前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇工程问题的概念范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
正如上面这句引文所述,青少年要想成为当今世界的参与者,应当尽早了解包含科学、工程、技术和数学的STEM学科。因此小学教育中这些学科的高质量将会极为重要,应该逐渐培养起5~11岁青少年对这些学科的兴趣,对其基础知识和实践过程的理解,以及认识到它们与生活实践的联系。这些STEM的学习经历将给予他们在找寻机会及面对挑战时一个条理分明的智力与实践的框架。同时,该经历使得青少年们能够提升并很好地使用从那些学科中得到的经验与观点。
在这篇文章中,我们希望:
・阐明STEM教育的主要目的
・通过3个维度(实践、跨学科概念、学科核心概念)讨论这些学科的本质。
本文将聚焦在STEM中的科学(S)、技术(T)及工程(E)。当然,数学(M)的重要性不言而喻,无论将它作为单一学科还是STEM的组成部分,我们并不会刻意地去贬低数学的重要性。相反。我们坚信数学是青少年高质量教育的基础。数学在科学、技术及工程中的应用使得它们能够更好地结合在一起。数学知识与应用数学的能力更是在我们探究,以及解决关于科学、技术、工程问题的过程中起到了关键作用。
科学从本质上说是探究。科学探究是科学所有分支学科的核心特征,因为这是科学知识产生和被证实的途径。对于科学家们来说它是黄金标准,使得科学家们明白了他们是如何掌握科学知识的,以及可以证明科学家们所掌握知识的证据。因此,科学探究是为了建立知识和理论而产生的一种科学的策略。用《美国国家科学教育标准》(National ScienceEducation Standards,USA,1996)的话说,科学探究是“科学家学习自然世界、基于工作得到证据,提出解释及理论的众多途径”。
工程和技术聚焦在改变自然和人造世界,旨在解决问题或满足人类的需求。通过工程和技术设计创造解决问题的方案。科学探究是科学的基础,设计过程是工程和技术的基础。正如科学探究使科学领域蒸蒸日上,工程及技术中解决问题的方案也通过设计过程得以延伸和发展。
但是,在现实世界中,科学、工程、技术的主要方面并没有相互脱离。科学知识的产生表明了问题或许可以通过工程和技术得到解答。相似的是,工程和技术解决问题的过程同样影响着科学知识的发展,甚至有时产生了新的科学知识。就青少年而言,我们需要让他们理解这些学科之间的基本差异。同样重要的是还要帮助他们认知这些学科之间的紧密关系。
STEM学科的维度
我们使用美国《K-12科学教育框架》(AFramework for K-12 Science Education;Practices,Crosscutting Concepts,and CoreIdeas,2012)中所述的实践(Practices)、跨学科概念(Crosscutting Concepts)及学科核心概念(Core Ideas)比较这3个学科的内容。在每一个学科中,这些维度都紧密联系在一起,每一个维度的缺失都将影响整个学科。也就是说,为了让学习活动能够真实,3个维度的内容都必须清楚明白地体现在活动设计中。
实践――与成功的科学、工程,技术相关联的实践或能力
用“实践”一词代替“探究能力”,是因为在科学探究和解决问题中会同时用到知识和技能。而用“探究能力”一词会让人感觉这排除了解决问题。其实“实践”超越了“能力”,它包含着讨论、争论、评论和科学模型的建造等,它将有关专业人士是如何将实践应用到工作中的综合观点呈现在了眼前。
几十年来,科学教学经历了强调科学探究能力与学习科学事实之间的紧张期。过于强调对事实的认知会使得学生们认为科学与其他学科只不过是一些孤立的信息、做实验或解决问题的简单步骤而已。这将是对任何学科的极大误解。因此,关键是要让学生们实践那些专业人士在这些学科中所应用的,这样做是为了让他们能够明白学科核心概念和跨学科概念。
表1列举了STEM中的实践。需要强调的是在现实生活中这些实践不会呈现线性规律。例如,尽管基于证据的论证被单独列出,实际上论证却渗透在每一个实践中。在实际的科学问题上或是在一个能导致深入理解的现象中都会有论证的出现;在工程和技术中,对于要解决的问题需要论证,在解释、设计过程或得出解决方案时也会有论证的出现;在标准与限制下,讨论哪种解释最符合证据,或者哪种设计能得到最好的解决方案也是论证。总的来说,实践应聚焦于它所用的不同情境。
事实上,这张表中最突出的是科学、工程和技术的实践非常相似。我们都知道科学家们使用这些实践的目的与工程师、技术专家并不相同。但是,在科学、工程和技术中,在实践层面高度的共通性不仅有用,且说明了这些学科交叉的可能性。其实,在科学、工程、技术中差异还是存在的,如科学上的“提出问题”在工程和技术中被“定义问题”所代替;同样,科学中的“构建解释”在工程和技术中变成了“设计解决方法”。
・提出问题vs.定义问题
如果我们认为根据现象提出问题是一个科学活动的“发动机”,那么定义和澄清问题便是工程、技术和一些数学实例中很重要的因素。
好奇心,或者认识、理解,并用科学问题解释现象的欲望常常可以激发科学。对于科学的好奇心显示了科学问题的架构。比如说,学生会想知道“月亮离地球多远”或者“车从一个地方到另一个地方需要多久”,“什么导致了月食”,“如果每天都用浓盐水浇灌植物,它们会怎样”……所有这些都是科学问题并且都可以用科学的方法回答。
工程则集中在问题的阐明与定义上。通过对产品和过程的工程设计解决问题并满足社会的需求。工程师通过定义问题,得到在一定条件限制之内成功地解决方法的标准。同样地,技术最初的焦点也是在识别和定义问题,以此符合人们的需求和技术的专业性。
当然,上述讨论不应该与表中其他实践所产生的问题所混淆。比如在分析和解释数据的实践中会产生诸如“是否科学探究活动会回答最初的问题”,“是否是基于证据提出的解释”,当然也可能是由工程和技术设计的解决方案中不同方法的可行性问题。因此,对于所有的STEM学科,都会遇到与数据收集、解释数据相关的问题。还有些问题是关于信息的交流是否可以达到预期的精准和标准。其中有一些问题可以导致回答一个科学问题的多种方式,或是不同等级的问题解决方案。有时,这种问题会导致那些产生原始设计和科学问题的模型发生改变。根据这些问题的答案,有可能做出放弃之前提出的实验或设计方案的决定。
・建立解释vs.设计解决方法
对于科学,一个很重要的目的是在测试和证据支持下建立科学的解释,以帮助我们理解周围的世界。这样做,科学家们发展出建立在大量重要的知识、测试和数据之上的科学理论。他们用理论或是模型解释现象,预测现象,提升并修改他们之前的知识和对这些现象的理解。科学的解释在观察、数据和科学理论间建立有逻辑的连接。例如:一个有名的科学理论是“微生物理论”。在这个学说中,传染性疾病是由病人身上叫做细菌的微小生物导致的,不同的细菌会产生不同的疾病。如果细菌从一个生病的人传播到一个健康的人身上,它们就可以在这个健康的人的体内传播。人们可以通过消灭这些细菌或者减少它们导致疾病的活动得以康复。很多支持这一理论的证据从成千上万个病例中累积起来。因此某一个人的病症可以被判断为有传染性或是没有,并能被判断为是由某一种特定的细菌导致的,从而可以依据理论和数据的基础确定治疗方法。通过在证据基础上建立理论或者理论模型的过程,科学家们增长了对现象的认识和理解。
但是工程和技术的目的是为了创造一种设计并解决问题,从而满足人类的需求。就像科学中理论的建立一样,工程设计是一个具有系统性和生命力的思考过程。具体的活动包括在工程设计之中,然而即便工程师应用了科学知识,工程设计的过程却与科学探究完全不一样。在定义问题后,他们不得不去考虑必须达到的标准或设计的特点。例如在建桥过程中.他们需要考虑桥的组成部分、控制装置、预期的长度与高度、最大的承载量等。除此之外,他们必须考虑限制条件,如可获得的资源、完成的时间和环境条件。不论是“好”,或仅仅是“还可以”,他们需要在限制条件和解决方案的质量间作出基于权衡的重要决策。在所有的决策中,工程师们需要应用科学、技术和数学的知识。对于所有的目的而言,技术设计和工程设计是一样的。但是,我们意识到技术是由经验、磨炼与学习所导致的,而并非科学。在这些情况下,它比设计更强调工艺。
跨学科概念
有一些概念在所有的STEM学科中都会出现,甚至出现在其他的学科中,这就是跨学科概念。它们产生干阐明各学科核心概念的现象或者问题的过程中。它们有助于理解观察和在数学思维、问题解决方案中建立理论。跨学科概念不是存在于真空中,因此,这些跨学科概念不应该在孤立的调查或问题解决情境中学习,尤其是它们与学科核心概念的发展密切相关。
不论是科学家、工程师、技术专家,还是数学家,这些跨学科概念在看待世界上各种现象时可作为有力且全面的框架。因为它们超越了不同STEM学科之间的边际,它们也被称为统一的概念。我们将它们列在表2中,并提供简洁的说明。
学科核心概念
学科核心概念即是几个学科的核心主题。如物质科学中,有很多概念与物质特征、力、运动有关;在生命科学中有关的则有生物体的生长与发展、与环境的相互依存和适应等。与其相似的是,在地球与空间科学中,有一些概念例如地球、太阳系、天气和气候。工程与技术中的核心概念涉及定义问题并设定问题的边界、提出问题的解决方案,以及了解科学、工程、技术三者之间相互依靠的关系。
当然,与其在基础的科学、工程、技术中讨论学科核心概念,倒不如用4个标准说明什么是学科核心概念。这个思想来自于《K-12科学教育框架》,它告诉我们学科核心概念应该是:
・在横跨科学、工程、技术等多学科时具有广泛的重要性,或者是在单一学科中扮演重要的组织作用
通过这些核心概念,学生们学习了科学知识和对自然事件的解释,例如空气、水、矿物、生物、煤燃料、油燃料等,学习了关于可再生资源和不可再生资源的消耗。在工程设计中,明白了他们所用的自然和人造事物的性质,以及如何去使用它们。他们考虑了产品和生产产品过程中的环境影响。例如,建造桥和生产食物产品的方式对于资源的分配和获取的影响。
・提供理解或调研复杂观点和解决问题的核心工具
对例如材料、能量、燃料的自然资源的学习是学习更复杂知识的基础,如对于物质本质的理解(原子的运动与排列解释了不同材料的性质);能量可以以电、化学、磁及力等形式存在;自然资源的获取影响着工程和技术的产品,人类住处与自然资源的分配和适宜的天气条件密切相关等。
・与学生们的兴趣和生活经验息息相关,或者是可以联系到需要用科学技术认知思考的社会和个人的观点
这是选择学科核心概念的重要一条,因为这些将与学生的生活息息相关。如学生学习生活中可接触到的事物的性质,以及可以改变事物性质的情况,学习能量的类型和能量的影响,并联系他们的人生经历;学习有生命的事物是靠什么生存并生长的;学习人类是怎么利用原材料制造产品和设施的,例如食物、玩具、桥、楼房、自行车。以及各种工程和技术的其他产品;他们还会学习自然资源的短缺是如何影响他们生活的,比如没有规律的雨水、矿物和粮食作物。
・在逐步提升知识深度和复杂度的多种等级中,要做到可教且可学
当孩子们进入小学时,他们了解不同的材料和它们各自的价值。而在小学的前期,他们的学习包括对事物和状态(固体、液体、气体)、天气和一些自然和人造事物的科学认识。在小学的后期,他们会学习由看不见的颗粒组成的物质(空气有重量但是看不见)。在更后期,他们会学习化学,如金属和塑料在不同情况下的用途,他还会根据测量性质识别不同的材料;在生命科学中,他们学习关于人类活动对于地球和生态系统,例如土地、空气、水质和生物多样性的影响。在教育的所有等级中,他们会学习开发自然资源是有益处的,但是这种做法会导致资源的短缺,这归根于不可再生资源的耗尽。
关键词:工程力学;高职院校;学习方法
中图分类号:G712 文献标志码:A 文章编号:1674-9324(2016)24-0214-02
工程力学是一门理论性较强的技术基础课,同时又与工程实际联系密切,机械类专业的许多课程都以工程力学为基础。工程力学课程中的内容,包括理论力学和材料力学两门课程中除专题部分以外的主要内容。由于此门课程属于经典力学,它所讲的理论比较基本,似乎很容易懂,但一做练习题,却不知从何下手,虽然苦思冥想,绞尽脑汁,但很多题目还是做不出来。所以,学过工程力学的人都有一个共同的感觉,就是“理论易懂,题难做”。因而得出工程力学难学的结论。那么,怎么样解决这一难题,才能学好工程力学?我认为应该从以下几方面来考虑。
一、明确学习工程力学的意义
工程力学是高职院校工科专业一门重要的技术基础课。是学生学习数学、物理基础课后接触到的第一门技术基础课,它是学生从基础课到专业课的桥梁,起着承上启下的作用,这是因为它是许多后续课程的基础。比如,不同专业以后将要开设的机械设计基础、钢结构、结构力学、金属切削原理、金属塑形成型原理、挤压模具技术的理论与实践、冲压模具设计与制造技术等专业课程都要用到工程力学中的知识。工程力学中的大量理论与工程实际密切相关,可以直接用于工程解决实际问题,工程力学中的力学模型、练习题,基本上都是由工程实际中的各种构筑物或构件、零部件简化抽象而得的,例如:房屋的横梁、车间的吊车梁、道路上的桥梁等都可以抽象成简支梁,房屋的雨篷、阳台、电线杆等都抽象成悬臂梁,屋架等都抽象成桁架,等等。工程力学的知识可以直接用于工程实际问题中的强度、刚度、稳定性计算等。由于工程力学是许多专业课程的基础,因此,它在培养学生的工程技术能力方面起着重要的作用。通过这门课程的学习,可以培养、提高学生的逻辑思维(包括推理、分析、判断等)能力,抽象化能力(包括将简单的实际问题抽象成力学模型、进行适当的数学描述、运用力学理论求解),实验观察、动手能力,自学能力,表达能力(包括文字和图像)以及数字计算能力。所以,作为高职院机械类各专业的学生,有必要学好工程力学课程。
二、正确理解并掌握“三基”内容
所谓“三基”,是指工程力学中的基本概念、基本理论、基本方法。众所周知,建造房屋必须筑好坚固的地基,构筑知识结构,同样要打好基础,要学好某门课程,首先也要掌握其最基本的知识,以后才谈得上拓宽和灵活使用,学习工程力学也不例外。
首先,工程力学的基本概念比较多,例如力的概念,约束的概念,力矩的概念等,仅“点的合成运动”一章中就涉及到两个点(动点、牵连点)、两个系、三种运动、三种速度、四种加速度等概念;如果不正确理解每一章中的概念,则在分析问题和具体计算中必定出错。所以必须正确理解基本概念。
其次,是基本理论的理解。工程力学的公理、定理很多,如:二力平衡公理,力的平行四边形公理,作用与反作用公理,三力平衡汇交定理,合力矩定理,胡克定律,等等,这些我们必须熟记,同时对其内涵、要素、适用条件等要反复理解,做到真正掌握,这样我们在分析力学问题时不至于无从下手。要学好这些基本理论,如果只靠死记硬背是很难掌握的,也难以记住,最好的办法是理解其实质含义,融会贯通,找出各章基本理论之间的共性与个性。比如:点的均变速运动与刚体的匀变速转动,这两章中的公式较多,难以记忆,但只要认真分析一下,便能看出它们之间有着一一对应的关系,即:加速度与角加速度、速度与角速度、路程与转角一一对应;又如:构件各种基本变形时的强度、刚度计算公式虽然很多,但也有对应的规律:不论四种基本变形中的哪种变化,都有:应力=内力/截面几何性质量,轴向拉(压)与扭转两章中的:相对变形=内力/抗变形刚度,绝对变形量=内力×长度/抗变形刚度,当然,不同变形时的内力、截面的几何性质量、抗变形刚度都不同,这就是其个性,只要记住了各章的个性及其之间的共性,则所有理论公式就都记住了,这样可以解决公式多、难记忆的苦难。
再就是基本方法的掌握。衡量工程力学学得好与否的一个标准,就是看其分析问题、解决问题的能力和破题能力是否较强。如果不熟练掌握工程力学的基本方法,满足于听得懂或抱有“抓考题、应付考试”的想法,则必定学不好,见到题目无从下手,决不可能取得好成绩。原因在于工程力学中问题都对应于工程实际中的实物,而工程实际中的实物又是千姿百态的,并且对于同一个实物,若侧重考虑的因素不同,则又可以抽象成不同的力学问题,所以工程力学中的题目可以变化多样、举不胜举,抓到考题的概率是极微小的。因此,要想学好工程力学除了正确理解基本概念和基本理论以外,一是要适当作预习,为听课做准备;二是要保证课堂听课的效果,作好课堂笔记,值得注意的是,同学们在听课、记笔记时,应该注意老师讲课的重点,记住分析问题的思路和求解的方法,而不是抄老师的板书;三是课后复习,归纳总结,找出并掌握其中的一些规律。如:求解静力学问题的方法,主要是“四步”,即取分离体、画受力图、列平衡方程(有摩擦时加列摩擦补充方程)、解方程;又如:求解动力学问题的方法也是“四步”,只是将静力学中的“列平衡方程”改为“列动力学方程及运动学补充方程”;再如:解决材料力学中主要问题的基本方法是:求内力―内力图―进行强度(刚度)计算,求内力的方法――截面法(截、去、代、平),不论受力、变形怎样复杂,都可以用截面法求得内力、找出危险截面、从而方便地进行强度(或刚度)计算。
三、要勤用脑、多动手
工程力学的特点之一是习题多,并且有一定的计算量,在《工程力学课程教学基本要求》中对课后作业的“最少习题数”作了明确规定,只有通过一定数量习题的练习,才能达到最基本的要求。此外,工程力学之所以“理论易懂,题难做”,也是因为其基础知识看起来简单,用起来却变化多端,神通无穷。它能解决多少问题,就看各人掌握的程度和创新能力了。怎样才能掌握和创新?像工程力学这门课程,不能只读书本,而必须多做题,通过做题,及时发现并解决自己学习中存在的问题;帮助理解、消化、巩固基本概念、基本理论;熟练掌握、灵活运用基本方法;训练、提高自己的思维能力、表达能力及数字计算能力;这样才能有所创新。
在做习题时应该注意:切莫急于对答案,否则,将事半功倍。一般来说,做题时,首先要认真审题,分析此题是属于哪种类型、需要用到哪些理论、有几种解题方法;然后选用比较简单或者自己掌握得比较好的方法去求解,最后用其他方法进行验算。例如:平面一般力系的平衡问题,可以列三个独立的平衡方程,而平衡方程又有三种形式,分别是一矩式、二矩式和三矩式;求作梁的内力图时,可以用基本方法、简便法或叠加法三种方法;求解平面运动刚体上任一点的速度时,可以用基本法、瞬心法或速度投影定理法三种不同的方法。
不论用哪种方法,最后结果是唯一的。为了检验计算结果正确与否,可以用其他方法核算。
可见,在做题时,一定要认真分析,合理选用方法,才能迅速准确地破解得答案。在学习过程中,除了完成课堂布置的必做题以外,还应该争取多做题,通过不同类型习题的练习,才能使自己对这门课程做到“见多识广,熟能生巧,举一反三”,以致达到“正确理解,熟练掌握,灵活运用”之目的。
四、注意理论联系实际
工程力学是人类长期认识自然和改造自然的结晶。力学的基本规律,是人们通过长期生产实践和大量科学实验,经过综合、分析和归纳总结出来的。生产的需要促进了力学的发展,同时,力学理论又反过来推动生产不断发展。所以,学习工程力学必须注意理论联系实际,在生活和生产实践中,认真观察,勤于思考,将感性认识上升为理性认识,并将理论应用到实践中去加以检验。如:我们用板手拧紧螺母时,用大板手省力,而用小板手很费劲,这用力矩理论很容易解释。又如一直径不同的钢杆,两端受外力作用而拉伸,当力增大到一定值时,由经验可知,断裂必发生在直径较小的一段上,这验证了衡量构件强度的物理量是应力。
五、注意力学实验
工程力学中许多理论是建立在实验基础上的,如材料拉伸压缩的力学性能实验。我们做实验时要认真观察,记录数据,对实验结果要仔细研究,用实验来验证力学理论的正确性,同时增强学习工程力学的信心。
六、结语
工程力学是有关工程技术人员必修的技术基础课程,作为今后将从事有关专业工作的工科学生有必要把它学好。尽管比较难学,但只要能认识它对后继课程的影响,明确学习它的目的和意义,从而提高学习的自觉性,保证课堂的听讲效果,在学习中正确理解并熟练掌握基本概念、基本理论、基本方法,认识做习题的重要性,自觉地多做习题,理论联系实际,主动思考工程力学中的理论在实际中的应用,就一定能学好它。一定要有信心克服学习中遇到的困难,通过努力学好工程力学,并使自己的能力得到提高,为后继课程的学习,为今后的工作打下良好的基础。
随着理科类化学专业的学生就业压力的增加,相当数量应用化学专业学生毕业后转入工科类的研究生学习或进入化工企业工作,同时我国快速发展化学工业对各种化学专业人才的需求不断增加。培养基础扎实、适应性强、具有创新能力的化学化工人才,是理工类化学教学改革面临的一个重要课题[1]。化学工程基础是一门实践性很强的技术基础课,具有理论与实践并重的特点,是衔接基础化学知识和化工生产实本文由收集整理践的知识桥梁,在培养学生的创造能力和实践能力中起着重要作用,是我校应用化学专业开设的主要专业基础课程之一。化学工程基础课程的学习对培养学生工程思维和解决工程实际问题的能力具有重要意义。
一、本门课的特点及学生学习现状
本课程是应化专业学生必修的一门重要的工程技术基础课程,是运用物理、物理化学的基本原理来研究和分析化工生产中的动量传递、热量传递及质量传递的原理,以及“三传”原理在各单元操作中的应用。课程的目的是培养学生学会运用工程观点和基本方法分析解决生产过程中单元操作的问题,如操作中的物料衡算、能量衡算、过程速率、平衡关系以及典型设备的设计及选型。内容涉及了流体的输送、传热、蒸馏、吸收、以及反应工程等方面。课程强调工程概念、定量计算、实验技能和设计能力的综合培养训练,强调理论与实践相结合,化学工程基础还为后续的专业课程打下基础。化学工程基础所学知识可直接应用于生产中,而且普遍应用。因此,学好本课程可为将来做工程技术工作打下良好的基础。《化学工程基础》是我校应用化学专业在大三下学期开设的一门专业基础课,共计32学时。学生在学习该课程前仅有的工程概念也是去岳阳化工厂短期实习参观,可以说几乎没有工厂的实际概念,同时该课程内容涉及多门学科,交叉性强,公式图表多,其内容多而杂,完全不同于学生以前所学课程。学生学习时普遍感到这门课程概念多、物理量多、公式多、方法多,而且计算繁杂,尤其是对课程中半理论半经验公式和准数、准数关联式感到头痛,特别是面对大量的工程概念和工程计算,往往会感到无从着手,不知用哪个公式去计算适宜。因此在学习过程中困难较大,不易学透。另外本课程还要紧密联系工程实际,教学难度很大。因此,《化学工程基础》课的教学改革显得尤为重要。
二、教学改革的措施
1.运用多媒体课件进行教学,加强课堂教学效果。由于《化学工程基础》课程内容多、原理复杂,不容易理解,公式多而繁杂,要在32个学时里将其讲透并且学生能理解,就必须在教学方法和教学手段上进行改革,运用现代化教学手段,利用多媒体课件进行教学,使得单位学时的信息量大大增加。利用多媒体可以对课程教学内容进行精炼和整合,同时也可以对教学中遇到的图表和图形、曲线等通过多媒体直接展示出来,特别是课程中涉及的化工设备的内部结构,各单元操作和生产过程等用多媒体课件将图象和声音于一体来展示,使原本枯燥的内容变的生动、有趣,使学生对单元操作、工艺过程的现象有更深入的了解,可激发学生的学习热情。例如,在讲述流体的流动时用flash动态表示流体流动的两个流动形态:层流和湍流,引导学生观察液体流动时的层流和湍流现象,区分两种不同流态的特征,搞清两种流态产生的条件,再分析圆管流态转化的规律,然后引出表征流体流动参数——无量纲数雷诺数,加深了对雷诺数的理解。又例如传质与精馏的计算一直是学生学习的难点,学生不知如何根据已知参数去选定适宜的公式计算,同时对该工艺过程一无所知,因此,在这部分,我们以氨气的制备为例,用flash动态表示氨气从吸收到解吸的过程,中间经历的设备及工艺过程,使学生既熟悉化工生产中重要的吸收—解吸的工艺流程,了解填料塔的结构,同时也掌握了吸收—解吸过程的操作和调节方法,对计算吸收和解吸时涉及的气相传质系数和液相传质系数(或单元操作高度)及其与液体喷淋密度的关系有更深入的了解,大大增强了学生的理解能力,取得了很好的教学效果。在运用多媒体教学的同时,还要不同的课程内容采取不同的教学模式。对那些必须掌握的内容,采用“板书+多媒体”教学方式,重点向学生讲解,使得课堂教学形象、直观、生动、活泼,激发学生学习的兴趣,提高课堂效率。
2.各种教学方法并重,增强学生的综合理解能力。由于课时少,学时集中,基本在10周内完成教学和考试任务,而教学内容多而杂,为使学生顺利地学好本课程,我们从以下几个方面对教学方法进行了改革:①采用启发式、互动式和对比式的教学方法。教师在每次上课前都要认真备课,确定每次课的重点,在上课前先给学生提出1~2个问题,让学生带着问题边听边思考,教师讲授时采用启发式、互动式、对比式等教学方法,充分调动学生的思维活动,激发学习的主动性。在下课前由老师或学生回答课前提出的问题,对有新意,有独特视角的回答,给予肯定和鼓励。采用回答问题的方法,不仅激发学生学习的积极性和主动性,而且使学生能有效的掌握课堂上所讲授的内容,提高学生的分析和解决问题的能力。②适宜的习题练习。教材在每章的后面都有对应的习题进行练习,这些习题都是著者精心选择的习题,具针对性,要求学生必须做完课后的习题。大量的习题练习也是学好本课程的重要部分,通过做练习题,不断的练习,加深记忆。教师认真批改每个学生的作业,并因此对学生作业中出现的共性问题进行总结,以习题课的形式进行讲解。③加强习题课的学习,增强学生的综合理解能力。教学中发现学生上课时听的明白,也能当场回答问题,但是,一旦课后遇到问题就无从下手,不知用什么理论或公式去解释和回答,所以,在教学中安排一定量的习题课是十分必要的,习题课也是理论教学的一个重要环节。在每章教学内容结束后,我们都通过习题课的形式使学生加深对基础知识和基本规律的理解,解题过程成为学生理论联系实际的一个重要途径。习题课由三部分构成:选择题、问答题、计算题。习题课的选题要有代表性、启发性,以使学生在解题过程中深刻理解基本概念、掌握方法、寻找所学知识应用的结合点。每章选有代表性的选择题5~10个、问答题2~4个,让学生现场回答,根据学生的回答情况进行讲解,让学生知道对和错的理由,再根据学生课外作业时出现的问题,有针对性地讲解1~2个计算题。通过习题课使学生加深对概念和公式的理解,更加踏实、牢固、全面地掌握所学基础知识。教学中发现学生特别喜欢上习题课,这样便于检验学生的学习状况,受到学生的好评。
三、培养学生的工程意识,掌握多种工程研究方法
化工工程基础作为综合性的工程技术课,是从自然科学领域的基础课向工程科学的专业课过渡的入门课程,对学生建立工程技术意识具有重要作用。但由于学时的限制,教学上还是存在着“重过程、轻设备”问题,为此,在教学中通过理论联系实际,逐步深入,有意识地培养学生的工程观念。
1.重视绪论教学。绪论教学对学生学习本门课的兴趣起到至关重要的作用。绪论教学中首先向学生展示大型化工厂宏伟风姿的图片,图片中密如蜘蛛网的管道线路、高大的填料塔、反应炉和存储罐、换热器等设备马上吸引了学生的注意力,教师简单介绍这些设备在生产中的作用,再通过典型的生产工艺流程阐述化工过程包括的单元操作,而这些单元操作即是本课程将要重点讲解的内容,再简单介绍课程的基本理论,说明课程的重要性。绪论教学中要让学生理解“三传”的基本概念、量纲一致性原则,掌握物料衡算、热量衡算、过程速率及单位换算的计算要点,为后续章节学习打下良好的基础[2]。
关键词:工程教育;离散数学;SPOC;翻转课堂
0引言
《华盛顿协议》是国际上最具权威性和影响力的工程教育互认协议之一。我国于2013年加入华盛顿协议,成为其预备成员,2016年成为第18个正式成员。工程教育专业认证强调以学生为中心,以学习产出和学习成果为目标导向,通过质量监控和反馈机制持续地对教学过程进行改进,促使教育质量的改善和提高[1-2]。我们遵循工程教育的理念,制定可量化的考核方式,通过“评价—反馈—改进”的循环过程,持续改进教学质量。我们以离散数学课程的工程教育实践为切入点,对课程教学模式做了改变和尝试,提出了课程达成度计算模型。在教学实践中,通过SPOC(小规模限制性在线课程)和翻转课堂的结合,引入与离散数学知识相关的工程问题和实例,着重培养学生解决复杂工程问题的能力。在教学阶段,逐项收集各种教学信息,对教学效果和教学质量进行数据分析和研究,持续改进和提高教学方式。
1课程达成度与指标点
对于软件工程专业,工程教育的培养目标是培养软件工程领域高层次的软件研发、管理和技术服务人才。在工程教育的实施过程中,不断积累学习和教学数据,借助数字化技术计算学习成果的达成度[1]。在教学体系上,采用自顶向下的方法,建立层次化的达成度评价模型:第一级为课程达成度,第二级为毕业要求达成度,第三级为培养目标达成度。下一级的达成度支撑上一级的目标,以此建立培养目标、毕业要求和课程之间的数字化对应关系。宏观上,达成度的评价最终分解为对学生学习过程的全程跟踪和持续性评估。软件工程专业整个培养体系划分为9条培养目标(PO)和12条毕业要求(GR),每项毕业要求再细化为多个指标点。在微观上,课程的达成度支撑了对应毕业要求的指标点。首先以毕业要求指标点确定课程的教学目标(CO);然后,教师根据对教学目标的分解确定每个课程目标的权重(W),课程目标权重反映了该课程教学和达成度评价的侧重点。课程教学目标的达成度基于所选取的考核评价方式(平时作业、期中考试、期末考试等)来进行计算。计算公式如下:C=∑(COi×Wi),COi=∑(Tij×wij)(i=1,2,…,n;j=1,2,…,m)式中:C为某门课程的达成度计算值;COi为某门课程第i个课程目标的达成度计算值。Wi为某门课程第i个课程目标达成度的计算权重系数;Tij为某门课程第i个课程目标在第j种考核方式中的达成度计算值;wij为第i个课程目标在第j种考核方式中的权重系数。离散数学作为软件工程专业的基础理论课,其支撑的毕业要求包括:(1)GR1.4:掌握专业知识,能选择恰当的数学模型描述复杂软件工程问题,能对模型进行推理和求解。(2)GR12.2:掌握自主学习的方法,了解拓展知识和能力的途径。根据毕业要求的指标点设置4项课程目标和3个教学模块(CM),主要包括:CO1掌握离散数学的基本思想和概念;CO2培养严格的逻辑推理能力;CO3训练抽象思维能力;CO4培养处理离散信息及工程应用的能力;CM1集合与关系、CM2数理逻辑和CM3图论。课程目标、教学模块和考试考核点的对应关系见表1。在期末考试后,采集每个学生每道题目的得分成绩,选定考核点,依据题目的预期值(即每道题目的分数)和达到值(即每道题目的实际得分)计算课程教学目标的达成度:COn=∑(COn考核点预期值/COn考核点达到值),n=1,2,3,4;课程达成度=CO1×0.4+CO2×0.2+CO3×0.2+CO4×0.2由以上达成度计算可以看出,离散数学支持多个毕业要求指标点的达成。课程目标的达成情况就是该课程预期要达到的学习效果,同时也是本门课程对专业培养目标的贡献。
2教学信息采集工程教育专业认证要求
通过采集和分析学生的学习过程和学习效果来证明学生能力的达成度。所有这些达成度的证据都建立在各种记录数据和文档的基础上。除了传统的结构化数据(如考试成绩和考勤记录),工程教育中更强调通过实际的工程训练来培养学生解决复杂工程问题的能力。这就需要通过多种方式来收集每一个学生在学习过程中的微观表现,如课堂、作业、邮件、实习等,以此来了解学生的学习状态,建立持续改进的达成度评价体系。课堂上,教师采用移动教学方式,根据课堂教学内容和教学效果,选取题库中相应难度的题目,将题目发给每个学生(如手机、平板),学生的解答则通过移动网络反馈到教学数据采集系统。课后以邮件和网上答题的方式来收集学生的学习情况。课后的作业和综合性练习主要是证明题目和主观性题目,以评分表分析法建立量规[3]。量规为主观性题目或其他表现(比如证明的步骤、细节、表达等)确定量化标准,从优到差详细规定评级指标。同时,采取老师评分、同学互评、助教评分的方式进行综合性学习评价,填写学习评分表。重点获取学生的答题情况(非结构化信息),包括:每题选择了什么选项,花了多少时间,是否修改过选项,做题的顺序有没有跳跃等,全面地反映学生的学习过程和状态。在课程内容方面,对知识体系进行梳理,将课程知识按照知识点模块进行数字化,并且将多门相关课程联系在一起,建立面向问题的知识网络。例如,将图论与数据结构中的树和图进行关联和比较;把等价类的概念与软件测试方法相结合来分析软件开发问题。基于实际软件项目构建对应于课程内容的知识图谱和知识数据库。通过引入工程领域的离散问题,分析问题中出现的各种实时性数据、工程化数据和研究性数据,将其分类存储于问题数据库和练习题库,为考核评估提供支持。
3课程教学改革
在工程教育的指导思想下,离散数学课程除了向学生描述理论知识“是什么”和“为什么”以外,更注重让学生学会“如何运用”理论知识,以解决在软件开发中出现的各类问题。改进已有的教学方式,一方面,在课程内容上打破原有专业课程的讲授模式,结合实际工程问题,按照CDIO工程教育理念开展课程建设[4]。另一方面,采用问题驱动的教学方式[5],通过录制SPOC[6]和实施翻转式课堂教学,指导学生参与离散工程问题的分析、研究和解决方案设计。
3.1翻转课堂翻转课堂是一种“以学生为中心”的新的教学模式[7]。它关注学生的个性化学习和成长,能更好地实现工程教育的能力和素质培养。实施翻转课堂,首先建立离散数学课程的知识图谱,以思维导图的方式构建整体的知识框架;然后,逐步细化每个章节的内容,对概念性知识(如集合、关系的概念)和过程性知识(如逻辑的推理、关系性质的判断与证明)进行梳理,按照不同的教学方式进行组织和关联。概念性知识划分为5个难度级别:A简单、B适度、C较难、D困难、E综合。对于简单和适度的概念按知识点划分单元模块,制作8~10分钟的教学视频。例如,将集合论的发展历史、集合的基本概念等内容以时间线(storyline)的方式展示给学生。在制作SPOC视频时,不仅讲解知识,还突出理论知识的文化观念和内涵。而对于难度较高的内容,如析取范式、合取范式等,则安排在课堂上进行讲解。对于过程性知识,例如,布置给学生的课后作业:“证明某个关系R是集合A上的一个等价关系”,将批改作业的过程和演示证明的步骤录制为视频。在视频中,逐项讲解解题的思路(如何使用等价关系的定义进行证明)、学生解题中出现的各种问题(如对称和传递关系的理解偏差,不恰当使用等)以及需要注意的关键地方(如自反性、对称性、传递性都需要证明,证明才完整)等解决问题的思考过程和经验。通过SPOC实现体验式教学,让学生能从任务的求解指导中学会如何应用所学到的知识。采用问题引入、分析求解、过程探讨、理论构建的步骤完成SPOC视频制作。
以命题逻辑的讲授为例,视频以断案推理的例子(如神探夏洛克)开始,吸引学生的注意力,将现实中的问题与命题、逻辑、推理等知识联系起来,把问题进行拆解分析,逐步归纳总结出概念和知识点,纳入学生已有的认知结构,让他们更加积极主动地投入到自主学习中。在课前,要求学生根据前次课布置的学习任务观看微视频,通过自主学习和思考,理解基本概念,完成一定有针对性的小测验。在课堂上,采用如下多种教学方式:(1)引导式教学。如在讲解主析取范式和主合取范式时,让学生思考“如何找到主合取(或主析取)的极大项和极小项”,提示学生考虑采用建立树结构的方式来求解。(2)体验式教学。给出真实的任务情境,让学生协同完成某一项任务;或现场对某些有争议的问题进行研讨,并且相互展示学习成果,实现同伴互评。例如,让学生编写一段程序,要求对函数的参数进行检查,由此把命题逻辑与程序检查中的断言相对应进行讲解;把等价类的划分与面向对象中类的概念进行类比介绍。(3)互动式教学。如课前以墨经中的“有之则必然,无之则未必不然,是为大故”和“无之则必不然,有之则未必然,是为小故”,引出充分必要条件的知识,指导学生完成对命题联结词知识点的复述,命题公式的化简等练习;期间,老师回答学生提出的问题,对每位学生进行个性指导,并参与讨论。通过引导和检查学生的学习效果,把握学生的学习状态和学习进度。对于工程素质和能力的培养,一方面,将课程的知识点分别对应到软件开发的各个阶段,如将数理逻辑对应编程实现、将集合和关系对应数据库的构造、将树和图对应数据结构的设计,把理论知识运用到软件开发实践中;另一方面,根据学生的个体学习需求,加入具有一定难度的工程任务和开放性课题,让学生可以根据自身情况进行自由选取,如结合图论最短路径的知识点,将2016年华为软件精英挑战赛中的问题“未来网络?寻路”引入教学讨论,鼓励学生积极参与类似的具有研究性质的挑战。
3.2教学数据分析工程教育关注学生完成学习的过程,因此对教学活动中的各类数据,如教学目标、教学内容(知识点、重点、难点)、常规练习、挑战性练习等,进行量化,并建立彼此之间的联系。采用成绩分析法[8],细分教学目标和教学模块,按照支撑毕业要求的指标点进行数据采集、计算均值、方差、信度、效度等统计参数,在评价每个指标点达成度的基础上,获得课程掌握情况的评价结果[9]。利用学生学习的行为档案创建自适应的学习系统,反映学生的学习效果。利用学生“如何”学习的信息,依据教学数据的分析结果,为学生量身定制适合学生的个性化练习。通过分析学习数据,自动创建一系列难度逐渐增加且互相关联的问题,例如,从集合到关系、从关系到特殊关系、从特殊关系到树结构,让学生围绕一个共同的知识点来求解问题,从中分析学生的学习模式。同时,老师根据自己的教学需要来调整教学任务,例如,给课堂练习和作业规定完成的时间,让移动教学系统在“自动计时”的情况下,考察学生的学习过程;而在学生做错题目需要帮助时,系统自动给出提示并确定问题出错的位置。系统记录学生的学习过程,包括在哪个知识点的学习上遇到了问题、哪些习题完成花费时间较长等。老师对这些数据进行分析,建立相关的教学模型为学生推荐更为合适的学习路径。确保教学数据的正确性、可用性是进行教学数据分析的关键。制定教学数据检测体系和软件系统对数据进行实时的检测以保证数据的质量,尽可能减少对数据分析和挖掘带来的不利影响。首先制定各种数据的录入和维护规范,最大限度地自动录入各种结构化和非结构化数据,包括考试成绩的每项评分、主观评价打分等。其次,制定数据检测规则并实现自动检测,应用不同的数据配置策略,对静态、动态数据进行实时监控和定期检查以发现并处理有问题的数据。最后,建立可靠的教学数据质量评估体系,通过各种评估方法,如基于异常值的评估方法、逻辑性评估方法等,对数据质量的改进效果进行评估,为数据质量改进提供策略。此外,还需要实现缺失数据的完善、筛选等数据处理工作,将数据标准化、去重复化,最后形成规范化的格式。
4结语
工程教育以培养学生的素质和能力,评价学习成果或产出作为核心标准。学院对软件工程专业全面开展工程教育,建立全覆盖的工程培养体系和量化的培养目标,并通过了2016年11月的评估。笔者在此基础上,针对专业培养目标,改进了离散数学课程的教学模式,按照工程问题重新划分教学知识点和知识结构,设定了课程的达成度计算模型。在教学过程中,结合SPOC课和翻转课堂,收集和规范各方面的信息和数据;建立教学数据分析库,逐步开展学生学习路径、习题考评模式、错误答题模式等问题的研究,以此作为学习问题诊断、教学干预和教学决策的重要参照。
参考文献:
[1]张建树,郭瑞丽.工程教育认证背景下课程达成度的评价改革[J].高教论坛,2016(6):72-74.
[2]林健.工程教育认证与工程教育改革和发展[J].高等工程教育研究,2015(2):10-19.
[3]GoodRichH.Understandingrubrices[J].EducationalLeadership,1996,54(4):14-17.
[4]顾佩华,包能胜,康全礼,等.CDIO在中国(上)[J].高等工程教育研究,2012(3):24-39.
[5]王彩玲,王元元,宋丽华.问题驱动模式下离散数学小班化教学方法探讨[J].计算机教育,2012(15):19-22.
[6]薛云,郑丽.基于SPOC翻转课堂教学模式的探索与反思[J].中国电化教育,2016(5):132-137.
[7]赵兴龙.翻转课堂中知识内化过程及教学模式设计[J].现代远程教育研究,2014(2):55-61.
[8]杨王黎,吴雅娟,王丽侠.成绩分析与试卷质量评价系统的设计与实现[J].大庆石油学院学报,2002,26(2):60-63.
【关键词】趣味思考题;理论力学;应用
理论力学是工程技术类专业的主干课程,是机械类专业和建筑工程类专业学生的重要专业基础课程。理论力学课程中涉及到的基础概念及基本原理众多,由于每个学生原有经验和思维方式不同,所以在理论力学课程学习中,学生对基本概念及基本原理的理解会出现差异,甚至会出现一些理解错误。错误概念的形成是有根源的,特别是一些错误概念来源于日常生活,学生印象深刻,如果仅按理论力学教材进行课程教学,不触动学生原有对理论力学基本概念及基本原理的误解,学生似懂非懂,虽然能够正确回答某些问题,但一遇到复杂的情况,仍然不能正确回答,所以要纠正错误。实践表明,在理论力学教学中趣味思考题是纠正学生理解错误的一种有效手段。
1 趣味思考题的作用
趣味思考题的设计是激发学生学习兴趣、综合运用知识与培养逻辑思维能力的需要。在理论力学教学中,当学生对所学基本概念与基本原理掌握时,趣味思考题可以使学生积极思考、联想,实现知识、能力的同步发展。
1)通过趣味思考题培养学生的逻辑思维能力,逻辑思维是一种有序的思维,也是解理论力学习题的基本思维方法,它贯穿于解理论力学习题的全过程。培养学生逻辑思维能力,让学生正确地学会推理,是学好其它学科.提高分析问题和解决问题的能力所必需的。充分利用思维训练题中的思考题,是落实培养学生逻辑思维能力的有利途径。
2)趣味思考题可以培养学生的力学建模能力。传统的理论力学教学,直接使用力学模型讲授基础理论的应用,缺乏从实际问题中抽象成力学模型的环节,与工程应用脱节严重,不利于学生的技能培养。在教学实际中,采用趣味思考题形式将一个生活中的实例,抽象成力学模型,再进行理论分析,从而增强学生的力学建模能力。
3)通过趣味思考题指导学生建立正确的理论力学概念。由于每个学生的生活经验和思维方式的差异, 在理论力学课程学习中,学生对课程的基本概念及基本原理的理解会也出现差异,趣味思考题可以制造认知冲突,通过课堂提问,让学生有机会陈述自己的想法和见解,把理解错误充分暴露出来。当学生用错误的思想来解释趣味思考题产生矛盾时,即原有概念与科学概念发生了“冲突”时,学生会自愿放弃错误的观点。
2 趣味思考题选用的原则
1)趣味思考题要精。首先要有针对性,要结合教学中的重点、难点、基本理论和基本原理进行选编趣味思考题,通过趣味思考题案例教学,使学生更好地掌握理论力学的基本概念和基本原理。其次要有典型性,同一原理必有诸多趣味思考题可用,在这诸多趣味思考题中应选用贴近日常生活的案例,即应选用那些在日常生活中常见的力学现象,用理论力学的原理进行分析,这种贴近生活的趣味思考题的教学有助于学生认识客观事物规律的能力的培养,对学生在学习理论力学课程中有举一反三、触类旁通的示范作用。例如,在讲摩擦的概念时,可以选用别莱利曼的趣味力学中的“怪铅笔[1]”为思考题。
2)趣味思考题要真实。一方面要符合理论力学的基本原理,从学生的日常生活出发,选编那些学生熟视无睹的力学现象,从而激发起学习、讨论的兴趣。另一方面表述要准确,选编的力学现象,在体现教学目的、要求的基础上,要进行精心提炼,反复推敲,使趣味思考题表述事实清楚,数据准确,切实可信,分析过程概念明确、条理清晰,否则学生将不以为然,达不到趣味思考题教学的目的。
3)趣味思考题要新。趣味思考题要不断更新,与时俱进,舍弃情节过时的思考题,对已采用过的有价值的思考题不断赋予新的内涵,使思考题教学充满生机与活力。要针对科技发展和我国重大工程中出现的新情况、新问题,适当选编思考题,通过探讨,灵活运用力学基本原理,去创造性地解决新问题,以培养学生在今后工作中运用所学知识分析问题、解决问题的能力。
3 灵活组织教学
根据理论力学的知识体系、基本概念和基本原理有选择地、灵活地组织趣味思考题教学,这是趣味思考题教学的关键环节。
1)有选择地进行趣味思考题教学。理论力学课程有完整的体系结构,教师要把握课程体系和课程所涵盖的知识点,对于学生易于理解掌握的知识点通过课堂一般讲授进行,对于教材的重点、难点,用贴切的趣味思考题进行教学,通过趣味思考题的分析、研讨,使学生真正理解掌握基本知识。趣味思考题教学应该采用互动式教学模式,充分发挥学生的主体作用,恰当地进行趣味思考题教学,达到教学的效果。
2)教学方式多样化。组织趣味思考题教学,有两种方式可以采用:第一,教师为主体的教学模式,在讲述课程的基础知识的基础上,进行趣味思考题剖析,用理论力学的基本原理分析解决问题。第二,以学生为主体。采用分组讨论形式,即在讲授基础知识后,学生分组进行讨论,然后由学生作典型发言,鼓励学生发表不同见解,展开辩论,通过辩论明晰事理,达到趣味思考题的教学目的。
3)精当点评。对讨论趣味思考题所得出的不同结论进行剖析。教师对此要重视,要在课前作好充分准备,根据课堂上学生的不同观点、不同见解,从基本理论上进行分析,正确的加以肯定,错误的地方进行纠正,让学生通过教师的点评有所收获。
【参考文献】