首页 > 文章中心 > 电力安全分析

电力安全分析

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇电力安全分析范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

电力安全分析

电力安全分析范文第1篇

关键词:电力调度 自动化 网络安全

1电力调度

为确保电网系统在安全的状态下稳定运行,进行电力调度是必不可少的一项工作。电力调度作为一种科学的管理方式,在日常工作当中,要根据信息设备采集到的相关信息数据及监控工作人员提供的数据,与具体电网的运行数据进行对比分析,对相关工作状态进行综合性分析,从而对整个电网系统的安全运行状况做出客观性分辨,由电力系统发出的相关操作指令,对现场操作人员与自动控制系统做出科学的调整,从而确保电网系统在安全、稳定的状态下顺利运行。电力调度自动化指的是,运用计算机技术、通信技术等先进科学技术,完成电力调度自动化操作,它是目前整个电力系统中发展最快的一种形式,其中涵盖了电力系统数据的采集与监控、电力系统经济运行与调度、电力系统的市场化运行、变电站的自动化调度等内容。在整个电力调度自动化网络系统中,电力系统数据的采集与监控是重要的前提条件。

2电力调度自动化网络基本现状

目前我国的电网企业纵使创建了电力调度自动化网络系统,可是在社会经济因素的影响下,国家电网发展也非常迟缓,在现阶段的电力调度自动化网络建设过程中突出的问题具体表现在以下几点。

2.1人为因素对电力调度自动化网络带来的影响

创建电力调度自动化网络过程当中,操作人员责任意识较低、缺乏充分的安全思想观念等,都会对电力调度自动化网络安全建设造成巨大的影响。网络建设过程当中,操作人员不能盲目地根据自我需求对相关数据信息做出修改,对相关电网运行设备未做好定期维护,无法确保各项安全生产活动的顺利开展。为能够确保电力调度自动化网络保持在良好的安全运行状态,需针对操作人员做好岗前安全培训与专业的技术指导,从而促使操作人员加强安全生产意识,提高专业技术水平,进而确保电力调度自动化网络系统在安全的状态下高效运行。除此之外,电力调度自动化网络设计早起,并未做好对整个网络系统的全方位规划,这是造成互联网、企业内部网络管理工作出现问题的一个主要原因,会导致信息数据的泄露。若电力调度自动化网络遭受到黑客的侵入,那么极易导致整个网络系统的瘫痪,纵使在网络中进行了杀毒软件、防火墙的设置,在某种程度上可维护电力调度自动化网络的正常运行,可是防火墙的制约性因素非常多,并且会给广大用户正常使用信息带来一定程度的影响,为此日常工作中防火墙的使用概率并不高。

2.2技术因素对电力调度自动化网络带来的影响

在技术因素的影响下,电力调度自动化网络安全的维护存在很多问题,譬如:许多设备落后的变电站中,根本无法促使无人值班模式的顺利实现,若在电力调度自动化网络中缺乏充分的监管措施,那么极易给电网正常运行安全带来极大的影响。设计电力调度自动化网络工作中,若未做好全面的预测,很有可能会有安全事故的发生,纵使目前的电网系统不断完善化,可是在有突发状态出现的情况下,依然会有应对不及时的状况出现。除此之外,伴随着电力调度自动化网络性能的日益完善化,有大量的报警信息不断形成,可是,这些信息的有效性非常低,这给操作人员的日常工作造成了很大的影响,严重的还会因操作人员不能第一时间鉴别信息影响到整个电力调度网络安全。随着电力调度自动化网络运行环境要求的不断增高,要求必须在24h内进行持续性的运行,从而才能促使监控的及时有效性大大提升,若电网运行环境受到卫生、温湿度因素的影响,那么会导致电力调度自动化网络运行过程中各类问题的出现,进而致使电力系统的精准度大大降低,给电网运行状况造成极大的影响。在长期的电力调度自动化网络运行过程当中,电网设备极易发生老化的现象,并且在电网系统存在自身缺陷的状况下,给监控的安全有效性能造成不利的影响。

3有助于电力调度自动化网络安全的措施

为更好地确保电力调度自动化网络在安全的状态下顺利运行,确保各项性能得到充分、有效发挥,可采取以下安全措施。

3.1重视对电网企业操作人员的培训

若当前电网企业中操作人员专业技术水平、综合素质较低,未达到社会与电网企业的现实需求,那么企业则需对企业操作人员进行专业技术培训,确保操作人员具有较强的应变能力与安全意识,在有安全事故出现的情况下,能够立即做出正确的应对措施。与此同时,电网企业要制定明确的考核制度,将企业考核与员工的绩效直接挂钩,可给予那些在培训后取得良好成效的员工一定的精神或物质奖励,从而达到最佳的培训效果。

3.2提高监控的全面性和有效性

电力调度自动化网络安全运行状态当中,要求电网企业操作人员做好电压、电量、电网频率等数据的全方位监测,对电网设备的具体运行状态进行密切关注,把监测结果及时地打印出来。除此之外,若监控设备存在损坏的情况,那么要进行重新订货,及时通知设备生产厂家,以企业现实需求为前提做好电网设备的验收,预防电网设备在实际使用过程中会存在反复维修的情况发生,将电网企业成本控制在最低的一种状态。

3.3提高网络安全的维护力度

电网企业要做好网络信息数据的备份,这样在有网络安全问题出现的时候,能够很好地预防信息数据的丢失,网络中一旦有黑客侵入或出现操作上的失误等,备份的数据信息作用便能够得到有效的发挥。电网企业操作人员要严格遵循相关规定来操作应用软件,当操作人员离开时,要及时地将账户注销掉,同时给予监督人员、维护人员、管理人员不同级别的权限,这样就会避免登录过程中安全问题的发生。建议电网企业可通过指纹识别的方式进行电网登录,从而可促使电力调度自动化网络安全水平大大升高。目前,网络病毒种类越来越多,电力调度自动化网络运行过程中,杀毒软件的投入使用,可为操作人员日常工作提供很大的便利,并且可预防信息泄露等问题的发生。并且要注意做好防雷击、防火等物理安全的日常维护,操作人员可使用防静电措施对电网设备的重要部件进行拆装,将人为因素给网络造成的损坏降到最低的程度,促使电力调度自动化网络在安全的状态下顺利运行。

4结语

若想实现我国电力资源的科学有效性配置,进行电力调度自动化网络安全是基本保障,唯有确保电力调度自动化网络的整体安全,才能够促使现代化电网建设过程中的一系列现实性问题得到有效解决,保证电网工作的顺利开展。在电力调度自动化网络安全问题方面,我们要不断加强操作人员的安全思想意识,加强技术性操作水平,制定明确的操作规范,这样才能够避免安全事故的发生,在提升电力调度自动化网络安全水平的基础上,推动我国电力行业得到迅速可持续发展。

参考文献

[1]马雷.针对电力调度自动化的网络安全问题的分析[J].科技与企业,2014(4):76.

电力安全分析范文第2篇

在中国,中国电力科学研究院、国网电力科学研究院联合研发动态安全评估和预警系统(powersystemdynamicsecurityassessment&earlywarningsystem,PDSA),并成功应用于国家电网和南方电网进行周期不间断在线安全稳定分析,实现稳定裕度评估和预防控制辅助决策[16-19]。清华大学张伯明教研组研发了基于EMS/DTS的电网控制中心安全预警和决策支持系统并实施于江西电网[20-23],石立宝教研组着眼于动态安全裕度,研发了实时动态安全评估及预警仿真系统,实现了极限传输容量的高效计算[24-25]。在各机构或专家学者的研究成果中,或对电网进行全面安全分析,或针对某一特定稳定问题进行评估,而在线安全稳定分析均是实现大电网动态安全评估的核心技术。基于实时数据的在线安全稳定分析综合利用稳态、动态、暂态多角度在线安全分析评估以及稳定裕度评估,在一定程度上实现了大电网运行的全面安全预警和多维多层协调的主动安全防御[26-27]。然而,基于实时数据的在线安全稳定分析仍存在以下几个问题:1)在系统实际运行需要时间间隔内(如5~15min),进行周期、事件和人工触发计算,运算结果合理性保证的前提条件是计算周期内,电网不发生明显的拓扑和电气量的变化。2)电网调度和运行人员会经常对电网运行工况进行调整,如开关刀闸操作、发电量调节、电网元件投切,需要对调整后的电网安全稳定情况进行预先校核。3)由于存在电网模型等值,对跨区电网的在线安全稳定分析,上级与下级调度控制中心之间、两级调度控制中心之间仅依靠实时数据自动计算无法满足电网潮流和动态行为的一致性。4)新能源发电、负荷的快速变化对电网在线安全稳定情况的预知提出了实际要求,基于实时数据的在线安全稳定分析无法满足。上述原因对在线安全稳定分析提出了更高的要求。基于此,深化关于电力系统在线动态安全评估和预警系统方面的研究,提出满足实际电网调度运行需求的在线安全稳定分析应用模式具有重要意义。

1在线安全稳定分析介绍

在线安全稳定分析的服务对象是电网调度运行,包括提出电网运行的主要问题和解决方案2方面含义。在线安全稳定分析中,同时进行静态安全分析、暂态稳定分析、电压稳定分析、小干扰稳定分析和短路电流计算,并进行稳定裕度评估;若系统存在不安全的问题,针对不同稳定问题,即时启动相应预防控制辅助决策计算,提供运行方式调整的可行方案,以保证系统的稳定运行。在线安全稳定分析整体上可划分为4个过程:数据整合(dataintegration,DI)、动态安全稳定分析(dynamicsecurity/stabilityanalysis,DSA)、稳定裕度评估(stabilitymarginevaluation,SME)和预防控制辅助决策(preventivecontroldecisionmaking,PCDM)。基于智能电网调度控制系统基础平台,获取电网模型、故障集等计算参数,分别接入来自状态估计、上级调控机构下发的电网运行数据,通过数据准备生成满足在线安全稳定分析要求的计算数据,基于并行计算实现安全稳定分析和稳定裕度评估(或预防控制辅助决策)功能。图1是在线安全分析总体框架。

2应用模式

在应用模式上,完整的在线安全稳定分析应分为实时分析模式、研究分析模式和趋势分析模式。实时分析模式对当前电网运行方式进行安全稳定分析和稳定裕度评估和预防控制辅助决策;研究分析模式对研究方式进行潮流调整,并进行安全稳定分析和稳定裕度评估和预防控制辅助决策;趋势分析模式基于当前实时方式数据,根据调度计划类数据生成未来一段时间内的电网趋势运行方式,并依时序滚动进行安全稳定分析和稳定裕度评估和预防控制辅助决策。

2.1实时分析模式

实时分析模式是实现在线安全稳定分析的主要功能。其主要特点是,基于未经任何修改的在线运行数据,不允许任何人工对模型、数据的修改,自动执行系统分析过程,对电力系统做出客观的安全稳定分析结论和稳定裕度评估结论(或辅助决策计算结果)。实时分析模式分析对象的形成如图2所示。在流程上,首先通过实现与调度支持系统的接口,获取调度支持系统中的各类安全稳定分析所需要的在线数据;然后进行数据整合和数据交换,送入到并行计算平台中;并行计算平台通过高效的计算组织方法,实现各个电力系统应用软件的并行分析,并通过统一规范接口送回计算结论到调度支持系统。图3是完整计算执行过程流程图,从上至下按执行时间顺序描述执行过程,同时体现了硬件设备之间的数据流向。具体可划分为4个过程。1)计算触发阶段。支持周期触发、事件触发和人工触发3种启动方式:周期触发自动完成对当前电网运行方式的安全扫描,实现对当前电网运行方式的评估、预警和辅助决策;事件触发获取事件信息,从状态估计获取设备故障后电网运行方式,实现对设备故障后电网运行方式的评估、预警和辅助决策;人工触发支持调度运行人员手动触发在线分析计算,实现对当前电网运行方式的评估、预警和辅助决策。依3种启动方式的重要程度,其优先级为人工触发最高,事件触发次之,周期触发最次。周期触发为以每5或15min为周期的不间断触发计算。触发计算后,计算平台状态和计算任务执行状态被全过程跟踪,调度运行人员对在线分析的计算状态全景掌握。2)数据整合阶段。计算触发后,从EMS/SCADA等系统获取计算数据,经过状态估计和潮流计算,得到支持的潮流数据、稳态数据和动态数据。然后将完整计算数据和相关计算配置文件发送至调度服务器。3)安全稳定分析和稳定裕度计算阶段。基于并行计算技术,利用数据整合形成的计算数据,进行静态安全分析、暂态稳定分析、电压稳定分析、小干扰稳定分析、短路电流计算和稳定裕度评估。稳定计算结果存入数据库,并发送至人机界面。安全稳定分析结束后,执行稳定裕度评估计算,稳定裕度计算考虑静稳裕度、热稳裕度和暂稳裕度。4)调度辅助决策计算阶段。对于DSA计算存在不安全的分析结果,进行预防控制辅助决策的计算。其中不安全结果包括热稳越限、暂态失稳、电压失稳、低频振荡、短路电流超标。整个计算完成后,运行方式数据和计算结果存入数据库。实时运行模式依靠并行计算的高速计算能力和开放的集成性能,完全实现基于在线数据的全部稳定分析计算,整个分析计算可在5min完成。其全面快速的安全预警功能,改变传统的基于典型方式进行离线稳定分析的模式,分析结果更全面客观,解决电力系统长过程连续故障(或开断)情况下的安全分析的速度、全面性和可信度的问题,为应对电网的大面积停电事故提供宝贵的技术手段。

2.2研究分析模式

研究分析模式主要实现调度运行操作前的安全稳定分析功能。其主要特点是,通过人工修改运行方式,对即将在系统中发生的调度运行参与事件进行安全稳定评估。在作用上,研究分析模式可以对实时运行方式进行干预,研究调度运行操作对电网安全稳定运行影响和校核;也可以对历史潮流断面进行研究,可用于事故反演和分析。研究分析模式分析对象的形成如图4所示。在流程上,首先通过人机界面,记录下用户的修改内容并计算潮流;然后送入到并行计算平台中;最后并行计算平台通过高效可靠的任务分配方法,实现各种稳定计算并行分析,并推送计算结论到人机界面。图5是完整计算执行过程流程图。与实时分析相区别的是,研究分析在触发计算之前,允许对潮流数据进行修改。因而基于在线数据的研究分析本质上属于一种在线研究态分析,基于历史数据的研究分析本质上已经属于离线分析,所以其计算触发仅支持人工触发即可。在形式上,包括独立推演和联合推演2种形式,当调度运行人员仅对管辖范围内电气元件进行操作时,可利用独立推演对操作后电网的稳定情况进行研究;当调度运行人员的操作影响会波及到相邻或远方电网时,可以进行上下级调度和不同区域调度间进行联合推演。

2.3趋势分析模式

由于实时分析模式基于当前电网运行状态进行计算,对即将发生的变化缺少应对手段。趋势分析实现对短期内电网安全稳定状态发展趋势的预先评估。趋势分析可以拓展在线安全稳定分析的覆盖范围,能给出电网运行即将发生的重大变化及其稳定状态。在电网安全稳定趋势发生恶化或者没有改善的情况下,给出电网短期控制的辅助决策,调整电网未来运行状态,进一步实现电网运行安全的预防控制。趋势分析基于在线运行方式,利用未来短时间内的计划数据(如断面功率计划、交直流联络线功率计划、实时发电计划、检修计划等)和预测数据(如新能源发电超短期预测、超短期负荷预测等),将实时运行方式与计划和预测数据匹配在一起,形成未来短时间内的潮流解。趋势分析模式分析对象的形成如图6所示。在分析流程上,趋势分析与实时分析并无不同,只是趋势分析仅需支持周期触发启动,由于研究对象本质上属于对电网未来态的预测,无事件触发和人工触发功能的必要性。图7是完整计算执行过程流程图。显然,趋势分析模式一方面是实时分析模式在时间尺度上的向前延伸,另一方面通过一系列稳定指标的对比判断电网安全稳定情况是趋向更安全还是更危险。但应说明的是,由于趋势运行方式本质上为对电网未来态的预测,仍存在着很大的不确定性,预测运行方式与实际运行方式之间存在差别不可避免,因而在实际调度运行应用中,趋势分析模式并不能取代实时分析模式。

2.4应用模式比较

表1是3种应用模式的比较。3种应用模式的根本区别在于研究数据源范围的差异,因而导致各自的分析对象的不同。实时分析和趋势分析要求客观的反映电网实际或预测的安全稳定情况,因而不允许对电网潮流进行人工调整,不允许人工参与分析过程,依据客观要求形成了各自需要满足的触发方式。实时分析和趋势分析在时间上要求的快速性导致必须利用高效可靠的大规模并行计算平台;而研究分析模式用于十几分钟至小时时间尺度内的调度操作校核或事故反演,因而关心的往往是特定的稳定任务,利用小规模或单机计算即可满足运算速度的要求。

3算例分析

以某省级实际电网实例进行分析,该电网调度控制中心具备实时分析和趋势分析同时进行周期触发计算,触发周期为15min。2014年11月4日00:15:00—03:00:00期间,实时分析和趋势分析同时给出静态安全分析预警:若BXI线发生N-1故障,将造成BXII热稳越限。次日进行研究分析模式仿真重演、并依据调度辅助决策给出的方式调整进行研究分析,实时分析、趋势分析、研究分析的结果比对如图9所示。算例结果可见,实时分析对当前电网断面安全稳定情况进行分析,同时,趋势分析可对电网未来时间段内的运行安全稳定性进行有效预测。由于趋势分析的分析对象为基于当前断面和计划数据生成的未来态趋势潮流,与15min后实际潮流断面的误差不可避免,因而基于趋势潮流的安全稳定分析结果与实际分析结果也存在定量上的误差。但在计划执行和预测数据满足一定准确性的范围内,分析结果并不影响其对未来电网安全稳定分析的定性结论。研究分析的重演可以与实时分析结论相印证,通过调度辅助决策给出的建议,利用研究分析对电网潮流断面进行调整,重新进行BXI线N-1断开的静态安全分析,BXII线热稳定分析的越限情况消失,有效遏制了电网热稳越限风险。

4结论

电力安全分析范文第3篇

【关键词】 电力系统 信息安全 入侵检测

随着社会生产力的快速发展,新型电气设备层出不穷,人们对电的需求量和依赖性日益增长。电网规模逐年猛增,要给居民提供安全、可靠、持续稳定的电力供应,传统的信息监控方式已经不能适应时展的要求。现代信息化技术在电网系统中的应用,给电力系统的高效、快捷管理提供了良好的技术基础,同时也给电网信息的一致性、完整性和安全性提供了一定的保障。早期的电力系统仅局限于局域网,在安全技术方面存在的问题不是很大,但是目前电力系统信息化由局域网变成了广域网,因此在进行维护的过程中,必须要防止互联网上各种不安全因素给电力系统造成的破坏。笔者结合理论知识和实践经验对电力系统信息化的安全问题进行深入探讨。

1 电力系统信息化安全风险分析

根据电力系统的特征和网络现状,目前电力系统信息化方面主要存在以下几方面的风险:(1)物理安全风险:主要指多种不可预测的环境意外情况对电力系统造成的危害,例如:火灾、电源故障、设备被盗等。(2)网络边界安全风险:主要是指多种未经授权的恶意访问、病毒攻击等对电力系统造成的危害。(3)系统的安全风险:主要是指网络操作系统自身存在的安全漏洞、补丁更新不及时对电力系统信息化造成的破坏。(4)应用安全风险:主要是指电力信息化系统在应用过程中的资源共享、电子邮件系统等安全性被破坏对电力系统信息化造成的风险。(5)管理的安全风险:主要是指在使用互联网过程中由于管理制度的不完善及维护人员的不专业性对电力系统信息化造成的风险。

2 电力系统信息化的安全需求分析

通过上述电力系统信息化安全风险分析可知,此系统对于安全需求分析可以分为以下几种:(1)电力系统中的重要信息极易通过辐射或者干扰等方式泄露出去,因此需对系统机房进行必要的辐射干扰机、构建屏蔽等。在物理安全方面可以进行双机备份、防雷及接地等安全保护。(2)为了保证电力系统和外网连接的安全性,可以在内网和外网之间配置IP加密,建立隔离网络;在不同区域、不同网络之间进行数据传输时要配置相应的防火墙系统;为了进一步提高网络之间数据传输的安全性,还要在系统内配置入侵检测系统,以避免受到恶意攻击。(3)对电力系统配置两个安全系统:第一,安全评估系统。该系统的主要功能是定期对运行中的信息网络进行不安全因素扫描,及时发现系统中存在的漏洞并进行修复,增强系统的受攻击能力;第二,安全审计系统。该系统的主要功能是防御工作人员出现违规、违纪操作及滥用网络资源等对系统带来安全隐患。(4)电力系统需要配置防病毒系统,以保护系统数据、服务器等不受到病毒的破坏;提高电力系统运行平台的安全水平,对运行系统进行技术的升级、更新、打补丁等,提高系统安全性;提高系统应用程序的安全性,例如:电子邮件、www系统、数据库等降低系统的安全风险。(5)建立完善的身份认证系统,提供数字签名、认证服务等,保证系统中数据的完整性及限制性访问;建立数据恢复系统,防止意外出现;建立完善的管理制度和应急机制,防止人为风险及提高应急事件的快速响应。

3 电力系统信息化安全技术解决方案

3.1 解决方案之防火墙

防火墙是将局域网和广域网进行隔离的防御系统。在电力系统中使用防火墙可以对内网进行划分,对于内部系统中要网段进行隔离,通过限制性访问来降低外网造成的不良影响。但是防火墙也存在以下几个不足之处:第一,对于通向系统站点的后门无法阻止;第二,无法对内部系统进行保护;第三,无法防御数据驱动型的攻击。同时,防火墙本身没有较强的防攻击能力,极易成为被攻击的对象。

3.2 解决方案之入侵检测系统

为了弥补防火墙的不足之处,在电力系统信息化中应用入侵检测系统(IDS)是常用的措施。IDS的主要功能是对于入侵的病毒进行实时监测及防护,该系统能够主动探测到网络中的入侵和攻击行为,例如:能够记录数据异常现象、能够对危险方式进行实时报警、能够阻断攻击通讯等。但是IDS系统也存在着自身无法客服的缺陷,难以解决误报及漏报的问题,此问题的解决必须依靠安全评估系统来配合确认。

3.3 解决方案之漏洞扫描技术

随着攻击性手段的复杂化,对电力系统抵抗破坏的能力进行分析能够提高系统的安全性。安全扫描分析系统能够检测出系统存在的安全漏洞,评估系统的安全性能,是保证系统安全性的重要技术。工作原理是采用模拟攻击的方式对工作站、服务器、书库据等进行逐项检测检查,同时提供安全分析检测结果,为系统的修复提供技术依据。

防火墙、入侵检测系统及漏洞扫描技术三者配合起来能够较好的为电力系统提供安全保障。

3.4 解决方案之防病毒

随着信息技术的快速发展,网络病毒的种类和传播方式形式多样,同时网络病毒传播速度快、危害大、途径多,对整个电力系统的危害很大。其危害主要表现在以下几个方面:第一,数据丢失;第二,网络通信阻断;第三,打乱正常的工作秩序等,这些危害造成的损失往往无法估量,因此,防病毒侵害已经成为保护计算机安全的重中之重。针对目前病毒的特点,防病毒技术必须具有实时监控、支持多平台运行及多种应用程序对病毒进行不间断的监控和处理,目前常用的防病毒手段主要有特征代码法、行为检测法及感染实验法等。在电力系统信息化进行实际应用时,由于要考虑成本、网络综合性能等方面的原因,网络层多是基于Unix平台,服务系统通常为Linux、windows等,要真正实现防止病毒传播的目的,必须对这些系统采取全面统一的防病毒保护措施。

4 结语

现阶段,我国电力系统信息化网络采用的是TCP/IP技术,该网络极具开放性,导致它极易受到各种不安全因素的攻击和干扰;同时,随着网络应用的日益增多,电力网络的安全需求也与日俱增,如何能够更好的保证电力系统的信息安全是电力企业将要面临的重要课题,需要相关专业人员持续不断的分析和探究。

参考文献:

[1]雷炳晖,霍艳萍,基于IEC标准的配网管理信息系统集成和应用[J].高电压技术,2011(50):1160-1162.

[2]陈颂,王光伟,刘欣宇等.信息系统安全风险评估研究[J].通信技术,2012,45(1):135-137.

电力安全分析范文第4篇

 

1美国电力行业信息安全的战略框架

 

为响应奥巴马政府关于加强丨Kj家能源坫础设施安全(13636行政令,即ExecutiveOrder13636-ImprovingCriticalInfrastructureCybersecurity)的要求,美国能源部出资,能源行业控制系统工作组(EnergySec*torControlSystemsWorkingGroup,ESCSWG)在《保护能源行业控制系统路线图》(RoadmaptoSecureControlSystemsintheEnergySector)的基础上,于2011年了《实现能源传输系统信息安全路线阁》。2011路线图为电力行业未来丨0年的信息安全制定了战略框架和行动计划,体现了美国加强国家电网持续安全和可靠性的承诺和努力路线图基于风险管理原则,明确了至2020年美国能源传输系统网络安全目标、实施策略及里程碑计划,指导行业、政府、学术界为共丨司愿景投入并协同合作。2011路线图指出:至2020年,要设计、安装、运行、维护坚韧的能源传输系统(resilientenergydeliverysystems)。美国能源彳了业的网络安全目标已从安全防护转向系统坚韧。路线图提出了实现目标的5个策略,为行业、政府、学术界指明了发展方向和工作思路。(1)建立安全文化。定期回顾和完善风险管理实践,确保建立的安全控制有效。网络安全实践成为能源行业所有相关者的习惯,,(2)评估和监测风险。实现对能源输送系统的所有架构层次、信息物理融合领域的连续安全状态监测,持续评估新的网络威胁、漏洞、风险及其应对措施。(3)制定和实施新的保施。新一代能源传输系统结构实现“深度防御”,在网络安全事件中能连续运行。(4)开展事件管理。开展网络事件的监测、补救、恢复,减少对能源传输系统的影响。开展事件后续的分析、取证以及总结,促进能源输送系统环境的改进。(5)持续安全改进。保持强大的资源保障、明确的激励机制及利益相关者密切合作,确保持续积极主动的能源传输系统安全提升。为及时跟踪2011路线图实施情况,能源行业控制系统工作组(ESCSWG)提供了ieRoadmap交互式平台。通过该平台共享各方的努力成果,掌握里程碑进展情况,使能源利益相关者为路线图的实现作一致努力。

 

2美国电力行业信息安全的管理结构

 

承担美国电力行业信息安全相关职责的主要政府机构和组织包括:国土安全部(DHS)、能源部(1)0£)、联邦能源管理委员会(FEUC)、北美电力可靠性公司(NERC)以及各州公共事业委员会(PUC)。2.1国土安全部美国国土安全部是美国联邦政府指定的基础设施信息安全领导部I'j'负责监督保护政府网络安全,为私营企业提供专业援助。2009年DHS建立了国家信息安全和通信集成中心(NationalCyhersecurityandCommunicationsIntegrationCenter,NCCIC),负责与联邦相关部门、各州、各行业以及国际社会共享网络威胁发展趋势,组织协调事件响应w。

 

2.2能源部

 

美国能源部不直接承担电网信息安全的管理职责,而是通过指导技术研发和协助项目开发促进私营企业发展和技术进步能源部的电力传输和能源可靠性办公室(Office(>fElectricityDelivery<&EnergyReliability)承担加强国家能源基础设施的可靠性和坚韧性的职责,提供技术研究和发展的资金,推进风险管理策略和信息安全标准研发,促进威胁信息的及时共享,为电网信息安全战略性综合方案提供支撑。

 

能源部2012年与美国国家标准技术研究院、北美电力可靠性公司合作编制了《电力安全风险管理过程指南》(ElectricitySubsectorCybersecurityRiskManagementProcess)151;2014年与国土安全部等共同协作编制完成了《电力行业信息安全能力成熟度模型》(ElectricitySubsectorcybersecurityCapabilityMaturityModel(ES-C2M2)丨6丨,以支撑电力行业的信息安全能力评估和提升;2014年资助能源行业控制系统工作组(ESCSWG)形成了《能源传输系统网络安全采购用语指南》(CybersecurityProcurementlanguageforEnergyDeliverySystems)171,以加强供应链的信息安全风险管理。

 

在201丨路线图的指导下,能源部启动了能源传输系统的信息安全项目,资助爱达荷国家实验室建立SCADA安全测试平台,发现并解决行业面临的关键安全漏洞和威胁;资助伊利诺伊大学等开展值得信赖的电网网络基础结构研究。

 

2.3联邦能源管理委员会

 

联邦能源管理委员会负责依法制定联邦政府职责范围内的能源监管政策并实施监管,是独立监管机构。2005年能源政策法案(EnergyPolicyActof2005)授权FERC监督包括信息安全标准在内的主干电网强制可靠性标准的实施。2007年能源独立与安全法案(EnergyIndependenceandSecurityActof2007(EISA))赋予FERC和国家标准与技术研究所(National丨nstituteofStandardsan<丨Technology,NIST)相关责任以协调智能电网指导方针和标准的编制和落实。2011年的电网网络安全法案(GridCyberSecurityAct)要求FKRC建立关键电力基础设施的信息安全标准。

 

2007年FERC批准由北美电力可靠性公司制定的《关键基础设施保护》(criticalinfrastructureprotection,CIPW标准为北美电力可靠性标准之中的强制标准,要求各相关企业执行,旨在保护电网,预防信息系统攻击事件的发生。

 

2.4北美电力可靠性公司

 

北美电力可靠性公司是非盈利的国际电力可靠性组织。NERC在FERC的监管下,制定并强制执行包括信息安全标准在内的大电力系统可靠性标准,开展可靠性监测、分析、评估、信息共享,确保大电力系统的可靠性。

 

NERC了一系列的关键基础设施保护(CIP)标准181作为北美电力系统的强制性标准;与美国能源部和NIST编制了《电力行业信息安全风险管理过程指南》,提供了网络安全风险管理的指导方针。

 

归属NERC的电力行业协凋委员会(ESCC)是联邦政府与电力行业的主要联络者,其主要使命是促进和支持行业政策和战略的协调,以提高电力行业的可靠性和坚韧性'NERC通过其电力行业信息共享和分析中心(ES-ISAC)的态势感知、事件管理以及协调和沟通的能力,与电力企业进行及时、可靠和安全的信息共享和沟通。通过电网安全年会(GridSecCon)、简报,提供威胁应对策略、最佳实践的讨论共享和培训机会;组织电网安全演练(GridEx)检查整个行业应对物理和网络事件的响应能力,促2.5州公共事业委员会美国联邦政府对地方电力公司供电系统的可靠性没有直接的监管职责。各州公共事业委员会负责监管地方电力公司的信息安全,大多数州的PUC没有网络安全标准的制定职责。PUC通过监管权力,成为地方电力系统和配电系统网络安全措施的重要决策者。全国公用事业监管委员协会(NationalAssociationofRegulatoryUtilitycommissioners,NARUC)作为PUC的一■个联盟协会,也采取措施促进PUC的电力网络安全工作,呼吁PUC密切监控网络安全威胁,定期审查各自的政策和程序,以确保与适用标准、最佳实践的一致性%

 

3美国电力行业信息安全的硏究资源

 

参与美国电力行业信息安全研究的机构和组织主要有商务部所属的国家标准技术研究院及其领导下的智能电网网络安全委员会、国土安全部所属的能源行业控制系统工作组,重点幵展电力行业信息安全发展路线图、框架以及标准、指南的研究。同时,能源部所属的多个国家实验室提供网络安全测试、网络威胁分析、具体防御措施指导以及新技术研究等。

 

3.1国家标准技术研究院(NIST)

 

根据2007能源独立与安全法令,美_国家标准技术研究院负责包括信息安全协议在内的智能电网协议和标准的自愿框架的研发。NISTf20102014发#了《®能电网互操作标准的框架和路线图》(NISTFrameworkaridRoadmapforSmartGridInteroperabilityStandard)1.0、2.0和3.0版本,明确了智能电网的网络安全原则以及标准等。2011年3月,NIST了信息安全标准和指导方针系列中的旗舰文档《NISTSP800-39,信息安全风险管理》丨叫(NISTSpedalPublication800—39,ManagingInformationSecurityRisk),提供了一系列有意义的信息安全改进建议。2014年2月,根据13636行政令,了《提高关键基础设施网络安全框架》第一版,以帮助组织识别、评估和管理关键基础设施信息安全风险。

 

NIST正在开发工业控制系统(ICS)网络安全实验平台用于检测符合网络安全保护指导方针和标准的_「.业控制系统的性能,以指导工业控制系统安全策略最佳实践的实施。

 

3.2智能电网网络安全委员会

 

智能电网网络安全委员会其前身是智能电网互操作组网络安全工作组(SGIP-CSWG)ra。SGCC一直专注于智能电网安全架构、风险管理流程、安全测试和认证等研究,致力于推进智能电网网络安全的发展和标准化。在NIST的领导下,SGCC编制并进一步修订了《智能电网信息安全指南》(NISTIR7628,GuidelinesforSmartGridCybersecurity),提出了智能电网信息安全分析框架,为组织级研究、设计、研发和实施智能电网技术提供了指导性T.具。

 

3.3国家电力行业信息安全组织(NESC0)

 

能源部组建的国家电力行业信息安全组织(NationalElectricSectorCybersecurityOrganization,NESCO),集结了美国国内外致力于电力行业网络安全的专家、开发商以及用户,致力于网络威胁的数据分析和取证工作⑴。美国电力科学研究院(EPRI)作为NESC0成员之一提供研究和分析资源,开展信息安全要求、标准和结果的评估和分析。NESCO与能源部、联邦政府其他机构等共同合作补充和完善了2011路线图的关键里程碑和目标。

 

3.4能源行业控制系统工作组(ESCSWG)

 

隶属国土安全部的能源行业控制系统工作组由能源领域安全专家组成,在关键基础设施合作咨询委员会框架下运作。在能源部的资助下,ESCSWG编制了《实现能源传输系统信息安全路线图》、《能源传输系统网络安全釆购用语指南》。3.5能源部所属的国家实验室

 

3.5.1爱达荷国家实验室(INL)

 

爱达荷W家实验室成立于1949年,是为美国能源部在能源研究、国家防御等方面提供支撑的应用工程实验室。近十年来,INL与电力行业合作,加强了电网可靠性、控制系统安全研究。

 

在美国能源部的资助下,INL建立了包含美国国内和国际上多种控制系统的SCADA安全测试平台以及无线测试平台等资源,目的对SCADA进行全面、彻底的评估,识別控制系统脆弱点,并提供脆弱点的消减方法113】。通过能源部的能源传输系统信息安全项目,INL提出了采用数据压缩技术检测恶意流量对SCADA实时网络保护的方法hi。为支持美国国土安全部控制系统安全项目,INL开发并实施了培训课程以增强控制系统专家的安全意识和防御能力。1NL的相关研究报告有《SCADA网络安全评估方法》、《控制系统十大漏洞及其补救措施》、《控制系统网络安全:深度防御战略》、《控制系统评估中常见网络安全漏洞》%、《能源传输控制系统漏洞分析>严|等。

 

3.5.2太平洋西北国家实验室(PNNL)

 

太平洋西北国家实验室是美国能源部所属的阔家综合性实验室,研究解决美国在能源、环境和国家安全等方面最紧迫的问题。

 

PNNL提出的安全SCADA通信协议(secureserialcommunicationsprotocol,SSCP)的概念,有助于实现远程访问设备与控制中心之间的安全通信。的相关研究报告有《工业控制和SCADA的安全数据传输指南》等。PNNL目前正在开展仿生技术提高能源领域网络安全的研究项。

 

3.5.3桑迪亚国家实验室(SNL)

 

桑迪亚国家实验室是能源部所属的多学科国家实验室,也是联邦政府资助的研究和发展中心。SNL的研究报告有《关键基础设施保护网络漏洞评估指南》、《控制系统数据分析和保护安全框架》、《过程控制系统的安全指标》I1'《高级计量基础设施安全考虑》、《微电网网络安全参考结构》等。在能源部的资助下,SNL开展了关于供应链威胁的研究项目,形成的威胁模型有助于指导安全解决方案的选择以及新投资的决策hi。

 

4美国电力行业信息安全的运作策略

 

4.1标准只作为网络安全的基线

 

NERC的关键基础设施保护标准(CIP)作为强制性标准,是电力行业整体网络安全策略的重要内容。CIP标准与电网规划准则、系统有功平衡与调频、无功平衡与调压、安全稳定运行等系列标准相并列,成为北美大电网可靠性标准的重要组成部分。目前强制执行的是CIP-002至C⑴-009共8个标准的第3版。文献1丨6]提供了CIP-002至CIP-009主要内容的描述列表。C〖P第5版近期已通过FERC批准即将于2016年实施。第5版新增了CIP-010配置变更管理和漏洞评估、C1P-011信息保护2个强制标准。

 

目前配电系统没有强制标准,但NIST将C1P标准融入了智能电网互操作框架中。智能电网互操作框架虽然是自愿标准,但为配电系统提供了信息安全措施指导为系统性的指导智能电网信息安全工作,NIST组织编制了《美国智能电网信息安全指南》,提出了一个普适性的智能电网信息安全分析框架,为智能电网的各相关方提供了风险评估、风险识别以及安全要求的实施方法。DOE编制的《电力行业信息安全风险管理过程指南》提供了电力行业信息安全风险管理的方法[5】。DOE与DHS合作编制的《信息安全能力成熟度模型》(ES-C2M2)i6i,通过行业实践帮助组织评估、优化和改善网络安全功能,促进网络安全行动和投资的有序开展以及信息安全能力的持续提升。2014年NIST了《提高关键基础设施网络安全框架》也作为电力行业网络安全自愿标准。文献f17]提到只有21%的公用事业采取了NERC推荐的预防震网措施,可见自愿标准的执行率偏低强制执行的CIP标准在大电力系统网络安全方面确实发挥了基础作用,然而网络威胁的快速变化以及每个组织面对的风险的独特性,强制性标准在某种程度上影响企业采取超过但不同于最低标准的合适的防护措施。文献丨3]提出目前将强制性的解决方案扩展到配电网不是有效的方法,联邦政府也在考虑缩小强制性范围。持续提升网络安全水平不能仅仅依赖于标准的符合度,监督管理不能保证安全。电力行业的网络安全需要整体的网络安全战略,包括安全文化建设、共享与协作、风险管理等。无论是强制性的标准还是非强制性的标准都只是信息安全的最低要求'4.2安全文化建设成为信息安全路线图首要策略

 

对能源传输系统安全风险的认知缺失或识别能力的不足,缺少有效的安全策略和技术环境训练的人员,将阻碍能源行业的持续安全。安全文化建设已成为201丨路线图的首要策略,以提升电力行业网络安全运作的主动性。2011路线图提出重点从最佳实践、教育、认证等方面加强信息安全文化建设,以实现能源传输系统的最佳实践被广泛使用、具备能源传输和网络安全技能的行业人员明显增长等中长期目标'最佳实践传递的目标效果是网络安全实践成为能源行业所有相关者的习惯。相关国家实验室围绕各自研究方向总结了评估方法、漏洞补救措施、操作指南等一系列最佳实践。如INL根据其多年SCADA漏洞评估经验,编制了《能源传输系统漏洞分析》、《SCADA网络安全评估方法》等。PNNL编制的《丁业控制和SCADA系统的安全数据传输指南》,为工业控制系统提供了能及时发现并阻止人侵的数据传输结构。NIST将最佳实践融入了安全框架、指南和导则中,如《提高关键基础设施网络安全框架》、《工业控制系统网络安全指南》等。NESCO、NERC等通过电网安全年会等多种方式提供了最佳实践的交流机会。

电力安全分析范文第5篇

关键词:配电线路;安全;管理;措施

一、加强配电线路安全管理的意义

1、确保供电安全。配电线路的重要作用就是负责电量的运输工作,保证居民用电。目前情况下配电线路存在安全隐患,因此加强配电线路的安全管理工作具有重大的意义,它能够保证供电过程中的顺利,保证供电的安全。

2、保证居民用电情况。对配电线路的安全管理,能够保证线路在输送电量的过程中能过正常进行,减少了线路分支对电能的损耗,确保了居民的用电质量。

二、配电线路存在的主要问题

1、在同一根电杆上有较多线路穿插交错。因此一旦出现故障则会造成不容易找到发生故障的线路,在检修的时候,浪费维修时间,同时也造成了停电区域面积扩大的不良后果。

2、变电站所的不合理分配。这就会导致有一些配电线路的长度过长,浪费材料,同时也增加了线路的分支,在电能运输的过程中,损耗变大,而且导致了供电末端的电压降低,影响了供电的质量。

3、配电设备的落后。虽然配线线路的建设在不断的加强,但是在目前,还是有较多的配网设备由于长期的使用没有及时得到更新和取代,还是属于一些比较陈旧、落后的设备,因此随着供电要求不断增加,供电线路无法满足供电的需求,影响了供电的质量,而且使用过久的陈旧设备存在着安全的隐患,危机人身安全。

4、配电线路巡视工作不到位。线路巡视缺乏计划性,随意性比较大,并且在线路巡视过程中,工作人员的责任心不强,工作方式落后,操作不规范等。

三、加强配电线路安全运行管理

1、建立完善管理制度。首先要在制度上制定对配电系统运行进行巡视、维护、施工、检修等方面的条例,使配电线路运行管理有章可循。运行管理的根本目标是为供电质量服务,通过对线路运行流程的正规性进行监督,检测作业质量优劣,使配电网络形成良好的运行模式,完善过程控制系统。制度的设置要从事前预防、严控规范、合理检验、事后处理等方面来考虑。运行单位可以根据地域特点和配电网覆盖面的范围,制定相应的管理制度,包括如巡视制度、线路运行维护管理制度、设备缺陷管理、运行计划管理、施工及质量管理以及设备检修等制度,要结合运行单位实际情况,选择具有针对性的规范文本,将规定的岗位职责、权力分配、绩效考核、奖惩办法等予以明确,为运行单位管理者对于员工操作和设备运行的控制提供依据。

2、加强设备缺陷管理。加强设备缺陷管理,制定设备缺陷管理细则,其目的是及时发现和掌握运行设备存在的隐患和问题,以便按轻重缓急消除缺陷,提高设备健康水平,是保障设备安全运行的重要手段。

(1)配电线路缺陷。配电线路缺陷分为一般缺陷、重大缺陷和紧急缺陷三大类。一般缺陷,是指在近期内不会危及设备安全运行,对线路影响不大的缺陷,可列入年、季检修计划或日常维护工作中消除。如个别螺丝松动、导线弧垂不平衡度超过标准要求、杆基处有小水坑,绝缘子偏斜超过规定值、铁附件锈蚀等等。重大缺陷,是指缺陷比较严重,但设备在短期内仍可继续安全运行,应在短期内消除且在消除前要加强监视。如:杆塔倾斜10/1000;杆基埋深小于标准的50%;导线烧伤断股不超过总导电截面积的7%;变压器渗油严重,套管破损2/3以上;接头发热已限制符合;横担、顶套、金具有较大变形等等。紧急缺陷,是指缺陷已使设备不能继续安全运行,随时可能导致事故发生或危及人身安全,必须尽快消除或采取必要的安全技术措施进行临时处理的缺陷。如:杆塔严重倾斜,扎线拔断,随时有倒杆可能;导线烧伤断股严重,随时有可能断线;绝缘子击穿接地或表面闪络放电;变压器声响温度异常或油箱开裂漏油;跌落式熔断器、刀闸、避雷器桩头烧坏、瓷裙炸裂等等。

(2)缺陷标准的制定。配电线路运行单位应根据自己的具体情况,如地理位置、自然条件、设备的质量等情况,将配电线路几个大的部分:杆塔、导线、绝缘子、变压器和变台、柱上开关、柱上电容器、跌落式熔断器和刀闸、避雷器、金具及拉线、防雷接地装置等,制定出每一部分的一般缺陷、重大缺陷、紧急缺陷的标准,标准应尽可能详细,能定量的应有数字标准,不能定量的在定性上要描述清楚,便于运行、检修人员现场判断。

3、实行计划管理。运行单位应根据线路设备健康状况、巡视检测结果、设备检修周期和反事故措施的要求,制作下一年度线路设备的检修计划书,并报上级部门核准;运行单位应根据获得核准的检修计划内容和单位现状向下分解,任务目标;检修计划发给检修人员后,依据计划开展各项工作,杜绝违章操作行为。

4、强化线路巡视工作。线路巡视包括正常巡视,事故巡视,特殊巡视,夜间、交叉和诊断性巡视,登杆塔巡视,监察巡视等。不同的巡视分类解决了不同的工作需求。特别是事故巡视,要对事故进行调查分析,清楚事故发生原因、区域以及当时现场情况,要进行书面描述。而重大事故更是如此,同时还要根据事故调查处理“四不放过”原则进行事故处置。

5、加强技术培训。开展技术培训和方法、手段可采用多种多样形式,如定期技术问答、现场考问讲评、短期培训班、主题技术讲座、反事故演习、实际操作和基本功演习等等。

6、强化安全管理。安全生产是的一项综合性工作,必须实行全员、全方位、全过程的管理。落实安全生产责任制。在配电部内形成主任与班组长、班组长与班员自上而下,自下而上的各级管理网络。安全责任制包括:班长的安全责任制、安全员的安全责任制、班员安全责任制。各行其责,守土有责。开展安全活动。班组应开展经常性、多样化的安全学习、宣传教育和岗位练兵活动,使职工熟练地掌握本岗位的安全操作技术及安全作业标准,不断提高职工的安全意识和自我保护能力。

四、结束语