在此领域内引起了社会各阶层的广泛关注。在实际应用一段时间后,其本身也逐渐划分为数大层次――基础设施安全层次、应用服务器安全层次、云端安全层次等等,由于层次较多,目前云计算技术也呈现出了“综合性”,而随着近年来我国社会与科技的不断进步与发展,云计算技术在网络安全方面的研究日渐推进,其中,目前国内外在云计算技术方面的建树主要存在以下案例:一是我国曾创建IBM云计算中心;二是除国家领域的云计算技术应用于网络安全的成功案例外,许多从事于网络安全及其相关领域的企业或公司纷纷基于“云计算技术”提出了针对网络安全的解决方法与策略,如目前在国内外比较出名的360 云、IBM云、Google云及Microsoft云等等。这些案例清楚地向人们展示着“云计算技术”在网络安全储存中的发展程度。同样,这些案例亦成为了将云计算技术应用于网络安全存储中的先行者,为云计算技术在网络安全性中的有效应用做出表率,进而推进网络安全储存的发展。
2 计算机网络安全储存中云计算技术的关键技术
在信息技术和网络技术快速发展的背景下,人们的需求日益增加且要求越来越多,云计算技术也因此诞生,是网络信息技术的衍生物,主要通过把各种技术有效整合起来,包括云储存技术、分布式计算、虚拟技术等等,将网络中的各种资源整合起来,然后为用户提供个性化服务,故云计算机数按照供需原则为用户提供个性化专业服务,随着社会的发展和人类文明的进步,云计算技术具有良好的发展前景,对推动整个信息行业发展具有重要意义,同时还会掀起信息产业发生革命性的浪潮,促使信息产业各项技术得到有效地创新[2]。所以,在计算机网络安全储存中科学合理应用云计算机技术至关重要。
2.1 云计算技术中的身份认证技术
在计算机网络安全储存中,身份认证是开启服务的关键钥匙,身份认证技术具体包括四种技术,分别为口令核对、IC卡的身份验证、PKI身份认证、Kerberos身份认证,具体如下:(1 )口令核对技术是确保信息安全的关键性技术。用户根据自身的需求在系统中获取对应的权限然后创建用户和登陆密码,在使用过程中,根据系统提示,在登陆窗口输入用户的账号和密码,一旦通过系统验证,通过系统验证即可获取对应的使用权限;否则视为非法用户,不能享受服务,在很大程度上保障了用户信息的安全性[3]。(2 )IC卡的身份验证主要应用在智能IC卡中。IC卡储存着用户的相关信息,包括用户ID和口令,用户根据自身的需求,将IC卡插入身份验证端口,通过对IC卡信息的提取然后输送到服务器中进行验证,确认用户ID与口令是否正确确保了网络的安全性,IC卡身份验证最大的优势在于稳定性较高[4]。(3 )PKI身份认证是在公钥基础设施上所研发出一种新型认证技术。利用公钥把基础数据经过一定的构造,同时配合秘钥的使用,才能完成对用户信息的加密和解密,因此在使用过程中必须要通过秘钥和公钥相互作用,才能实现解密的目的。目前PKI身份认证主要是为了维护系统的安全性,且在秘钥更新、秘钥备份、恢复机制等功能下使用[5]。(4 )Kerberos身份认证是建立在第三方可行协议之下,不同于上述三种的身份认证技术,享有授权服务器和资源访问系统的权利。通过加密用户的口令,才能享受对应的使用权限,然后在使用中进行身份验证,身份验证通过获取系统的合法操作权限,同时享受系统所带来的服务。
2.2 云计算技术中的云数据加密技术
在计算机网络安全储存中,数据加密是根本,也是保护数据安全的关键性技术,具体包括对称加密技术和非对称加密技术。(1 )对称加密技术。对称加密技术包括密钥、密文、明文、加密和解密等部分,该技术具有较高的解答难度,且具有较高的安全性,但是由于使用相同的密钥,因此在传递和管理过程中很难有效保障其安全性,另外也不具备同时签名功能。如图1 所示。(2 )非对称加密技术。与对称加密技术而言,非对称加密技术可以有效弥补其不足之处,从而大大提升了秘钥在传递和管理中的安全性,但是在传递与管理中的作用有限,加密解密方面的能力较弱,且复杂性较高,故使用率较低[6]。如图2 所示。
2.3 云计算技术中的纠删码技术
在计算机网络安全储存中,分布式储存系统是一种比较常用的安全存储系统。由于错误代码的固定位置存在较大差异,且不固定,因此为了有效避免这种问题所带来的安全性问题,纠删码技术得到有效的发展与应用。纠删码技术主要包括分组码、集码、码子、监督码元和信息码元等重要组成部分。其中最常用的纠删码分为级联低密度纠删码、无速率编码和RS纠删码,这些纠删码主要应用在计算机网络安全储存中,都具有较高的编解码效率,从而大幅度提升了网络的质量和安全性[7]。如图3-4 所示:
3 在计算机网络安全存储中加强云计算技术运用的策略
在科学技术全面发展的背景下,云计算技术的诞生和有效应用,在很大程度上促进我国社会经济的发展,并为人们的生活和工作带来较多的便利和价值,但同时也带来了一些问题,尤其是对网络安全储存的安全性和准确性。为了有效应用云计算技术,发挥出云计算技术的作用和价值,必须要掌握云计算技术的应用方法,这样才能有效提高计算机网络安全储存的安全性和准确性,并提高云计算技术的作用和价值。
3.1 在可取回性证明算法中加入冗余编码与纠删码
可取回性证明算法在计算机网络储存中主要是用来处理和验证相关数据信息。在可取回性证明算法中通过加入冗余纠错编码,实现对用户身份的准确验证,从而保障了网络数据信息的安全性。同样数据信息查询必须要进行云端验证,只有通过验证,才能实现查询数据信息的操作,并确认云端数据是否安全。如果用户在数据信息查询时,无法通过云端验证,则不能进行对应的数据信息查询操作,同时还会导致文件损坏,此时文件的恢复至关重要,可取回性证明算法可有效恢复因无法通过验证的数据信息。可恢复的数据信息必须要在可取回范围内,同时使用冗余编码对损坏数据进行二次利用,从而确保数据信息的完整性和安全性,可取回性证明发生具有较高的数据恢复效果[8]。另外,还能有效检验云端数据信息是否完整,并准确定位错误数据,分析出具体的地点。数据的恢复离不开冗余编码技术和纠删码技术的有效使用,并保证了系统的安全性和稳定性。可取回性证明算法基本都是根据用户需求,选择或者建立对应的安全机制和安全服务类型,满足用户的安全技术要求,构建出一套完善的网络安全信息系统。
3.2 在用户端和云端中应用
MC-ROMC-R对提高数据管理效率和数据信息控制效果具有重要作用,因此在计算机网络安全储存中有效应用OMC-R策略意义重大。(1 )首先使用MC公钥密码算法加密。在计算机网络安全储存中应用云计算机技术,就会有效降低数据信息的伪装性,此时可借助MC公钥密码算法,提高云端数据信息的伪装性,实现对隐藏模块、标记模块、行为模块的有效伪装,实现提高数据信息安全性的目标[9]。(2 )然后计算云端数据,前提是加密和校验核心数据,防止在应用过程中出现顺号问题。加密模版和解密模版是云端算法的主要模版,先根据系统指令操作,然后使用MC公钥密码算法加密技术,实现对数据的保存、加密,并将秘钥上传到云端中,接着云端对其进行二次加密处理。在使用这些数据时,使用加密程序用秘钥打开所需数据,在使用解密程度解除加密数据,用户则可以正确使用对应的数据[10]。
一、主动式网络安全联动机制
传统的网络防护技术及产品在保障网络安全时发挥着各自的作用,但网络安全不是孤立问题,依靠任何一款单一的产品无法实现,只有将不同厂商、不同功能的产品统一管理,使它们联动运转、协同工作,才能充分发挥整体最佳性能,全方位保障网络安全。
1.联动概念联动指在一个系统的各个成员之间建立一种关联和互动机制,通过这种机制,各个成员自由交换各种信息,相互作用和影响。在主动式网络安全防御体系中,联动是一种新型的网络防护策略。通过联动策略,防火墙、入侵检测系统、反病毒系统、日志处理系统等安全技术和产品在“强强组合,互补互益”的基础上,充分发挥单一产品的优势,构建最强的防御系统。
2.传统联动模型网络安全联动机制中较为完善的安全联动模型有TopSEC模型、入侵检测产品、防火墙联动模型和基于策略的智能联动模型,下面主要介绍基于策略的智能联动模型(如图1所示)。该模型中防火墙、VPN、IDS等安全部件,通过智能进行整合,经过部件关联、智能推理传送给联动策略引擎,再根据事先设定好的策略进行联动,并将最终的策略应用到防火墙、VPN、IDS等安全部件中。
3.主动式网络安全联动模型通过部署诱骗系统,吸引攻击者,记录攻击行为,进而分析新型攻击的特点。同时,通过联动机制,使模型中的各安全部件协同工作,最终发挥主动性联动优点,构建一个自适应、动态的主动式防御系统。其中,蜜罐技术是防御体系内各安全部件实现主动式联动的核心技术。(1)蜜罐技术蜜罐是一种安全概念,美国Project Honeypot研究组的Lance Spitaner将其定义一种安全资源,它的价值就在于被扫描、攻击和摧毁。蜜罐可以是仿效的操作系统或应用程序,也可以是真实的系统或程序。通过蜜罐技术建立一个诱骗环境,吸引攻击者或入侵者,观察和记录攻击行为并形成日志,分析日志后追踪、识别入侵者的身份,进而学习新的入侵规则,主动分析新型攻击特点,不断加固自身防御能力。(2)蜜罐技术实现方式如图2所示,简单的实现方式是将蜜罐置于防火墙内部,通过防火墙与外部网络进行连接。蜜罐内部主要由网络服务、数据收集和日志记录模块组成。网络服务模块将蜜罐伪装成正常服务,吸引入侵者对其进行攻击;数据收集模块主要捕获入侵者行为信息,用于分析攻击者所使用的工具、策略以及攻击目的等;日志记录模块将捕获到的信息按照一定的格式生成日志文件,并记录到日志服务器。(3)基于蜜罐技术的主动式安全联动模型将蜜罐技术融合到传统安全联动模型,改进后形成的新模型,让蜜罐技术处于整个系统的核心地位,使整个安全联动模型由被动状态转变为主动状态,利用蜜罐技术在整个系统中的自学习、自进化的特点,克服传统安全联动模型无法主动捕获网络攻击行为、对未知攻击防御能力不足的问题。基于蜜罐技术的主动式安全联动模型(如图3所示)由防火墙、蜜罐系统、防病毒系统、IDS、策略库和联动系统控制中心组成。该模型通过蜜罐诱骗系统不断学习新的攻击手段,将处理后形成的新规则及策略上传至模型策略库,通过联动系统控制中心实现防火墙、IDS、反病毒等安全部件协同联动,及时更新防火墙、防病毒策略和IDS的检查规则。该模型较好地整合了各种安全防御产品的优点,借助于蜜罐技术“主动诱捕”的特点,提高了安全防御系统对于未知攻击的捕捉能力。
二、网络安全防御技术在数据中心的应用与展望
目前,国内大型银行数据中心普遍使用的网络安全防御技术是基于网络监控参数基线的阈值预警方法和入侵检测系统(Intrusion Detection Systems ,IDS)。阈值预警方法是在基线数值基础上给予一定的冗余,计算出该监控参数的阈值数值,形成阈值线。当实际运行的数值超出阈值线,说明该监控参数运行异常,可以在事件发生之前提前干预,阻止事件发生,保障网络服务连续性。这种防御技术支持动态改进,但出现误报的几率比较高。IDS主要通过监控网络系统的状态、行为以及使用情况,检测系统用户越权使用、系统外部入侵等情况。IDS具有一定的智能识别和攻击功能,在检测到入侵后能够及时采取相应措施,是一项相对成熟的防御技术。但IDS主要通过特征库判断,面对新型攻击无法识别,且攻击识别只能在事中或事后阶段进行,本质上仍然是被动防护。在入侵技术越来越成熟的形势下,采用单一的网络安全部件如IDS、防火墙、扫描器、病毒查杀、认证等已经满足不了网络安全防护的要求,将各种安全部件的功能和优点进行融合、实现联动互补,进而发挥最大效力将成为必然趋势。
【关键词】网络安全技术 现状分析 实现具体路径
1 云计算的简介
云计算就是各类计算为前提,其中主要包含网络计算以及分布计算,创建出一类新型的计算方式。通过一种新型的具备共同分享性的方式,进行大数据的处理和计算,元计算的关键是计算机网络的全套服务以及相关信息资源的储存。云计算最主要的特征是:安全的数据储存功能,对终端设备的标准要求不高、便捷的操作、具有较大的空间进行计算等。所以计算机网络数据储存安全维护,换句话说也就是网络安全,能够在技术方面以及管理水平层面上使用与计算的基础方式,保障网络信息数据的保密性,防止信息泄露或者受到黑客和攻击者的破坏,最大限度的保障计算机网络数据的完整性、安全性以及价值方面的安全层次设定。
2 云计算下网络安全技术使用的价值
在新时期,运用云计算的方式,完成对网络安全技术的使用,它的作用主要是:
2.1 主要表现在在网络数据贮存的可信赖方面
不断深化云计算下网络安全技术的使用,能够保证网络的使用者的私密数据信息不丢失或者泄露。计算机的广域网与局域网相互融合的模式形成的的数据中心,能够以不同地域备份和多级互联网备份为基础,极大程度上保证计算机网络使用者的信息安全,在一定程度上防止传统计算机产生的信息遭到泄露的情况的出现。
2.2 主要表现在多个设备资源共同分享方面,能够完成安全以及快捷的的共享
网络安全技术的普遍使用,不但能够在一定限度内减轻用户装备功能上的准则,当使用者的计算机连接到网络,就能够快速完成计算机之间的信息、以及软件的共享。而且在使用者进行共享过程的有关应用时,鉴于提前在使用者信息安全性上实施了繁杂的融合加密手段,信息在网络下的传输过程是以一种密码保护的情况下开展的,唯有数据传输到指定的对象那里,才会以严密的使用者权限管理形式和融合密码的安全验证,就能够完成指定用户的信息共享,强化对网络数据传输安全的保障。
2.3 在云计算环境下,网络安全技术使用的含义还表现在对网络安全的检验
云计算环境下的网络安全技术,能够最大限度的对大型移动终端中的软件行动实施监督,检测出网络中隐藏的木马程序以及病毒软件等,经过服务终端的自行判断以及分析后,为用户制定相应的解决策略,保证使用者的信息安全。
3 云计算下网络安全技术的当前状况解析
其安全技术应用的问题主要包括技术、网络使用的大环境以及相关的法令制度保护。
(1)技术层面的问题主要是终端服务停止时,用户的使用受到限制,不能实施对数据和信息的保护。所以,怎么能够在技术上保证使用者信息的安全,是一个需要快速解决关键问题;
(2)计算机网络使用的环境方面。研究当前的计算机网络运行环境,找出保护使用者终端计算机非法病毒在网络上的散布和高效的阻止攻击者的破坏,是当前网络安全维护的关键问题。由于利益的驱使,黑客的数量逐步增加,然后通过倒卖公司的商业机密获取经济利益,以保证某些企业在竞争中处于有利地位。
(3)当前还没有完善的计算机网络安全上的法令规章制度的保护,所以攻击者的行为难以得到制约,造成当前网络环境的安全受到极大的威胁。
4 云计算下网络安全技术的具体实现方式
4.1 提高使用者的安全防范思想,明确网络安全技术发展的战略目标
(1)深化网络使用的实名制,确定网络授予使用权限的对象,从用户身份上提高网络安全。防止外界攻击者的非法入侵造成信息的丢失。
(2)要高效的保障网络安全技术在使用上的系统准时性,此外还需强化对网络信息散布方面的监管,针对网络中的隐秘信息,必须定时审查和不定时的抽检,对出现的问题要给予高度重视并快速解决,避免出现损失。
(3)使用数字签名手段的方法,一般需要经过数字签名的形式,对用户的身份进行验证,最大限度维护计算机网络的安全。
4.2 极大在网络安全技术上的支持,提升应对网络安全隐患的处理水平和解决方法
网络安全技术支持的含义包括网络应用程序和服务的开发、网络安全维护体系的规划及检验和数字签名技术手段的使用。在网络应用程序和服务的开发方面上,必须高度重视杀毒程序上的安装以及使用方法,提高计算机在网络安全上防护能力。
4.3 实施加密的网络安全上的有关前沿手段
经过应用针对于计算机网络安全设计的筛选装备,能够有效的防止被计算机系统鉴别通过但是但是属于非法信息和程序。挑选信用优秀的网络运营商,供应有关的的云服务,保证使用者的信息不在自己的视野范围内,也可以被专业能力强的企业监管,避免使用者的信息出现泄露的风险。另外,一定要深化使用者对密码难度上的设置,以防使用者的信息被窃取或者私自篡改。
5 结语
社会的快速稳定发展,使我国的计算机网络发展极其快速,网络安全问题在使用中逐步显现。云计算下的计算机网络安全也有相当大的问题,主要包括计算机网络技术水平、管理技能、使用效果等繁杂的、牵涉范畴较为广泛等因素。本文针对完成云计算下网络安全手段的使用,提供了具体的实现方法,终极目标是使我国的网络安全使用环境更加规范化,创建一个管理有效、使用安全网络秩序。
参考文献
[1]邵晓慧,季元翔,乐欢.云计算与大数据环境下全方位多角度信息安全技术研究与实践[J].科技通报,2017(01):76-79.
[2]刘伉伉.云计算环境下入侵检测技术的研究[D].山东师范大学,2015.
[3]牛海春.基于移动Agent的移动云计算任务迁移机制研究[D].洛阳:河南科技大学,2015.
[4]莫伟志.基于云计算校园网络信息安全技术的发展分析[J].信息安全与技术,2015(06):44-45+53.
[5]郭琪瑶.云计算技术下的网络安全数据存储系统设计[J].电脑知识与技术,2015(35):5-7.
关键词: 蜜罐技术 虚拟蜜罐 定义和分类 关键技术 优缺点
1.引言
伴随着网络普及与发展,网络安全问题日益严峻。面对不断出现的新的攻击方法和攻击工具,传统的、被动防御的网络防护技术越来越无法适应网络安全的需要,网络安全防护体系由被动防御转向主动防御是大势所趋。作为一种新兴的主动防御技术,蜜罐日益受到网络安全工作者的重视。研究蜜罐及其关键技术对未来的网络安全防护具有深远的意义。
2.蜜罐的定义和分类
2.1蜜罐的定义
蜜罐(又称为黑客诱骗技术)是一种受到严密监控的网络诱骗系统,通过真实或模拟的网络和服务,来吸引攻击,从而在黑客攻击蜜罐期间,对其行为和过程记录分析,以搜集信息,对新攻击发出预警,同时蜜罐可以延缓攻击时间和转移攻击目标。蜜罐本身并不直接增强网络的安全性,相反,它通过吸引入侵,来搜集信息。将蜜罐和现有的安全防卫手段,如入侵检测系统(IDS)、防火墙(Firewall)、杀毒软件等结合使用,可以有效提高系统安全性。
2.2蜜罐的分类
蜜罐有三种分类方法。
2.2.1从应用层面,可分为产品型和研究型。
2.2.1.1产品型蜜罐。指由网络安全厂商开发的商用蜜罐,一般用来作为诱饵,把黑客的攻击尽可能长时间地捆绑在蜜罐上,赢得时间,保护实际网络环境,也用来搜集证据作为黑客的依据,但这种应用在法律方面仍然具有争议。
2.2.1.2研究型的蜜罐。主要应用于研究,吸引攻击,搜集信息,探测新型攻击和新型黑客工具,了解黑客和黑客团体的背景、目的、活动规律,等等。在编写新的IDS特征库,发现系统漏洞,分析分布式拒绝服务攻击等方面是很有价值的[1]。
2.2.2从技术层面,根据交互程度,可分为以下三种。
2.2.2.1低交互蜜罐。只是运行于现有系统上的一个仿真服务,在特定的端口监听记录所有进入的数据包,提供少量的交互功能,黑客只能在仿真服务预设的范围内动作。低交互蜜罐上没有真正的操作系统和服务,结构简单,部署容易,风险很低,所能收集的信息也是有限的。
2.2.2.2中交互蜜罐:不提供真实的操作系统,而是应用脚本或小程序来模拟服务行为,提供的功能主要取决于脚本。在不同的端口进行监听,通过更多和更复杂的互动,让攻击者产生是一个真正操作系统的错觉,能够收集更多数据。
2.2.2.3高交互蜜罐。由真实的操作系统来构建,提供给黑客的是真实的系统和服务,可以学习黑客运行的全部动作,获得大量的有用信息,包括完全不了解的新的网络攻击方式。正因为高交互蜜罐提供了完全开放的系统给黑客,带来了更高的风险,即黑客可能通过这个开放的系统去攻击其他系统。
2.2.3从具体实现的角度,分为物理蜜罐和虚拟蜜罐。
2.2.3.1物理蜜罐:通常是一台或多台真实的在网络上存在的主机操作,主机上运行着真实的操作系统,拥有自己的IP地址,提供真实的网络服务来吸引攻击。
2.2.3.2虚拟蜜罐:通常用的是虚拟的机器、虚拟的操作系统,它会响应发送到虚拟蜜罐的网络数据流,提供模拟的网络服务等。
3.蜜罐的关键技术
蜜罐的关键技术主要包括欺骗技术、数据捕获技术、数据控制技术、数据分析技术,等等。其中,数据捕获技术与数据控制技术是蜜罐技术的核心。
3.1欺骗技术
蜜罐的价值是在其被探测、攻击或者攻陷的时候才得到体现的。将攻击者的注意力吸引到蜜罐上,是蜜罐进行工作的前提。欺骗的成功与否取决于欺骗质量的高低。常用的欺骗技术有以下五种。
3.1.1IP空间欺骗。
IP空间欺骗利用计算机的多宿主能力,在一块网卡上分配多个IP地址,来增加入侵者的搜索空间,从而显著增加他们的工作量,间接实现了安全防护的目的。这项技术和虚拟机技术结合可建立一个大的虚拟网段,且花费极低。
3.1.2 漏洞模拟。
即通过模拟操作系统和各种应用软件存在的漏洞,吸引入侵者进入设置好的蜜罐。入侵者在发起攻击前,一般要对系统进行扫描,而具有漏洞的系统,最容易引起攻击者攻击的欲望。漏洞模拟的关键是要恰到好处,没有漏洞会使入侵者望而生畏,漏洞百出又会使入侵者心生疑虑。
3.1.3 流量仿真。
蜜罐只有以真实网络流量为背景,才能真正吸引入侵者长期停驻。流量仿真技术是利用各种技术使蜜罐产生欺骗的网络流量,这样即使使用流量分析技术,也无法检测到蜜罐的存在。目前的方法:一是采用重现方式复制真正的网络流量到诱骗环境;二是从远程产生伪造流量,使入侵者可以发现和利用[2]。
3.1.4 服务伪装。
进入蜜罐的攻击者如发现该蜜罐不提供任何服务,就会意识到危险而迅速离开蜜罐,使蜜罐失效。服务伪装可以在蜜罐中模拟Http、FTP、Telent等网络基本服务并伪造应答,使入侵者确信这是一个正常的系统。
3.1.5 重定向技术[3]。
即在攻击者不知情的情况下,将其引到蜜罐中,可以在重要服务器的附近部署蜜罐,当服务器发现可疑行为后,将其重定向到蜜罐。还可以使用蜜罐,以及多个蜜罐模拟真正的服务器,当对服务器的请求到来时,利用事先定义好的规则,将请求随机发送到蜜罐和服务器中的一个,用以迷惑攻击者,增大攻击者陷入蜜罐的概率。
3.2数据捕获技术
如果无法捕获攻击者的活动,蜜罐就失去了存在的意义。数据捕获的目标是捕捉攻击者从扫描、探测、发起攻击,直到离开蜜罐的每一步动作。捕获的数据来自三个层次:防火墙日志、网络数据流和主机系统内核级的数据提取。第一层数据捕获由防火墙日志根据设定的过滤规则,记录入侵者出入蜜罐的行为信息,数据直接放在本地;第二层数据捕获由入侵检测系统捕获网络原始报文,并放在IDS本地,IDS报警信息可以让系统管理员了解系统中正发生的状况;第三层数据捕获由蜜罐主机完成。主要是主机日志,用户击键序列和屏幕显示,这些数据应异地存储,以防攻击者发现。随着加密技术的发展,越来越多的攻击者开始使用加密工具,保护和隐藏他们的通信。系统内核级的数据提取必须应对入侵者数据加密的情况,目前最先进的技术是开发特殊的内核数据处理模块来替代系统内核函数,从而记录下入侵者的行为。
3.3数据控制技术。
数据控制技术既控制数据流,又不引起攻击者的怀疑。如攻击者进入蜜罐,但不能向外发起连接,他们就会对系统产生怀疑,而完全开放的蜜罐资源在攻击者手中会成为向第三方发起攻击的攻击跳板。目前数据控制技术主要从以下两方面对攻击者进行限制。[3]
3.3.1限制攻击者从蜜罐向外的连接数量。
传统的限制方法是通过配置防火墙,设置从蜜罐向外的连接数目,超过数量即中断连接。这种方法较安全,但易被攻击者识破。改进方法是将防火墙技术与入侵检测技术结合,形成入侵检测控制。即在系统上安装一个包含已知攻击模式的签名数据库,以检测捕获的攻击是否与数据库匹配。如果匹配,就切断连接;如果不匹配,则根据需要设定连接次数。这样既可以学习更多的未知攻击,又可以迷惑攻击者。
3.3.2限制攻击者在蜜罐中的活动能力。
这包括连接限制、带宽限制、沙箱技术等较新的技术。连接限制就是修改外出连接的网络包,使其不能到达目的地,同时给入侵者造成网络包已正常发出的假象,麻痹攻击者。带宽限制即通过控制带宽利用率和网络延时,限制入侵者由蜜罐向外发包的能力。这种方法往往使攻击者认为网络本身出现了问题,意识不到自己已身陷蜜罐。沙箱技术可对应用进程进行定量限制和定性限制,比如限制CPU的使用率和只允许访问特定的资源等,这无疑降低了应用程序的访问能力[5]。实践证明,若要真正实现既控制数据流,又不引起攻击者的怀疑的目的,单靠某一种技术是不行的,必须综合而灵活地使用上述数据控制技术。
3.4数据分析技术。
数据分析包括网络协议分析、网络行为分析和攻击特征分析等。要从大量的网络数据中,提取攻击行为的特征和模型是很难的。现有的蜜罐系统都没有很好地解决使用数学模型自动分析和挖掘出网络攻击行为这一难题[4]。
4.蜜罐技术的优缺点
4.1蜜罐的优点。
4.1.1数据价值高。
当今,安全组织所面临的一个问题就是怎样从收集到的海量数据中获取有价值的信息,从防火墙日志、系统日志和入侵检测系统发出的警告信息中收集到的数据的量非常大,从中提取有价值的信息很困难。蜜罐不同于其他安全工具,每天收集到若干GB的数据,大多数Honeypot每天收集到的数据只有几兆,并且这些数据的价值非常高,因为蜜罐没有任何产品型的功能,所有对它的访问都是非法的、可疑的。
4.1.2资源消耗少。
当前大多数安全组织所面临的另一个难题就是有时会由于网络资源耗尽,因而导致安全措施失去了作用。例如,当防火墙的状态检测表满的时候,它就不能接受新的连接了,它会强迫防火墙阻断所有的连接。同样入侵检测系统会因为网络流量太大,使其缓冲区承受不起,所以导致IDS丢失数据包。因为Honeypot只需要监视对它自己的连接,需要捕获和监视的网络行为很少,很少会存在网络流量大的压力,所以一般不会出现资源耗尽的情况。我们不需要在充当蜜罐的主机的硬件配置上投入大量的资金,只需要一些相对便宜的计算机,就可以完成蜜罐的部署工作。
4.1.3实现简单。
部署一个蜜罐,不需要开发复杂和新奇的算法,不需要维护特征数据库,不需要配置规则库。只要配置好蜜罐,把它放在网络中,就可以静观其变。
4.2蜜罐的缺点。
4.2.1数据收集面狭窄。
如果没有人攻击蜜罐,它们就变得毫无用处。在某些情况下,攻击者可能识别出蜜罐,就会避开蜜罐,直接进入网络中的其他主机,这样蜜罐就不会发现入侵者已经进入了你的网络。
4.2.2有一定风险。
蜜罐可能会把风险带入它所在的网络环境。蜜罐一旦被攻陷,就有可能成为攻击、潜入或危害其他的系统或组织的跳板。
5.结语
蜜罐技术的出现为整个安全界注入了新鲜的血液。它不仅可以作为独立的信息安全工具,而且可以与其他安全工具协作使用,从而取长补短,对入侵者进行检测。蜜罐可以查找并发现新型攻击和新型攻击工具,从而解决了入侵检测系统和防火墙中无法对新型攻击迅速做出反应的问题。蜜罐系统是一个有相当价值的资源,特别是对潜在的攻击者和他们所使用工具相关信息的收集,没有其他的机制比蜜罐系统更有效。
参考文献:
[1]翟继强,叶飞.蜜罐技术的研究与分析.网络安全技术与应用,2006,(4):15-17.
[2]胡文广,张颖江,兰义华.蜜罐研究与应用.网络安全技术与应用,2006,(5):48-49.