前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇风险评估方法论范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1 信息安全风险评估基本理论
1.1 信息安全风险
信息安全风险具有客观性、多样性、损失性、可变性、不确定性和可测性等多个特点。客观性是因为信息安全风险在信息系统中普遍存在;多样性是指信息系统安全涉及多个方面;损失性是指任何一种信息安全风险,都会对信息系统造成或大或小的损失;可变性是指信息安全风险在系统生命周期的各个阶段动态变化;不确定性是一个安全事件可以有多种风险;可测试性是预测和计算信息安全风险的方法。
1.2 信息安全风险评估
信息安全风险评估,采用科学的方法和技术和脆弱性分析信息系统面临的威胁,利用系统,评估安全事件可能会造成的影响,提出了防御威胁和保护策略,从而防止和解决信息安全风险,或控制在可接受范围内的风险,最大限度地保护系统的信息安全。通过评价过程对信息系统的脆弱性进行评价,面临威胁和漏洞威胁利用的负面影响,并根据信息安全事件的可能性和严重程度,确定信息系统的安全风险。
2 信息安全风险评估原理
2.1 风险评估要素及其关系
一般说来,信息安全风险评估要素有五个,除以上介绍的安全风险外,还有资产、威胁、脆弱性、安全措施等。信息安全风评估工作都是围绕这些基本评估要素展开的。
2.1.1 资产
资产是在系统中有价值的信息或资源,是安全措施的对象。资产价值是资产的财产,也是资产识别的主要内容。它是资产的重要程度或敏感性。
2.1.2 威胁
威胁是导致不期望事件发生的潜在起因,这些不期望事件可能危害系统。
2.1.3 脆弱性
脆弱性是资产存在的弱点,利用这些弱点威胁资产的使用。
2.1.4 安全措施
安全措施是系统实施的各种保护机制,这种机制能有效地保护资产、减少脆弱性、抵御威胁、减少安全事件的发生或降低影响。风险评估围绕上述基本要素。各要素之间存在着这样的关系:
(1)资产是风险评估的对象,资产价值是由资产价值计量的,资产价值越高,证券需求越高,风险越小。
(2)漏洞可能会暴露资产的价值,使其被破坏,资产的脆弱性越大,风险越大;
(3)威胁引发风险事件的发生,威胁越多风险越大;
(4)威胁利用脆弱性来危害资产;
(5)安全措施可以防御威胁,减小安全风险,从而保护资产。
2.2 风险分析模型及算法
在信息安全风险评估标准中,风险分析涉及资产的三个基本要素,威胁和脆弱性。每个元素都有它自己的属性,并由它的属性决定。资产的属性是资产的价值,而财产的威胁可以是主体、客体、频率、动机等。财产的脆弱性是资产脆弱性的严重性。在风险分析模型中,资产的价值、威胁的可能性、脆弱性的严重程度、安全事件的可能性和安全事件造成的损失,两者是整合的,它是风险的价值。
风险分析的主要内容为:
(1)识别资产并分配资产;
(2)确定威胁,并分配潜在的威胁;
(3)确定漏洞,并分配资产的脆弱性的严重程度;
(4)判断安全事件的可能性。根据漏洞的威胁和使用的漏洞来计算安全事件的可能性。
安全事件发生可能性=L(威胁可能性,脆弱性)=L(T,V)
(5)计算安全事件损失。根据脆弱性严重程度和资产价值计算安全事件的损失。
安全事件造成的损失=F(资产价值,脆弱性严重程度)=F(Ia,Va);
(6)确定风险值。根据安全事件发生可能性和安全事件造成的损失,计算安全事件发生对组织的影响。
风险值=R(A,T,V)=R(F(Ia,Va),L(T,V))
其中,A是资产;T是威胁可能性;V是脆弱性;Ia是资产价值;Va是脆弱性的严重程度;L是威胁利用脆弱性发生安全事件的可能性;F是安全事件造成的损失,R是风险计算函数。
3 信息风险分析方法探析
作为保障信息安全的重要措施,信息安全系统是信息安全的重要组成部分,而信息安全风险评估的算法分析方法,风险评估作为风险分析的重要手段,早已被提出并做了大量的研究工作和一些算法已成为正式信息安全标准的一部分。从定性定量的角度可以将风险分析方法分为三类,也就是定性方法、定量方法和定性定量相结合。
3.1 定性的风险分析方法
定性的方法是凭借分析师的经验和知识的国际和国内的标准或做法,风险管理因素的大小或程度的定性分类,以确定风险概率和风险的后果。定性的方法的优点是,信息系统是不容易得到的具体数据的相对值计算,没有太多的计算负担。它有一定的缺陷,是很主观的,要求分析有一定的经验和能力。比较著名的定性分析方法有历史比较法、因素分析方法、逻辑分析法、Delphi法等,这些方法的成败与执行者的经验有很大的关系。
3.2 定量的风险分析方法
定量方法是用数字来描述风险,通过数学和统计的援助,对一些指标进行处理和处理,来量化安全风险的结果。定量方法的优点是评价结果直观,使用数据表示,使分析结果更加客观、科学、严谨、更有说服力。缺点是,计算过程复杂,数据详细,可靠的数据难以获得。正式且严格的评估方法的数据一般是估计而来的,风险分析达到完全的量化也不太可能。与著名的定时模型定量分析方法、聚类分析法、因子分析法、回归模型、决策树等方法相比较,这些方法都是具有数学或统计工具的风险模型。
3.3 定性定量相结合的风险分析方法
是因为有优点和缺点的定量和定量的方法,只使用定性的方法,太主观,但只有使用定量方法,数据是难以获得的,所以目前常用的是定性和定量的风险分析方法相结合。这样,既能克服定性方法主观性太强的缺点,又能解决数据不好获取的困难。典型的定性定量相结合的风险评估工具有@Risk、CORA等。
关键词:电力企业,风险管理,定量风险评估
0、引言
电力作为高风险产业,不仅源于其公用事业属性,以及技术资金密集、供求瞬时平衡、生产运行连续等特征,同时电力项目投资额巨大、建设周期长、沉没成本高,而且,随着电力体制改革和电力市场建设进程的深入,市场主体越来越多,电力交易关系复杂,不同主体之间协调困难,电力行业规划建设、生产经营的不确定性加大、电力市场风险增加。根据“十一五”期间电力体制改革的任务,面对我国电力市场化发展的现状,增强风险意识,树立风险观念,加强风险管理将是电力企业的重要任务。本文在阐述了企业风险管理基本框架流程及其主要内容的基础上,提出电力企业定量风险评估的主要内容及方法,以期推动电力系统风险管理工作的开展。
1、风险管理的主要内容
风险作为客观存在,要求人们考察研究风险时,要从决策角度认识到风险与人们有目的活动、行动方案选择及事物的未来变化有关。风险的形成过程和风险的客观性、损失性、不确定性特征共同构成风险形成机制分析和风险管理的基础。
人们一般对风险持厌恶态度,都想减小风险损失,追求风险与收益的均衡优化。风险管理的提出与发展与企业发展状况、社会背景密不可分。风险管理作为一门管理学科,首先在美国应运而生,之后传到西欧、亚洲、拉丁美洲。美国大多数企业都设置专职部门进行风险管理,许多大学的工商管理学院都开设风险管理课程。风险管理作为一门科学与艺术,既需要定性分析,又需要定量估计;既要求理性,又要求人性;不但需要多学科理论指导,还需要多种方法支持。
源于风险意识的风险管理主要包括风险分析、风险评价与风险控制三大部份。根据风险形成的过程,风险分析需要进行风险辨识、风险估计。风险估计需要进行频率分析与后果分析,而后果分析又包括情景分析与损失分析。通过风险分析,可得到特定系统所有风险的风险估计,对此再参照相应的风险标准及可接受性,判断系统的风险是否可接受,是否采取安全措施,这就是风险评价。风险分析与风险评价总称为风险评估。为进行风险定量化估算,要进行定量风险评估(quantitative risk assessment—qra)。在风险评估的基础上,针对风险状况采取相应的措施与对策方案,以控制、抑制、降低风险,即风险控制。风险管理不仅要定性分析风险因素、风险事故及损失状况,而且要尽可能基于风险标准及可接受性对风险进行定量评价。对于以盈利为目的的工业企业也希望将风险损失价值化并给出货币衡量标准。风险管理就是风险分析、风险评价、风险控制三者密切相联的动态过程,见图1。
2、风险管理的组织实施与基本流程
为有效实施风险管理,企业应由专门的组织及相关人员按一定程序组织实施风险管理工作。据《幸福》杂志对美国500多家大公司的调查知,84%的公司由中层以上的经理人员负责风险管理。风险管理的趋势是董事会下属设立风险管理委员会全面负责公司风险管理,组织实施的流程是:①制定风险管理规划;②风险辩识;③风险评估;④风险管理策略方案选择;⑤风险管理策略实施;⑥风险管理策略实施评价。
3、电力企业定量风险评估(qra)
电力企业qra的建立与发展从内部来看,不仅已有可靠性分析、安全分析、质量管理、项目管理等各专业分析作基础,从外部而言有电力用户、政府与社会公众、咨询机构等众多相关主体的关注。电力企业qra对企业的作用主要体现在:通过qra有利于企业将风险水平控制在规定标准的风险水平之内,并符合最低合理可行原则;通过开展qra可帮助企业全面识别风险,并按轻重缓急排序,以有助于管理者将精力、财力、物力集中于风险控制的重要紧急领域,使风险管理决策更为合理、效果更好、成本最小;通过对各种风险控制方案或安全改进措施进行qra,使决策者对方案措施进行优劣选择,为公司提出决策支持。电力企业的风险将对其它企业和主体带来连带影响,并产生放大效应,电力系统安全、可靠、高效、优质是各行各业和政府管理部门共同的愿望。电力企业实施qra具有现实意义。
3.1 电力企业qha的基本框架模式
电力企业qra是指在工业系统qra的基础上,考虑电力系统的技术经济特点及运行规律,结合电力体制改革及电力市场化进程而以概率模型表征的全面风险管理理论方法。为便于实施风险管理,保证风险评估质量,满足风险评估过程各阶段的不同要求,构建如图3所示的适用于电力企业qra的基本框架模式。在具体实施时,允许依实际情况而有所改变。
3.2 电力企业qra的主要工作内容
(1)确定目标及范围。包括风险管理的目的与意义,待分析系统的设备配置、工作流程、资金、人员、管理、信息、地区、人文环境等,即确定qra实现目标和实施条件等。
(2)风险辨识。即找出待评价系统中所有潜在的风险因素,并进行初步分析,通过安全检查看系统是否达到规范要求。风险辩识的基本途径有历史事故统计分析、安全检查表分析、风险与可操作性研究(hzops)、故障模式与影响分析(fmea)、故障模式影响及危急分析(fmeca)、故障树分析(eta)、事故树分析(eta)、风险分析调查表、保单检视表、资产风险暴露分析表、财务报表、流程图、现场检查表、风险趋势估计表等。为配合保险公司对出险事项的处理,可采用从下至上的归纳法、从上至下的演绎法及两者综合运用。针对特定风险,可选用基于系统平面布置的区域分析、隐含事件分析、德尔菲法及基于事故树分析的风险事故网络法等。风险辩识不只局限于系统硬件,还应考虑人为因素、组织制度等系统软件。
风险综合集成是指对所有风险按其特性类型分门别类加以汇总因电力工业特点及电力市场化改革特点,把电力系统风险按厂网分开的行业结构进行分类。
对于发电企业而言,主要有电源规划风险、报价竞价上网风险、供求平衡风险、市场力抑制风险、备用容量风险、信用风险、法律风险、项目风险、中介机构风险等。对于电网企业而言,主要有电网规划风险、电网融资风险、购电电价风险、电力交易转移风险、辅助服务风险、成本分摊风险、输电阻塞风险、输电能力风险、备用率风险、电力监管风险等。另外,电力企业还将面临电力可靠性、安全性、稳定性风险及电能质量风险等。
风险综合集成后的初步风险分析是对已辩识出的风险进行初步分析评估,确定风险的等级或水平。风险水平低的可忽略不计或仅作定性评估,风险水平高的要在定性分析基础上,进行定量评估。
(3)频率分析。即确定风险可能发生的频率,其方法主要有历史数据统计分析、故障树分析与失效理论模型分析。历史数据统计分析是根据有关事故的历史数据预测今后可能发生的频率。因此要建立
风险数据库,既作为qra的基础,又作为风险决策的依据。故障树分析作为一种自上而下的逻辑分析法,把可能发生的事故或系统失效(顶事件)与基本部件的失效联系起来,根据基本部件的失效概率计算出顶事件的发生概率。失效理论模型分析是在历史数据与专家经验的基础上,采用某种失效理论模型来计算风险发生频率。
(4)风险测定估计。根据风险特性及类型,运用一定的数学工具测定或估计风险大小。常用方法主要有主观估计法、客观估计法、期望值法、数学模型法、随机模拟法和马尔可夫模型法等。
(5)后果分析。即分析特定风险在某种环境作用下可能导致的各种事故后果及损失。其方法主要有情景分析与损失分析。情景分析通过事件树模型分析特定风险在环境作用下可能导致的各种事故后果。损失分析是分析特定后果对其它事物的影响及利益损失并归结为某种风险指标。
(6)风险标准及可接受性。风险标准及可接受性应遵循最低合理可行(alarp)原则。alarp原则是指任何系统都存在风险,而且风险水平越低,即风险程度越小要进一步减少风险越困难,其成本会呈指数曲线上升。也就是说,风险改进措施投资的边际效益递减,最终趋于零,甚至为负值。因此,必须在风险水平与成本间折衷考虑。如果电力企业定量风险评估所得风险水平在不可接受线之上,则该风险被拒绝,如果风险水平在可接受线之下,则该风险可接受,无需采取风险改进措施;如风险水平在不可接受线与可接受线之间,即落人alarp区(可容忍区),这时要进行风险改进措施投资成本风险分析或风险成本收益分析。转载于范文中国网 。
分析结果如果证明进一步增加风险改进投资对电力企业的风险水平减小贡献不大,则该风险是可接受的,即允许该风险存在,以节省投资成本。alarp原则的经济学解释类似投入要素的边际收益递减规律一样,风险与风险措施投入间的风险曲线也呈边际收益递减规律。
3.3 电力企业qra常用方法
根据电力企业qra的工作内容和实现要求,结合电力企业本身特点,电力企业qra常用的方法主要有:安全检查表即实施安全检查的项目明细表;故障模式与影响分析技术和故障模式影响分析与致命度分析(fmeaca)技术;风险与可操作性研究技术;事件树分析技术;基于概率影响图技术、人工智能、专家系统、可靠性工程技术期望值法、风险主观、客观估计法、模糊评估法等。
1.1农业机械及农机安全
农业机械是指在作物种植业和畜牧业生产过程中,以及农、畜产品初加工和处理过程中所使用的各种机械。农业机械包括农用动力机械、农田建设机械、土壤耕作机械、种植和施肥机械、植物保护机械、农田排灌机械、作物收获机械、农产品加工机械、畜牧业机械和农业运输机械等。农机安全是指从人的需要出发,在操作者使用机械的全过程中,达到使人的身心免受外界因素危害的存在状态和保障条件。简单来讲,就是农机设备本身应当符合安全要求,并且设备操作者在操作时应该符合安全要求。
1.2农机风险评价
农机风险评价是以实现人—机系统安全为目的,根据安全系统工程原理,采用科学的方法和程序识别、评估与农机有关的风险,分析农机事故的发生原因,并据此制定相关措施降低风险的过程。该过程一般从对农业机械限制的确定开始,继而通过危险辨识确定出潜在的危险有害因素,然后对风险进行评估和评定,据此采取相应措施消除或减小风险。农机风险评价的整体流程如图1所示。
2农业机械风险分析
2.1机械限制的确定
机械限制分为预定使用和可预见误用两种类型,应该考虑农业机械寿命周期的所有阶段,包括:①使用限制,主要指农业机械的适用范围以及农机操作者的限制方面(性别、年龄、用手习惯等);②空间限制,主要考虑农业机械的运动范围、安装和使用的空间要求、机械所需动力源要求等;③时间限制,具体指农业机械及其组件的“寿命”、规定保养的时间间隔等;④其他限制,如环境条件(作业时的最高温度和最低温度,气候潮湿或干燥,对粉尘和湿气的耐受力)、农机的室内管理和作业对象的特性[4]。
2.2农业机械危险识别
2.2.1农业机械危险分类
一般而言,农业机械危险主要分为3大类[5]:①机械危险,也就是作业过程中,农机设备直接造成人身伤亡事故的灾害性因素。机械危险的主要形式有挤压、剪切、拉入、缠绕、转动、蓄能和切割等。②非机械危险,主要是指在机械设备生产过程以及作业环境中能导致伤亡(非机械性损伤)事故或诱发职业病的因素。非机械危险的主要形式有电气危险(如农用电机绕组绝缘不良使外壳带电)、高热危险(如高热的机体,炽热的排气管)、噪声危险(如柴油机发动噪声)和振动危险(如手把、座椅振动)。③其他危险,这类危险主要由于操作者及其他客观条件(如路面状况、气候、危险材料和物质等)引起的,如农机道路交通事故、倾翻、绊倒和跌落等。不同机械可能产生不同形式的危险,危险识别的目的是在机械限制范围内确定并形成危险、危险环境和危险事件的清单。
2.2.2危险识别方法
危险识别主要有两种方法:自上而下和自下而上[6](如图2所示)。自上而下的方法以潜在伤害(如切断、刺伤)为出发点确定危险原因,即引发危险事件的操作、危险环境等。自下而上的方法则是以所有可能的危险为起点,在确定的危险环境下,考虑所有可能出错的途径(如人为差错、部件失效)和导致伤害的方式。两种方法相比较后者考虑较为全面,但过程复杂,所需时间较长。
2.3农业机械风险评估
机械伤害产生的前提是要有危险的存在,但有危险不一定都产生伤害。风险评估的目的是根据危险识别的结果对每种危险状态的风险要素进行评估,进而确定风险,并对其进行等级划分。根据风险的定义,一般把事故发生概率和事故后果严重程度作为基本的风险要素。
2.3.1事故发生概率的确定
根据相关资料,农机事故发生概率主要受以下3个因素的影响:操作人员在危险中的暴露程度、危险事件的发生状况、限制或者避免危险事件发生的可能性。据此可以根据下面的内容来确定事故发生概率这一风险要素的等级:1)操作人员暴露于危险区域的时间以及进入危险区域的人数和频率。等级划分一般为:罕见暴露、偶然暴露、每天工作时间暴露和连续暴露。2)危险事件发生频率,等级划分一般为:几乎不发生、不太可能发生、可能发生、非常可能发生和必然发生。3)限制或避免伤害发生的可能性,等级划分一般为:不可能和可能。
2.3.2事故后果严重程度的确定
该要素的等级可以通过受伤害人数和人体健康受伤害的严重程度来确定,可以把以往的历史数据作为基础资料,将事故后果严重程度等级划分如下:1)灾难性的:导致死亡或永久残废的伤害或疾病;2)严重的:导致人体严重虚弱的伤害或疾病;3)中等的:要求救护的显著伤害或疾病;4)轻微的:至多需要急救的轻伤或没有受伤。
2.4农业机械风险评估方法选择
风险评估方法包括定性评估和定量评估两类。可应用于农业机械风险评估的方法主要有风险矩阵法、风险图法、评分法以及综合评估法等。这些方法不但可以对风险水平进行排序,还可以通过减少风险的多少去评估采取的措施,进而选择最佳解决办法。风险矩阵法[7]是其中应用较广的一种机械风险评估方法,它针对每一类危险要素,将决定危险的两个风险因素划分为相应等级,形成矩阵,从而根据交叉单元对风险大小进行定性评估。风险矩阵法主要包括4个步骤:选择风险矩阵、评价事故发生概率、评价事故后果严重程度和确定风险等级。其中,在风险矩阵的选择方面,对于同一个危险要素,不同的风险矩阵可以选择不同风险等级。等级范围通常选择3级到10级,最常用的等级是4级和5级。表1给出了风险等级为4级的风险矩阵列表。
3风险评定
在风险评估之后要进行风险评定,即根据选择的评价方法对评估出的全部风险要素的综合作用进行评定。评定完成之后会得到相应的风险列表排序,然后结合实际情况和具体机械,与可接受的风险等级进行比较,如果风险在可接受范围内,则该风险评价过程结束;如果风险是不可接受的,则需要采取措施减小风险,然后再次按照图1的流程进行风险评价,直到所有风险都达到风险可接受的范围。
4基于WSR的农机风险减少策略
WSR是“物理(wuli)—事理(shili)—人理(ren-li)”方法论的简称[8],它是一种带有东方色彩的方法论,也是一种解决复杂问题的工具,由中国学者在1994年提出。其中,物理指物质运动机理、运动规律的总和;事理指做事的道理,也就是管理规律,决策方法等;人理指整个活动群体中的各种人际关系。根据WSR理论,在处理复杂问题时既要考虑对象“物”的方面,又要考虑这些“物”如何被更好地运用于“事”,同时还必须考虑人在认识问题、处理问题以及实施管理决策中的作用。把W,S,R放在一起,从而达到知物理,明事理,通人理,系统、完整地解决问题。作为一种方法论,WSR在具体的实践过程中具有重要的指导作用。
4.1农业机械风险减小的“物理”基础
风险减少中的“物理”因素主要包括农业机械的设计原理、操作规程以及识别出的所有危险因素等各种客观存在。这些客观存在是对农机安全的正确认识,是符合农机安全规律的科学基础,也是采取有效措施减少风险的前提。因此,在拟定安全措施前要根据原有物质基础对备选解决方案的可操作性进行把握。
4.2农业机械风险减小的“事理”准则
风险减小需要采取一定的措施,而措施的拟定就是在“物理”的基础上进行“事理”分析的过程,也就是要根据风险评定结果,寻求降低风险的最佳解决方案,并力求以最小投入达到最优结果。风险减小中的“事理”主要体现在:①在明确“物理”因素的基础上,寻求更有效地降低风险的方法和途径。例如,农机上转动手柄的人性化设计、农业机械安全设计技术创新方向的判断等都是“事理”因素在技术层面上的体现。②根据风险评定结果,编制农机安全事故应急预案。应急预案是应急行动快速、高效实施的保证,可以严防事故进一步扩大,有助于将事故对人员、财产的损失降至最低程度。农机事故应急预案是从根本上降低损失、减小风险的措施,因此也属于“事理”的一种体现。③个人的行为方式和特点对风险减少措施制定和实施的影响。对于同一种危险因素,不同的人可能主张采取不同措施来降低风险。这是由不同个体知识储备、经验以及能力等方面的差异造成的,属于正常现象,也是“事理”因素发挥作用的一种表现形式。在风险减小措施的制定过程中,“事理”因素居于首要地位,只有做到“明事理”才能快速找到减小风险的最优措施。
4.3农业机械风险减小的“人理”保障
风险减小的目的主要是为了保障人员安全,而这一过程也是通过人来实现的,因此人在整个风险减小措施制定的过程中居于主体地位,这是“人理”因素的体现。制定措施减小风险的过程也是一个决策过程,该过程中涉及到的人员比较复杂,设计者、监理方以及使用者三方人员代表不同的利益范畴,对风险的要求由于身份的不同而有所差别。同时,每个人的情绪、心理素质、价值取向、行为动机等都会存在差距,并且这种差距一直处于动态变化之中,因此在制定风险减小措施的过程中应该寻找那些能够制约或者推动个人行为的影响因素并加以重视,从而保证所选方案的顺利实施。此外,从宏观方面来看,农业机械化的法制建设也属于农机风险减少的“人理”范畴。健全的立法机制可以促使相关人员在农业机械的生产、使用、维修等过程中按规定办事,可以在一定程度上减小风险。与国外相比[9],我国的农业机械化立法机制还不够健全,应当吸取经验,不断完善。简而言之,“人理”就是风险减小过程中所有涉及人员的相互关系及其变化过程,并且通过研究和理顺这种关系,促使有关人员在现有“物理”的基础上,按照可接受的“事理”将农业机械风险控制在可接受水平之内。由此可见,“人理”在3者之中处于主体地位,是农业机械风险减少的保障。
5结语
[关键词]预警方法 银行预警系统 银行危机
银行业的创新、违规活动和全球化使银行业经营活动变得更加复杂,潜在危险更大。这些都在构建银行业的持续监管方面向监管者提出了新挑战。反过来,监管者们为了持续地对银行进行监测和评估,已经开发出新的方法和程序。在银行风险预警研究和实践方面,G10国家走在前列,他们开发与完善了多种银行风险预警系统。
一、银行监管评级系统
银行机构监管评级是从现场检查评估的基础上发展起来的。经过最近几年的发展,这种方法也被应用到非现场监管活动中。无论是在监管当局有权进行现场检查还是无权进行现场检查的监管体制下,银行监管评级系统都有助于确认出那些其状况需要引起特别注意的机构。
1.监管评级实践
在20世纪90年代,美国监管当局通过使用CAMEL评级系统,首次将评级方法引入银行机构现场检查活动中。它被美联储、OCC,以及美国存款保险公司(FDIC)等三家监管机构所使用。综合评级结果处于1(最好)和5(最差)的范围之间。问题银行案例(CAMELS评级为4级或5级的机构)的现场检查更频繁,评级结果也更频繁。与此相反,在稳健性银行案例中(CAMELS评级为1级或者2级的银行),现场检查可能只是每隔18个月做一次,同时评级结果相应的每一年或半年更新一次。
美联储使用BOPEC现场检查评级系统对银行控股公司进行评级。BOPEC评级方法来源于BOPEC的五个组成部分,即:被银行存款保险基金覆盖的银行分支机构(B),其他分支机构(O),母公司(P),盈利(E)和资本(C),加上一个独立的管理评级,BOPEC方法的每个组成部分的评级结果被标度成从1(最好)到5(最差)的范围。
在20世纪90年代中期,美国的FDIC监管当局,发展和采用了一种季度性的非现场评级系统,即CAEL。作为一个专家系统CAEL,利用简单的比率分析给出一个银行机构的季度性非现场评级结果。它利用银行季度性的监管性财务报告(call report)计算财务比率,以便在0.5(最好)到5.5(最差)的标度范围内给出银行的评级结果。
法国银行业委员会于1997年引入了年度的“防护行动的组织和加强”(ORAP)评级系统,作为一种针对单体银行的多因素分析系统。ORAP系统工作在一个经过了标准化和形式化的框架内,在14个方面给出具体的评级。每个评价内容都被划分成1(最好)到5(最差)之间的不同等级。
2.评论
现场检查评级可以有效评价一个银行机构当期财务状况和确认存在的问题。评级给出了银行机构财务状况的参照点,但评级系统的有效时间可能较短。现场检查评级方法并不是特别为跟踪银行机构财务状况变化而设计的,并且其结果可能在检查过程完成后不久就变得不可靠。美国的研究表明,尽管现场检查评级方法具有融合监管机密信息和通过监管及公共渠道可获得的信息的优点,但在现场检查过程结束两个季度后,这种信息内容的价值将开始失去价值。银行监管评级不能提供事前的观察,也不能用来把将来可能发生倒闭的银行从将来可能继续存在的银行中区分出来。而且,他们通常提供银行机构现存问题事后的特征。监管者应用评级方法主要来确认出那些需要立即采取特别监管措施的银行。
二、财务比率和同质同类组分析系统
1.财务比率和同质同类组分析
银行的财务状况被公认为一个相对一致的变量集。这些变量包括一些对资本充足、资产质量、盈利性和流动性的测量,大量的财务比率指标被应用到财务比率和同质同类组分析系统里面。同质同类组分析是通过将一组银行的财务比率放在一起来进行的。
2.各国应用情况
20世纪90年代后期,美联储发展了单体银行监测系统,来对单体银行进行更详细更具体的财务比率分析,同时将财务比率作为对具有潜在问题银行的一个基本过滤器。监测系统提供30种以上的监管类财务测度。这些测度根据银行的报告每季度测量一次。单体银行监测系统在发现银行机构的潜在脆弱性,以及银行的显著性变化的方面起到了重要的作用。
德国1997年采用的BAKred信息系统(BAKIS),是一个被德国央行与监管当局共同使用的综合性标准化信息系统。该系统采用财务比率和同质同类组分析作为该系统里面进行风险评估的一个组成内容。该系统使用了19个信用风险比率(包括清偿能力),16个市场风险比率和2个流动性风险比率。同时还有10个关于盈利性的补充性比率。在给定的任何时间点上的一个同质同类组内,该系统可以用来审核单体银行的财务比率或者根据风险类别来划分的比率。
在荷兰银行,财务比率和同质同类组分析被作为一种观察系统来使用,它包括三个产生预警信息的模块。监管当局基于银行评级结果进行估计的预测系统,输入包括一些精选的关键业绩指标,这些指标来自监管报告、年度会计报告、市场信息如一些可获得的外部评级和股价信息,以及一些宏观经济数据。
风险评估,监管工具以及估计(RATE)的框架,被英格兰银行发展成为一个综合的银行风险评估系统,并于1998年被英国金融服务机构(FSA)应用,在其对银行机构进行正式的风险评估阶段,也使用了关键比率趋势和同质同类组分析方法。
3.评 论
财务比率和同质同类组分析被看成对银行检查的一个有价值的补充。这种方法已经成为非现场监测过程的一部分,并作为一个进行持续性监管的基本的最小化的工具集。然而,最近几年,它已经从一种对某些暗含在现场检查过程中的主要财务比率进行简单的非现场计算方法进化为一种正式的风险评估工具,并使用了很多不同的具有统计形式的比率。
然而,财务比率和同质同类组分析不足以确认出银行所经历的风险的本质,特别是大型银行和专业性银行机构。财务比率是从大量变量中选出来的,各比率与银行机构财务状况之间的相关程度不一定显著到中以使它们被选入系统。给每个比率分配的权重也会显示出一些局限性。这些权重可能仅仅是在检查者个人的经验基础上被确定的,一旦权重被给定,它们将维持不变,并有可能无法根据短暂的变化做出调整,这使评估效果大打折扣。
三、银行风险综合评估系统
银行风险综合评估系统对银行机构整体风险进行全面详细评估。该方法将银行或银行集团分解为显著的业务单位,然后依照一些具体的标准对经营风险、内部结构与控制进行评估,根据标准分类判定分数,得出银行或银行集团的最终评估分数。这一方法已发展并在最近被两家G10监管权威机构所采用。
1.各国应用情况
在英国,单体银行正式全面的风险评估是由英格兰银行引入的“比率风险评估体系”的一部分,目前为英国金融服务管理局所应用。这一系统对重要经营单位的正式风险评估在对银行集团经营风险的九个评估因素的基础上完成。每个经营领域的风险基于六个评估因素,CAMEL-B,即资本、资产、市场风险、收益、负债和业务及不可量化的风险如操作风险、法律风险和信誉风险。
荷兰银行在1999年建立并运用了银行风险综合评估方法“风险分析支持工具”(RAST)。所有的风险和控制的类别都根据一个预设的矩阵被赋予了权重。所有的评估都在1-4的范围内打分,其中1代表最低的风险或是最好的控制,而4代表最高的风险和最低的控制。机构风险评估结果要与其偿债能力(资本比例)和盈利能力(股本回报率)作比较,分析结果用于为每个单独机构的监管检查作计划。
尽管英国FSA和荷兰银行所涉及的理解风险评估的方法很相似,二者仍有几处重要的不同。RATE汇总的方法论与整个机构的风险类别的汇总相关,相反的是,RAST的汇总与商业单位和基本活动相关。另外,RATE将资本和盈利认为是特定的风险单元,RAST仅仅认为它们是数据,用于在评估结束时比较与评估机构的最后得分。
2.评述
银行风险综合评估系统涉及到对银行风险的定性和定量评估,由于国内外的监督机构可能也对相同的银行机构单体机构或集团,所以需要互动才能全面评价单体机构或集团。该方法唯一同时适用于并表和非并表的单体机构或集团。
四、统计模型
统计模型和前面描述的三种方法在两个基本的方面存在差异。首先,统计模型直接反映可能导致银行机构出现问题的风险。统计模型力图在经营出现困难或者倒闭发生之前确认高风险银行。这是与其他三种方法注重银行当期状况的目标是不同的。其次,模型使用了先进的定量技术,用来确定解释变量与诸如银行的脆弱性、经营困难,以及倒闭和生存等运营结果之间的因果关系。第三,统计模型涉及到久期模型,久期不仅用来进行估计银行的倒闭概率,而且用来估计银行倒闭的可能时间。
1.各国应用情况
目前,只有美国和法国监管当局使用了统计模型。美联储和美国存款保险公司把统计模型作为非现场监管工具。为评估统计模型,美国监管当局运用了20 世纪80年代和90早期发生的倒闭银行数据。法国银行业委员会通过应用个人信用数据库和法兰西银行的统计,来构建自己的统计模型。美国货币监理署和意大利银行目前正在开发和测试早期预警模型。但这些开发或使用中的模型的方法论多种多样,分为(a)估计评级和评级降级的模型;(b)预测倒闭和生存的模型;(c)预期损失模型和(d)其他模型。
(1)估计评级和评级降级的模型
美联储在1993年为了估计检查评级结果而开发了一个双变量模型系统(SEER),SEER评级模型采用了多项式LOGISTIC回归,根据银行最近的报告数据来估计银行可能的骆驼评级结果。
1995年,美国存款保险公司开发了非现场骆驼统计评级模型(SCOR)取代CAEL非现场评级系统。该模型使用了LOGIT模型估计CAMELS评级为1或2 的银行发生降级的可能性。在SCOR模型下,评级估计的时间水平是4~6个月。估计结果将要经过12个到18个月以上的检验,但是超过6个月后其结果的精确性将开始降低。
(2)倒闭和生存预测模型
美联储SEER模型估计在随后两年中银行发生倒闭(或者平均资产的有形权益比率低于2%)的概率。该估计是建立在对银行最新的财务报告的提供的财务状况的测量基础上的。该模型采用了双变量PROBIT(概率单位)回归技术估计倒闭概率。该模型利用美国1985-1999年期间倒闭银行的特征估计银行倒闭与财务信息间的统计关系。
意大利银行正在开发久期模型,不仅用来评估银行倒闭的可能性,还包括倒闭时间。考虑到意大利有关倒闭机构的数据集充分性和广泛性不足,“倒闭”的定义已经被调整,它将经营发生重大困难的银行,或者那些被清算以及因经营艰难而被接管的银行。
(3)预期损失模型
1997年,法国银行业委员会开始采用银行业分析支持系统(简称SAABA)模型。尽管该模型是一个统计模型,但它也可以通过定性评估来完善定量分析。通过3年期个体潜在损失额加总得出整个信用资产组合的潜在损失总额。该潜在损失总额数据再根据现有准备金水平进行调整,未调整的余额表示未来潜在损失,它要从银行自由资金的当前存量中扣除。如果调整后银行自有资金仍然超过8%的最低资本金要求,那么该银行在未来3年中将保持偿付能力。
(4)其他模型
形成于20世纪80年代中期的美国联邦存款保险公司(FDIC)增长监测系统(GMS)是一种简单的早期预警系统,它以6个概要性指标的水平及季度趋势为基础计算得到综合增长监测系统(GMS)得分。拥有最高的综合GMS得分百分点(目前为95-99个百分点)则需要进一步的非现场监管,监管当局也可以对得分低于95个百分点的银行、特别是CAMEL评级得分不高的银行实施额外监管。
1995年,英格兰银行提出(但未实施)了触发比率调整机制(TRAM)早期预警模型,该模型通过各种统计方法和主观判断对银行业机构实施评估。此类评估涉及银行业功能的三个主要方面,即利润流、风险情况,以及控制与结构。各组成部分分数及TRAM总分数较高,将表明该银行业机构存在潜在问题。
2. 评述
早期预警统计模型依据严格的定量分析。因此,模型中没能反映诸如管理质量、内部控制以及信用文化、承销标准等银行特有的定性因素的影响。但事实上,定性因素特别是管理效率高低也是银行破产的重要原因。然而,很少有模型将管理质量进行量化或为管理绩效寻找现实可行的替代指标。这些模型也没有考虑由于诸如欺诈或行为不当等其他非金融因素导致的破产风险。
在统计模型中,重要的是正确识别因果变量及其相互关系以确保包括重要变量,排除伪造变量。而且,辨别因果关系的一致性同样重要。模型中包含的变量需要严格的统计程序和经济推理。在模型中,在评估期被固定时,自变量一旦被选定也应固定不变,这一点尤为关键。变量的选择应建立在对其解释和预测能力进行严格统计检验的基础上。在动态模型中,在评估期变动的情况下,应定期对解释变量的重要性进行检验,一旦检验结果显示其作为解释和预测变量的重要性已下降,这些变量从模型中排除。
至于变量的选择,赋予的权重取决于单个解释变量的重要性和预测能力,并经过严格的检验确定下来。而且,为确保评估的准确性,赋予解释变量的权重应保持连续性。
获取大量清晰可靠的原始数据是早期预警模型运行的关键因素。模型预测结果的可靠性取决于输入的原始数据的准确性。这不仅涉及到银行应监管要求所报告数据的种类和完整性,还涉及到应用于模型的其他数据库的可得性和完整性。一些已经使用早期预警模型的监管当局在不断努力改善原始数据的质量、种类和完整性。美国监管当局正在探索在其早期预警模型中使用私有部门信贷管理局数据的可能性。
尽管一些早期预警模型已经获得满意的结果,但其应用范围仍然有限。在一般的机构和时间内,正确地预测评级下降的概率、破产或幸存的概率、预期损失或破产倒闭等被证明是非常困难的。由于早期预警模型的发展还处于初始阶段,需要开展进一步的工作以改善其绩效。
参考文献:
[1]Alejandro Gaytán and Christian A. Johnson, 2002,”A Review Of The Literature On Early Warning Systems For Banking Crises,” Central Bank Of Chile Working Papers No. 183,2-5
[2]Financial Services Authority, 2006,”The FSA’s Risk Assessment Framework” ,5-10
[3]Official of the Competroller of Currency, 2000,”Early Warning System Proceture”
国外知名大学的管理科学与运筹、工程管理等相关专业都开设有《风险建模与分析》等相关课程,本文对美国斯坦福大学管理科学与工程系、美国麻省理工学院、美国弗吉尼亚大学工程系统风险管理研究中心、英国曼彻斯特大学系统与决策科学研究中心、加州大学伯克利分校、美国国防采办大学[1-4]等教育研究机构所开设的同类课程进行深入调研分析,为本课程的建设提供借鉴与启示。
(一)美国斯坦福大学相关课程现状
美国斯坦福大学(StanfordUniversity)管理科学与工程系开设了两门风险分析相关课程[1]:《工程风险分析》(EngineeringRiskAnalysis,课程代码MS&E250A)与《工程风险分析实践课》(ProjectCourseinEngineeringRiskAnalysis,课程代码MS&E250B)。其中,《工程风险分析课》主要讲授工程系统中风险管理决策的相关技术方法,内容包括:技术、人、环境方面的权衡分析,决策分析的元素,概论风险分析,故障树、事件树、系统动力学,事故后果的经济分析,以及相关技术在航天系统、核电工厂、医疗系统、公共安全等领域的案例实证研究。而《工程风险分析实践课》(ProjectCourseinEngineeringRiskAnalysis)是在学生先修《工程风险分析课》(MS&E250A)的基础上开设的,通过指导学生个体或成立小组,从实际问题中总结、抽象、建模风险管理问题,通过风险评估、沟通和管理三个阶段,解决实际风险管理问题,学生需要做口头陈述和完成报告,以达到熟练掌握和运用概论工具解决风险和不确定决策问题的能力。斯坦福大学管理科学与工程系开设的这两门风险分析相关课程,相互支撑,从课程代码上也可以明显看出,MS&E250A是MS&E250B的先修课程。MS&E250A特别注重风险基本概念与基本理论的讲授,通过概率分析、故障树、事件树、系统动力学等基本模型与方法为载体,阐释风险分析过程,并结合案例进行详细展开;而MS&E250B在250A基础理论理解的基础上,要求学生针对某具体背景问题,建立小组,分工收集材料、建模、计算,并完成陈述报告和答辩,特别注重实践能力的培养,以及团队研究精神的锻炼。
(二)美国麻省理工学院相关课程现状
美国麻省理工学院(MIT)开设了《工程管理》(ProjectManagement,代码1.040/1.401)课程,其中包括专门几节内容讲授“风险分析-风险与不确定下的决策”,主要包括五部分:风险与不确定定义,风险偏好、态度和效用,决策树分析;涉及效用函数、风险评估、跟踪和控制,风险层次化建模、风险结构分解、风险矩阵等分析工具,风险预算、风险预防措施、风险修正,灵敏度分析等决策计划制定的方法等。美国麻省理工学院作为世界知名工科院校,培养了一大批工程领域的杰出人才,在其核心课程《工程管理》别注重“风险分析与决策”的讲授,将风险分析作为工程管理中不可或缺且至关重要的环节;在其内容设置上,主要结合决策分析理论,将风险与不确定、偏好、效用、决策树等决策分析方法融入到风险分析中,并通过风险措施、修正、灵敏度分析等决策方法为风险应对方案的制定提供决策支持,可见,风险分析与决策分析是密不可分,相辅相成的。
(三)美国弗吉尼亚大学相关课程现状
美国弗吉尼亚大学工程系统风险管理研究中心[2]开设了《风险建模、评估和管理》(Riskmodeling,assessment,andmanagement)课程,主要讲解等级全息建模、决策树、多目标权衡分析、风险过滤排序与管理、极端事件风险管理、多目标风险影响分析、多目标统计分析等技术方法,并结合复杂系统协同风险建模、国防和重大基础设施建设、环境与水利系统、交通运输系统、商业系统、软件系统等领域的风险建模与分析开展案例研讨。此课程的负责人是Y.Y.Haimes教授,他是国际风险分析与多目标决策学术研究领域的知名学者,常年活跃在国际学术前沿,很多著名的风险分析方法都是他提出并推广的,比如HHM、RFRM、MRIA等,这些方法现已被美国国防部、NASA等机构采纳。可见,风险分析的理论方法是不断发展的,随着科学技术水平的不断提高,风险建模、计算、决策的方法也必须适应时展的需要,不断改进以解决新的更复杂的系统风险问题。
(四)英国曼彻斯特大学相关课程现状
英国曼彻斯特大学(ManchesterUniv.)系统与决策科学研究中心为研究生开设了《风险、效能与决策分析》(Risk,PerformanceandDecisionAnalysis)课程[3],作者在留学期间曾全程跟听了本门课程,其内容涉及多准则决策与风险分析中的基本理论和最新发展方向,包括四个专题,10次课,每次3个小时,主要内容有:风险、决策树分析和效用概念,效用理论与贝叶斯决策理论;多准则决策分析(MCDA)中的效能评估与多准则决策分析,模型与偏好建模,过程与集成方法,集成方法、工具与应用;数据包络分析的概念和基本模型、方法、工具与应用;多目标线性规划的概念、模型、方法与应用;以及在商业和工程管理领域的应用。此课程的特点如下:一是将风险基本理论与决策技术有机结合,注重风险应对的科学决策,如DTA、MCDA等;二是注重数据分析处理与不确定性推理算法的讲授,包括DEA和ER等;三是将优化技术引入风险分析,建立风险优化的模型与算法,比如MOLP等。此外,作者还调查了美国加州大学伯克利分析、美国国防采办大学,国内的清华大学、西安交通大学、大连理工大学、中国科学技术大学、合肥工业大学、天津大学等开设的相关课程,结合上述四所国外知名高校相关课程现状,可以发现如下特征:(1)注重基础理论。各高校或机构都特别注重基本概念、基础理论的讲授,几乎都涉及不确定性建模、概率分析、故障树、事件树等基础知识点,可见打好基础,是灵活运用技术工具的基石。(2)联系决策分析。风险分析与决策分析密不可分,相辅相成,将决策分析理论有机地融入到风险分析中,为风险应对方案的制定提供决策支持。比如MIT讲偏好、效用、决策树,Virginia讲MTOA,MU讲DTA、UT、MCDA等。(3)通过数据说话。风险分析的结果结论要建立在科学的数据分析基础上,因此各高校都注重定量化数据分析方法的讲授和运用。比如MU讲数据包络分析DEA、Virginia讲多目标统计分析MSM等等。(4)学术研究引领。科学技术水平的不断提高为风险分析提供了新的思路、方法和工具,风险分析学术研究扩展了风险方法库,风险管理的实践需要促进了风险分析学术领域的研究。(5)注重实践能力。各高校在基本理论与方法讲授的基础上,都不约而同地重视学生动手实践能力的培养,提高学生阅读前沿文献、发现问题并解决风险管理问题的能力。比如Stanford专门开设MS&E250B的实践课。
二、《风险分析与管理》研究生课程建设思考
通过对国外知名高校相关课程的调研及特点分析,结合本校教学实践,我们提出对《风险分析与管理》研究生课程建设与教学一点思考。
(一)从教学目的来看
本课程主要授课对象为研究生学员,研究生经过本科阶段的基础学习,已经基本掌握了学科基础知识和基本研究能力,包括数学知识、计算知识、查找阅读文献能力等。而通过本课程的学习达致如下目标:(1)培养学员在工程项目研究中风险应对和风险管理的意识。针对管理学领域中研究对象复杂性和随机性不断增长的发展趋势,本课程旨在帮助学员了解有效的风险分析及管理方法在工程中的重要意义,培养学员在其研究领域中积极应对风险和不确定性的意识。(2)增强学员分析管理风险的能力。通过本课程的学习,使学员从理论、方法和实际案例三个方面学习掌握风险识别、风险评估、风险决策和风险监控等管理环节的地位作用、关联关系和研究热点,增强学员在理论探索和科研项目研究中分析管理风险的能力。
(二)从教学过程来看
《风险分析与管理》核心在于选择最佳风险管理技术组合,其重要环节是对各种技术的综合运用、优化、组合,难点在于学以致用,融会贯通。因此,提出本课程教学过程主要三步:(1)讲———讲概念、讲理论、讲过程。主要通过教师讲解风险分析与管理的基础理论,包括风险分析与管理的基本概念、研究热点以及一般流程,着重讲授风险分析与管理的一般化四阶段及其相互关系。(2)学———学方法、学技术、学工具。学的主体是学生,学就是要求学生了解并掌握风险分析与管理过程中涉及的基本方法和技术,包括风险识别、分析、评估与应对中的经典方法;同时学会使用相关软件工具,实现初步的模型求解与运算。(3)做———做练习、做案例、做研究。根据理论联系实际的原则,“讲”和“学”最终要落到“做”上。要求学生能够运用方法和工具解决简单示例;能够围绕某背景案例,实现从风险识别、建模、分析到求解的全过程求解,形成完整的知识结构和方法论;最后,能够在案例中捕捉到问题,查找文献,创造性地提出新的科学问题并提出解决策略,完成“做研究”,真正实现教与学的统一。
(三)从教学内容来看
在上述教学目的和过程的指导下,参考国内外相关高校和机构的相关课程内容,结合我们的实际,本课程具有自身的特点:一是实践性。风险分析与管理的基本理论是形成本课程整体知识结构和灵活运用技术方法的基石,风险分析经过近半个世纪的发展,已经形成了一套完整的知识体系,学生应当“站在巨人的肩膀上”,掌握基本过程和方法。另一方面,科学问题来源于实践,并用于改进实践,工程实践是风险分析与管理研究和教学的源泉。因此,必须将二者有机结合,在实践中学理论,学好理论用于实践。二是系统性。风险分析管理理论经过半个多世纪的探索和实践,形成了以风险识别、风险评估、风险决策、风险监控为主线的完整的知识体系。因此,在课程设计时,必须涉及到风险分析与管理的全过程,每个阶段对应讲授一到两种经典方法,使得整个课程学习成体系。三是时代性。包括两个方面,一是课程教学中,要紧跟时展,多选多用当前社会生产生活及工程建设中的出现的事件、案例,以此提高学生对本课程知识学习的兴趣;二是课程内容设置中,不断更新新理论、新方法,新技术的发展推动着风险分析方法技术的改进,尤其是一改以往以定性分析为主的局面,大量引入定量化的分析方法和技术,在课程建设中引入国际研究最新成果,用更加科学的方法解决复杂的不确定性风险问题。四是综合性。风险分析与管理课程与自然科学、社会科学、系统科学、行为科学等有着密切的联系。在课程设置与教学中,应特别注重与决策分析理论与方法的交叉。从上述国外调查结果也可以看出,风险分析与决策分析密不可分,相辅相成,应当将决策分析理论有机地融入到风险分析中,为风险应对方案的制定提供决策支持。因此,本课程教学内容的设置上,需关注以下方面:一是风险分析与管理的概念、理论、过程。风险分析与管理基础理论,主要包括风险分析与管理的基本概念、研究热点以及一般流程,着重讲解风险分析管理的基本理论,使学员掌握基本阶段及其相互关系,形成对本课程整体知识结构的了解和掌握。基本概念包括:风险分析与管理的重要性,风险分析与管理研究热点;领会风险分析与管理学习的意义和目的,掌握基本概念与定义,了解本领域研究热点与前沿。基本过程包括:国外风险分析与管理过程,风险分析与管理的一般过程,各阶段之间的联系;了解国外风险分析与管理的过程,掌握风险分析与管理基本阶段以及相互关系。二是风险分析与管理的方法、技术、工具。风险分析与管理的基本流程包括风险识别、风险分析、风险评估、风险决策和风险应对,每个阶段有其特有的技术方法支持,结合国内外学术研究成果,在风险识别阶段主要设置风险识别一般方法、情景分析法、级层次建模方法HHM等内容;在风险分析阶段主要设置风险故障模式与影响分析,风险故障树分析,风险过滤、排序技术(RFRM)等内容;在风险评估阶段主要设置风险矩阵评估法,贝叶斯风险评估方法,蒙特卡罗方法;学习并掌握风险矩阵评估、贝叶斯风险评估及其蒙特卡罗仿真方法在风险评估中的运用等内容;在风险应对阶段主要设置风险应对的概念与措施,风险监控过程,多目标风险管理方法等内容。通过上述内容的学习,使研究生熟悉并掌握基本的风险分析处理模型与技术,并提高其自我学习新方法的能力。
(四)从教学方法来看
结合教学内容设置,我们急需创新教学模式。(1)通过阅读汇报深入掌握基本技术方法模型。根据学员研究领域,从国外高水平顶级杂志上选取风险分析与管理技术方法文献,由学生组成3-5人小组,通过任务分工,阅读、研讨、实验,并对其他小组学生进行陈述,讲解方法、思路及其优缺点,接受提问并答辩。通过学生的主动参与,达到深入教学目的。(2)通过案例与研讨式教学加强应用能力培养。课程教学组织中注重开展案例教学、研讨式教学,促进学生对理论知识的掌握。在各个知识点的教学中,要尽可能引入案例;在课程教学中,加大教学的实践环节,训练学生对实际问题的分析、研究、解决能力。同时,结合学生所参与的科研项目,积极引导学生的动手能力,加深对课堂上所学知识的理解,锻炼其灵活运用所学知识,独自解决问题的能力。参照斯坦福和弗吉尼亚大学的案例教学模式,结合本校从事科研攻关任务的实际,我们可以围绕以下案例进行研讨:大型工程风险分析与管理案例,软件项目风险分析与管理案例,航天项目管理中的风险分析与管理案例,装备采办管理中的风险分析与管理案例,反恐风险分析与管理案例,通过案例研讨,掌握所学方法在实际工程中的运用。
三、总结