首页 > 文章中心 > 通信研究方向

通信研究方向

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇通信研究方向范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

通信研究方向

通信研究方向范文第1篇

关键词:新形势;电力系统自动化;研究方向

中图分类号:TM76 文献标识码:A

文章编号:1009-0118(2012)07-0215-02

电力系统自动化是我们电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展)、电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统),实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。

一、电力系统自动化的概念

电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压)、系统运行的安全可靠,提高经济效益和管理效能。

二、具有变革性重要影响的三项新技术

(一)电力系统的智能控制

电力系统的控制研究与应用在过去的40多年中大体上可分为3个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。智能控制是当今控制理论发展的新阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题。特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。

智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用于快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。

(二)FACTS和DFACTS

1、FACTS概念的提出

电力系统的发展迫切需要先进的输配电技术来提高电压质量和系统稳定性,一种改变传统输电能力的新技术——柔流输电系统(FACTS)技术悄然兴起。

所谓“柔流输电系统技术”又称“灵活交流输电系统技术”,简称FACTS,就是在输电系统的重要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。

2、FACTS的核心装置ASVC的研究现状

ASVC由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强。与旋转同步调相机相比,ASVC的调节范围大,反应速度快,不会响应迟缓,没有转动设备的机械惯性、机械损耗和旋转噪声。并且因为ASVC是一种固态装置,所以能响应网络中的暂态,也能响应稳态变化,因此其控制能力大大优于同步调相机。

3、DFACTS的研究态势

DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。其主要内容是对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。

三、基于GPS统一时钟的新一代EMS和动态安全监控系统

(一)基于GPS统一时钟的新一代EMS

目前应用的电力系统监测手段,主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。两者还具有一个共同的不足,即不同地点之间缺乏准确地共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。

(二)基于GPS的新一代动态安全监控系统

基于GPS的新一代动态安全监控系统,是新动态安全监测系统与原有SCADA的结合。电力系统新一代动态安全监测系统,主要由同步定时系统,动态相量测量系统、通信系统和中央信号处理机四部分组成。采用GPS实现的同步相量测量技术和光纤通信技术,为相量控制提供了实现的条件。GPS技术与相量测量技术结合的产物——PMU(相量测量单元)设备,正逐步取代RTU设备实现电压、电流相量测量(相角和幅值)。

四、电力系统自动化的研究方向

(一)智能保护与变电站综合自动化

对电力系统电保护的新原理进行了研究,将国内外最新的人工智能、模糊理论、综合自动控制理论、自适应理论、网络通信、微机新技术等应用于新型继电保护装置中,使得新型继电保护装置具有智能控制的特点,大大提高电力系统的安全水平。对变电站自动化系统进行了多年研究,研制的分层分布式变电站综合自动化装置能够适用于35-500kV各种电压等级变电站。微机保护领域的研究处于国际领先水平,变电站综合自动化领域的研究已达到国际先进水平。

(二)电力市场理论与技术

基于我国目前的经济发展状况、电力市场发展的需要和电力工业技术经济的具体情况,认真研究了电力市场的运营模式,深入探讨并明确了运营流程中各步骤的具体规则;提出了适合我国现阶段电力市场运营模式的期货交易(年、月、日发电计划)、转运服务等模块的具体数学模型和算法,紧紧围绕当前我国模拟电力市场运营中亟待解决的理论问题。

(三)电力系统实时仿真系统

对电力负荷动态特性监测、电力系统实时仿真建模等方面进行了研究,引进了加拿大Teqsim公司生产的电力系统数字模拟实时仿真系统,建成了全国高校第一家具备混合实时仿真环境的实验室。该仿真系统不仅可进行多种电力系统的稳态及暂态实验,提供大量实验数据,并可与多种控制装置构成闭环系统,协助科研人员进行新装置的测试,从而为研究智能保护及灵活输电系统的控制策略提供了一流的实验条件。

五、电力系统运行人员培训仿真系统

电力系统运行人员培训仿真系统是针对我国电力企业职工岗位培训的迫切要求,将计算机、网络和多媒体技术的最新成果和传统的电力系统分析理论相结合,利用专家系统、智能cai(计算机辅助教学)理论,是进行电力系统知识教学、培训的一种强有力手段。本系统设计新颖,并合理配置软件资源分布,教、学员台在软件系统结构上耦合性很少,且系统硬件扩充简单方便,因此学员台理论可无限扩充。

六、配电网自动化

在中低压网络数字电子载波ndlc、配网的模型及高级应用软件pas、地理信息与配网scada一体化方面取得了重大技术突破。其中,ndlc采用了dsp数字信号处理技术,提高了载波接收灵敏度,解决了载波正在配电网上应用的衰耗、干扰、路由等技术难题;高级应用软件pas将输电网ems的理论算法与配网实际结合起来,采用了最新国际标准IEC61850、IEC61970CIM公共信息模型;采用配网递归虚拟流算法进行潮流计算;应用人工智能灰色神经元算法进行负荷预测。

七、电力系统分析与控制

对在线测量技术、实时相角测量、电力系统稳定控制理论与技术、小电流接地选线方法、电力系统振荡机理及抑制方法、发电机跟踪同期技术、非线性励磁和调速控制、潮流计算的收敛性、电网调度自动化仿真、电力负荷预测方法、基于柔性数据收集与监控的电网故障诊断和恢复控制策略、电网故障诊断理论与技术等方面进行了研究。在非线性理论、软计算理论和小波理论在电力系统应用方面,以及在电力市场条件下电力系统分析与控制的新理论、新模型、新算法和新的实现手段进行了研究。

八、人工智能在电力系统中的应用

结合电力工业发展的需要,开展了将专家系统、人工神经网络、模糊逻辑以及进化理论应用到电力系统及其元件的运行分析、警报处理、故障诊断、规划设计等方面的实用研究。在上述实用软件研究的基础上开展了电力系统智能控制理论与应用的研究,以提高电力系统运行与控制的智能化水平。

九、现代电力电子技术在电力系统中的应用

开展了电力电子装置控制理论和控制算法、各种电力电子装置在电力系统中的行为和作用、灵活交流输电系统、直流输电的微机控制技术、动态无功补偿技术、有源电力滤波技术、大容量交流电机变频调速技术和新型储能技术等方面的研究。

通信研究方向范文第2篇

关键词:童装设计;培养方向;市场需求;专门型人才

一、“童装设计培养方向”开设的必要性

近年来,国内童装市场消费快速增长,童装类产品的热销成为服装产业发展的一个新增长点。与此同时,快速发展的童装产业使企业对于童装设计、制版、生产等专门型人才的需求则出现了较大缺口。纵观国内设计类院校对“服装设计”专业的划分,“童装设计培养方向”几乎是没有的。即使有些院校在整个服装设计的课程设置中加入了部分童装设计课程,但也只是一带而过,仅做到了“蜻蜓点水”而并未深入学习。更没有对童装设计制版、儿童生理特征、儿童心理学等相关学科进行深入地研究。对于“童装设计人才”培养的缺失,已经成为服装设计院校专业设置合理化改革中一个急需解决的问题,并逐渐成为一个新的人才培养方向和学科研究

方向。

为了迎合市场对“童装设计专门型人才”的需求,长沙师范学院结合本校多年的办学特色,于2013年将服装设计专业培养目标设定为“童装设计人才培养方向”,对整个服装设计专业的教学进行了细致的规划,为“童装设计专门型人才”的培养铺垫了一个良好的开端。目前,人才培养与教学、研究正在逐步实施和进行当中,已有百余名学生在校学习。“童装设计人才培养计划”可以说是一项突破创新的大胆尝试,不仅填补了服装设计院校对该专业研究方向设置的空白,更前瞻性地迎合了童装行业快速发展的需求;不仅有利于学院教学与科研水平的进一步提升,更有望为我国未来“童装设计”专业教育的完善做出一定的贡献。

二、“童装设计”的教学及研究内容

目前,在服装设计专业的教学安排中,已展开的童装设计课程有:童装款式设计、童装纸样设计、童装工艺设计、儿童服饰品设计、儿童发展与教育心理学等。“童装设计”实质上是整个服装设计分类中一个相当重要的部分,培养“童装设计专门型人才”除了要使其掌握服装设计的基本原理、知识与技能之外,还必须使其掌握“童装设计”特有的相关专业知识。因为童装与成人装不仅是服装型号大小上的区别,儿童的日常生活行为方式、审美爱好、性格特征与成人也有着天壤之别。因此,学生还必须了解一些专业性较强的童装设计专业知识。

以往,服装设计与童装设计混为一谈的教学方法是不够科学和完善的,因为童装与成人装在设计细节、工艺、生产指标等方面也是有很大区分的,比如:国际上对童装生产技术指标的要求就远远要高于成人装。如果按照年龄阶段来区分,还可划分为婴童、小童、中童和大童。0~14岁儿童处在不同的发展阶段,其生理、心理均具有较大差别,各年龄阶段的儿童从生理特征、着装方式、日常行为等方面都会不尽相同。因此,不同年龄段的童装设计在款式细节方面的侧重点也不同。例如:在小童、中童裤装中“可调节腰部松紧带”的设计就会出现较多,而在婴童、大童的设计中则使用较少。因此,在童装设计的教学中,准确的年龄划分也是非常重要的一项研究内容。

在童装设计教学实践中,我们力图更加系统、全面地讲述童装设计的原理和方法。如在“童装款式设计”课程中,就选取了大量的童装款式图例来为学生剖析童装各部位的不同设计特点,让学生有针对性地进行训练和创作。在服装设计的各项课程安排中,也都合理地融入“童装设计”的教学内容,并争取做到学以致用。在童装设计教学的课堂上,准确的课程讲解以及具有实际意义的知识引导,也是从事童装设计教育研究者的重任。

童装设计不仅是设计一件普通的衣服,它还涵盖着更广泛的意义,除了对于儿童身体形态的研究,还包含着对于“儿童审美心理”的研究。通过对服装的颜色、款式、面料等方面的感知和体验,儿童往往会产生出不同的心理变化。由此我们便可通过不同的设计来培养儿童的审美意识和情趣,促进儿童身心、智力的健康发展。所以说,“童装设计”是一种肩负着诸多方面设计责任和使命的“系统性设计”。在童装设计专项人才培养中,我们将着眼于从有关儿童生理、心理的各方面入手,让学生对童装设计有一个全面的

了解。

三、“童装设计专门型人才”的培养目标

通信研究方向范文第3篇

【关键词】新一代;船舶;能源动力系统;研究方向

中图分类号:U66 文献标识码:A 文章编号:1006-0278(2013)01-105-01

随着社会的进步和发展,环境保护生态平衡和能源循环利用问题越来越被社会各界人士所重视,以及世界的能源发展与结构变化都让能源科学面临着新的挑战,也促使了对于新一代能源动力系统的研究,在这样的大背景和大环境下,关注新一代船舶能源能力系统的研究是极其重要的。文章从现今船舶动力系统的产业格局和种类出发,结合船舶柴油机动力系统的不足,浅谈研究应用新一代船舶能源动力系统的意义,并介绍了新一代船舶能源动力系统的研究方向。

一、现今船舶动力系统的产业格局和种类

船舶动力系统作为船舶上最重要和最主要的设备,其价值占全船总设备成本的百分之三十五,由船舶主机(蒸汽轮机、柴油机、燃气轮机等)、传动系统、推进器组成。现今世界上的船舶动力系统的推进方式主要有以下四种:首先,往复式蒸汽机被蒸汽轮机取代,之后蒸汽汽轮又被柴油机所取代,现今主要在液化天然气船或是核动力军船上应用,蒸汽轮机的技术研究与发展趋势倾向于可靠性、机动性以及操纵性的不断增强,设备的简化等;第二,柴油机是现今最重要也是最主要的动力推进方式,全面取代了往复式蒸汽机和蒸汽轮机,应用于各类船型;第三,燃气轮机这一推进方式现今主要是应用于军船上,上世纪50年代开始应用于船舶领域,但应用范围比例一直无法突破;第四,电力推进系统,这推进方式是上世纪90年代开始应用在船舶领域,但应用范围比例也一直不高,只有军船或是小型商船会选择这一推进方式。现今船舶动力系统的设计、研发仍是由一些欧美国家和日本所垄断,且锅炉、蒸汽轮机、燃气轮机等也都由他们掌控,只有柴油机推进系统的制造现已转至中、日、韩这三国。

二、研究应用新一代船舶能源动力系统的意义

现今的船舶动力装置,基本都为柴油机动力装置,但是船舶柴油动力系统却与现今时代可持续发展的主题极为不符,环保和节能方面存在着明显缺陷。如:首先燃用的柴油和重油都是不可再生资源,现今石油资源日益枯竭,对再生能源的呼声越来越高;其次使用柴油,其废气排放问题很严重,虽然航运对废气排放标准限制较严格,但是一些小型的内河船舶使用的柴油设备过于老旧,排放性能不好,且维修费用和水平都不高,造成的环境污染也就更严重;第三,柴油机的工作原理和结构特点使船员面临着难以避免的振动、噪音问题,对于其工作质量和生活质量的影响都很大,特别是一些小型的内河船舶,听力受损程度更大。由于船舶柴油机动力系统面临存在着如能源类型、噪音和排放等一些问题,因此研究新一代船舶能源动力系统就显得更为重要和必要。尤其是从我国的能源消费结构来看,推广应用新一代船舶能源动力对可持续发展也有着重要的意义。

三、新一代船舶能源动力系统的具体研究方向

(一)风能动力系统

利用风能主要指利用风力发电或是风帆助航的风能为动力这两种形式,应用于船舶动力主要是作为船舶航行的主动力和辅助动力而言的,风力发电在船舶上的应用较少。但由于风能发电受限于航道的风力影响因此不太可能大规模推广。

(二)太阳能动力系统

现今对于太阳能动力系统的研究还是较多的,特别是大型太阳能动力船舶技术的研发,但一些关键性问题也需要继续探索。比如说:研制高效率的太阳能光伏装置、太阳能动力船舶船体平台研究不属于能源科学、储能装置的研究与应用、氢燃料电池储能装置的开发等等,由于这几点因素,大规模应用并不现实。

(三)民用核动力系统

对军用船舶来说民用核动力这一新能源动力系统的应用还是值得推广的,但是民用船舶则不适合,因为这一系统装置很特殊,它的整个系统的建设和设备的配套都是不同于普通船舶的,因此其在船舶建造、设计和验收各个环节的标准也是不同的,技术要求和水平的规格不适合民用船舶。

(四)液化天然气动力系统

未来液化天然气会成为天然气用于船舶能源动力的主要内容,其高于压缩天然气的储能密度和所占空间较小、安全可靠性很强等特点越来越受到能源科学研究的青睐。而且液态的储藏运输成本较低,维护管理简单,能耗和噪音也较低。

(五)生物质能动力系统

生物柴油的热值比柴油低10左右,而且密度比柴油高它是一种含氧燃料,着火后的自供氧效应,使燃烧速度高于柴油。是以掺混一定比例的生物柴油对发动机的燃烧排放动力性能进行研究实验的。

(六)燃料电池动力系统

通信研究方向范文第4篇

(南京航空航天大学金城学院,江苏 南京 211156)

【摘 要】扩频码对扩频通信的性能起着重要作用,一般利用计算机实现扩频码的设计与性能仿真。本文利用MATLAB工具编制了m 序列、Gold 序列和Kasami 序列的生成程序及自相关、互相关函数的计算程序。程序简单,只需输入线性移位寄存器的反馈系数,即可输出相应的扩频码,进而得出扩频码的相关性、平衡性等性能指标。

关键词 扩频通信;扩频码;m 序列;Gold 序列;Kasami 序列;仿真

0 引言

扩频通信与常规通信的根本区别是信息在发送之前进行了频谱扩展。频谱扩展是通过高速的扩频码与低速的信息码直接相乘实现的。扩频通信具有信号频谱宽、波形复杂、安全隐蔽等显著特点,大大增加了敌方对信号进行截获、检测、测向定位和干扰的难度。 扩频码对扩频通信的性能具有决定性的重要作用,抗干扰、抗噪声、抗截获、信息数据隐蔽和保密、抗衰落、多址通信、实现同步与捕获等都是与扩频码的设计密切相关的。

扩频通信对扩频码的要求是:

(1)具有尖锐的自相关函数,而互相关函数应接近于零。

(2)有足够长的码周期,以确保抗侦破、抗干扰的要求。

(3)序列平衡性好。

(4)工程上易于产生、加工、复制和控制。

扩频码选用伪码(PN 码)用于扩展频谱通信。所谓伪码,即伪随机编码,也称伪随机序列、伪噪声码,是由近似随机出现的、有一定规律并可复制的、1 和0数目大致相等的序列组成。

在扩频系统中,对伪随机序列而言,最关心的问题就是其相关特性,包括自相关性及互相关性。下面给出这些相关函数的定义。

设有两条长为N的序列{a}和{b},序列中的元素分别为ai,bi,(i=1,2,3,……,N)。则序列的自相关函数定义为:

1 常用伪码相关性的仿真分析

本文主要讨论由线性移位寄存器产生的线性移位寄存器序列,包括m序列、Gold 序列和Kasami序列。

1.1 m 序列的相关性仿真分析

如果一个n 级线性移位寄存器产生的序列的周期P=2n-1,那么该序列就叫做最长线性移位寄存器序列,简称m序列。

m 序列的平衡性非常好,在每个周期内,0 比1 少出现的次数少一次。根据公式1,可推出其自相关函数为

这个公式说明,m序列具有双值自相关函数特性。下面给出了6 级m序列a 的自相关函数的Matlab 仿真图(见图1,为了更好的说明m序列的自相关特性,图中绘出了m序列2 个周期的自相关函数)。

由图1 可以看出,m 序列的自相关函数呈三角形。具有这种自相关函数的伪码,在通信和测距系统中是很有用的。例如,只要有两个通信系统的码序列相移在1 个bit 以内时,则它们就可以同时工作,这就能够实现同一发射频域内的多址通信。在测距系统中,利用相关峰值作为测量标记,可以保证距离测量精确到1bit 之内。在测量中,只要调整相关检测器,使它在± 1bit 检测电平之间识别,而对其他的较低和较高的电平不识别,就能达到测量高度精确的目的。

但是m 序列(周期相同)之间的互相关性不够理想,当作为扩频码使用时,会增大多址干扰。图2是由MATLAB 程序产生的6 级的m 序列a 和b 的互相关函数图像。从图2 中可以看出,它们的互相关函数值包括3 个:{-1, -17,15},并且-1 所占的比例很小,这样能组成互相关函数值小的m 序列集的数量很少,无法满足多用户的需求。

1.2 Gold 序列的相关性仿真分析

Gold 序列是m序列的组合序列,由同步时钟控制的一对m优选对逐位模2 加得到,Gold 序列的周期为P=2n+1。其产生模型如下图所示:

Gold 序列虽然是由一对m 序列模2 加得到的,但它已经不是m 序列了,不过仍然具有与m 序列近似的相关特性,各个序列之间的互相关特性与原来两个m 序列之间的互相关特性一样,最大的互相关值不会超过原来的两个m序列最大互相关值。Gold 序列的特性主要有以下三点:

1)周期为P=2n+1,具有比m序列大得多的独立码组。

2)一周期内任意一对序列的互相关函数值都是三值的,其可能值为{-1,-t(n),t(n)-2},其中t(n)如下式:

3)Gold 序列的每个码组的自相关函数也从集合{-1,-t(n),t(n)-2}中取值,因此自相关函数的峰值以t(n)为上界。

Gold 序列虽然具有平衡性良好、序列数量较多、自相关特性良好,但其互相关特性与m 序列类似,即互相关值小的Gold 序列集合较少。

1.3 Kasami 序列的相关性仿真分析

Kasami 序列与Gold 序列类似,也是一种在m 序列基础上构造出来的扩频序列。它继承了m 序列的良好的随机特性,同时又具有自、互相关特性均较好的的特点,且数量也很可观。Kasami 序列有大小两类,前者序列数较多,后者较少。kasami 序列的相关性能比较好,其中kasami 小集合序列的相关性能比kasami 大集合序列还要好。限于篇幅,本文只讨论kasami 小集合序列的的相关性。

kasami 小集合序列的自相关函数和互相关函数值都在下列集合中:{-1,-s(n)), s(n)-2}(其中s(n)=1+2n/2)。当n=6 时,s(n)=9,因此其自相关函数和互相关函数的取值范围是{-9,-1, 7},图5是由MATLAB 程序产生的6 级的kasami 小集合序列的自相关函数和互相关函数图像。

从图中可以看出,kasami 小集合序列的互相关峰值较前两者小,互相关特性更优良。

2 结论

本文从扩频通信中对扩频码的基本要求入手,讨论了扩频码中常用的m 序列、Gold 序列和Kasami 序列,并用MATLAB 对以上序列的相关性进行了仿真。本文内容对工程技术人员具有较强的参考价值,对开展相关领域研究也具有一定的借鉴意义。

参考文献

[1][美]J.K.霍姆斯.相干扩展频谱系统[M].北京:国防工业出版社,1991.

[2]李承恕,赵荣黎.扩展频谱通信[M].北京:人民邮电出版社,1993.

[3]张冬辰,周吉,等.军事通信[M].北京:国防工业出版社,2008.

[4]张志涌,徐彦琴.Matlab 教程[M].北京:北京航空航天大学出版社,2001.

[5]王会华,李宝平.m 序列发生器的设计与实现[J].北京:北京电子科技学院学报,2007.

通信研究方向范文第5篇

关键词:浦肯野氏纤维; 心室电传导系统; 电兴奋传导速率; 心律失常

中图分类号:TP3919 文献标识码:A文章编号:2095-2163(2014)01-0078-05

0引言

心壁内由特殊心肌纤维组成的传导系统是心脏传导系统,是由窦房结、房室结以及心室传导系统组成的,心室传导系统又包括希氏束,左、右束支和浦肯野氏纤维。心脏传导系统的功能是产生冲动并将其传导至心脏各部位,进而维持心房肌和心室肌有节律的收缩。20世纪90年代后期,大量的临床和实验室研究[1]发现浦肯野氏纤维(也称浦氏纤维,Purkinje Fiber, PF)细胞是最易于发生心律失常的细胞,在许多情况下这是严重室性心律失常发生的源头。又浦肯野氏纤维细胞的动作电位间期(Action Potential Duration, APD)远大于心室肌细胞的动作电位间期[2],存在如此大差异的两种细胞在结合时通常会造成很大的问题,但有研究表明,浦肯野氏纤维细胞和心室肌细胞在耦合连接时,由于细胞间的间隙连接,相应的动作电位都会发生变化,从而使得二者的动作电位间期彼此接近。因此,浦肯野氏纤维问题成为了当前临床医学和学术领域研究心室电传导过程的重要对象。

近年来,先后有多人提出并建立了包含有浦肯野氏纤维的心室电传导系统模型[3-5],但是由于浦肯野氏纤维自身的结构特点,在解剖学上很难准确地将其与心室肌分离开来,所以,在当前已有的模型中,大多是根据人工标记得到的,没有考虑浦肯野氏纤维的宽度信息。为此,本文建立了人的二维理想化心室电传导计算模型,研究与分析浦肯野氏纤维的宽度对心室电兴奋传导的影响。

1心室电传导模型的建立

1.1二维心室电传导模型

为了分析、研究不同的浦肯野氏纤维宽度对心室组织电兴奋传导的影响,本文参照Aslanidi等人[6]提出的犬类浦肯野氏纤维-心室组织模型的结构,结合Philip Stewart等人[7]提出的人类浦肯野氏纤维细胞模型和Ten Tusscher等人[1]提出的人类心室细胞模型(简称TNNP模型)建立了包含有浦肯野氏纤维的理想化二维人类心室电传导模型。该模型由一条浦肯野氏纤维与一块心室肌透壁切片组织耦合连接组成,如图1所示。其中,浦肯野氏纤维的宽度随实验方案的不同而改变,长约45mm(300个细胞),如图1中PF区域所示。心室透壁切片组织宽约60mm(400个细胞),长约15mm(100个细胞),如图1中VM区域所示。由于心室肌细胞沿透壁方向的电特性具有非均匀的特点,根据文献[8]将心室组织从内到外分为三种类型细胞,心内膜细胞(ENDO)、中间层细胞(M)和心外膜细胞(EPI),其比例为25:35:40。此外,图中倒置的波形代表对该模型施加的外界电流刺激,刺激施加部位为浦肯野氏纤维最左端,该电流刺激方法则称为标准电流刺激法,即由一组固定周期(T1)不可变的连续的S1刺激(30-50个)和一个可变周期(T2)的S2刺激组成。

2电兴奋模拟方案

为了分析浦肯野氏纤维宽度对电兴奋传导过程的影响,根据浦肯野氏纤维的解剖数据,将其宽度设置为5、10、15、20、25、30、40和50共8种情况,单位是细胞的个数,对应浦肯野氏纤维的宽度分别为0.75mm、1.5mm、2.25mm、3mm、3.75mm、4.5mm、6mm、7.5mm。对于一个可兴奋细胞,细胞动作电位的传导是无衰减的,但是在兴奋组织模型中,电兴奋在传导过程中存在一定的衰减,因此,对于组织模型来讲,引起组织兴奋的阈上刺激要大于单细胞兴奋的阈上刺激。本文采用标准电流刺激法,设置施加的电刺激持续时间为0.5ms,测试得到引起浦肯野氏纤维单细胞模型兴奋的阈上刺激强度约为-9.8pA/pF,引起组织模型兴奋的阈上刺激强度约为-35.2pA/pF。也就是说,对模型进行仿真时所施加阈上刺激强度的大小与电兴奋是否能够成功传导有着直接联系,故本文对该模型进行仿真计算时,在改变浦肯野氏纤维宽度的同时,也改变所施加的电流刺激强度大小,将其分别设置为-35.2pA/pF、-40pA/pF、-50pA/pF和-60pA/pF四种情况,那么本文主要是对上述4×8共32种情况下的实验仿真结果进行对比分析,并借助于电兴奋传导速率,探索性地研究浦肯野氏纤维的宽度和施加的电流刺激强度大小对心室电兴奋传导的影响。

考虑到模型是由非线性方程构成,本文采用仿真多个周期来提高模型仿真结果的精确性,即30个S1刺激和1个S2刺激,其中S1和S2的刺激周期长度相同,均为800ms,对比分析各种情况下的模型仿真结果时均选取第31个周期(即施加S2刺激的那个周期,此时模型达到稳定状态)的实验结果。

3兴奋传导速率

电兴奋传导速率(Conduction Velocity,CV)是指动作电位在心室组织中传导的快慢,是用来评价电兴奋传导的一个重要指标。对于本文所建立的模型,在仿真计算浦肯野氏纤维细胞的电兴奋波的传导速率时,以浦肯野氏纤维为例,在浦肯野氏纤维初始端和末端分别选取一个细胞,如图1中用“*”标记的1、2所示,在模型仿真的过程中,测定一个周期中这两个细胞的动作电位去极化速率达到最大值时的时间间隔,那么两个细胞之间的距离除以该时间间隔,就是电兴奋的传导速率,其中细胞之间的距离即为两个细胞之间的细胞数目乘以模型仿真时的空间步长0.15mm。同样地,对于心室肌细胞,可以选择心内层的一个细胞和心外层的一个细胞(如图1中用“*”标记的3和4所示),计算心室肌透壁方向上电兴奋的传导速率。当然也可以通过选取适当的细胞计算得出心室肌组织宽度方向上电兴奋的传导速率,在此不再一一描述。

4仿真实验结果分析

按照第3节介绍的电兴奋模拟方案对模型进行仿真,模拟得到了各方案下组织计算模型的电兴奋传导过程,结果显示(以浦肯野氏纤维的宽度是15个细胞为例),在每一个周期内心室组织都能够完全复极,电兴奋正常传导,图2显示了第31个周期心室组织电兴奋的传导过程,其中,图2(a)、(b)和(c)分别表示心室组织去极化、慢速复极化以及快速复极化过程中某一时刻的电兴奋传导情况,图2(d)表示心室组织复极化完成后的静息状态,图中不同的颜色分别代表细胞的兴奋程度,即细胞的动作电位大小,具体如图片右侧的颜色条所示。从图中可以看出,当细胞处于静息状态时,在图片中呈现的颜色为蓝色,当细胞响应外界施加的刺激产生去极化时,其动作电位值增加,然后细胞开始缓慢复极化,细胞的动作电位逐渐减小,直至细胞完成复极达到静息状态。

在仿真过程中,计算各实验方案下心室组织模型中浦肯野氏纤维和心室肌传导电兴奋的速率,实验结果显示,在浦肯野氏纤维中电兴奋的传导速率约为1.34m/s,远大于心室肌中电兴奋的传导速率,约为0.4m/s。在浦肯野氏纤维中,电兴奋的传导速率随着浦肯野氏宽度和刺激强度改变时的变化情况如图3所示.从图中可以看出,当刺激强度为-35.2pA/pF,电兴奋传导速率相对其他刺激强度情况下较慢,并且随着浦肯野氏宽度的增加,电兴奋传导速率几乎保持不变;当刺激强度大于等于-40pA/pF时,不同刺激强度时电兴奋的传导速度仅有细微的差别,并且随着浦肯野氏纤维宽度的增加,虽有稍许的波动,但是影响不大。由此可以得出,当外界施加刺激强度大于一定范围时,浦肯野氏纤维的宽度以及外界施加刺激强度的改变对浦肯野氏纤维本身的电兴奋传导速率基本没有影响。

图4(a)显示了不同方案下心室肌中透壁方向电兴奋的传导速率变化情况,由图可知,心室肌中电兴奋的传导速率约为0.4m/s,在同一刺激强度情况下,电兴奋传导速率随着浦肯野氏纤维宽度的增加而增大,并且不同刺激强度下电兴奋传导速率的变化曲线几乎是重合的,即一旦刺激强度达到组织兴奋的阈上刺激,那么对心室肌透壁方向电兴奋的传导速率影响不大。图4(b)显示了心室肌透壁方向电兴奋传导速率随浦肯野氏纤维宽度增加的百分比,可以看出,电兴奋传导速率虽然有所增加,但是增加的幅度比较小,浦肯野氏纤维宽度为7.5mm时相对于宽度为0.75mm时,在心室肌透壁方向,传导速率增加的幅度约为2.1%。考虑到心室肌组织的电不均匀性,因此在研究分析心室肌组织宽度方向上电兴奋的传导速率时,根据细胞的类型从三个方面进行讨论,图5、6、7分别是心内层细胞、中间层细胞以及心外层细胞电兴奋传导速率及其增加百分比情况,通过观察图知,在心室肌组织宽度方向上,不论是哪一种细胞类型,电兴奋的传导速率变化趋势和心室肌透壁方向是一致的,均是随着浦肯野氏纤维宽度的增加而呈上升趋势,并且四种不同刺激强度情况下电兴奋传导速率的变化情况基本一致.不同的是,在心室肌组织宽度方向,心外层细胞的电兴奋传导速率最快,约0.72~0.86m/s,中间层细胞的较慢,大约为0.54~0.64m/s,心内层细胞的电兴奋传导速率相对最慢,约为0.43~0.49m/s,但相对心室肌透壁方向,三者的电兴奋传导速率均比较快,这与各类型的细胞属性相关。

5结束语

为了探索性地研究浦肯野氏纤维的宽度对心室组织电兴奋传导的影响,本文建立了人的包含浦肯野氏纤维二维理想化心室电传导计算模型,基于该模型,模拟仿真了不同浦肯野氏纤维宽度下心室电传导过程,通过对比分析各方案下模型的仿真结果,证明了浦肯野氏纤维传导电兴奋的驱动能力随着其宽度的增加而增大。同时,本模型不仅可以用于先天性基因变异的心律失常机制以及药物的抗心律失常作用的研究,为心律失常诱发机制研究提供了新的研究手段,还可以用来更加深入地研究浦肯野氏纤维与心室肌耦合连接机制,因而具有重大的理论和实践意义。

本文是从生物与计算机的交叉领域进行的探索性研究,虽然取得了一些成果,但是与人实际的心室电传导系统还存在一定的差距,并且国内外对于心室电传导系统的建模与仿真研究在尚处于初级阶段,特别是国内,仅有少数的几个实验室在做虚拟心脏的建模与仿真研究,因此,该领域在研究过程中会有很多创新性的工作需要进行深入研究,相信不久的将来,虚拟心脏建模技术会发展得更加完善,建立的模型也更加贴近实际,而将其应用于临床上心脏疾病的研究和治疗,必将造福全人类。发挥积极而深远的重要作用。

参考文献:

[1]TEN TUSSCHER KHWJ, PANFILOV AV. Modelling of the ventricular conduction system [J]. Progress in biophysics and molecular biology, 2008, 96(1-3):152-170.

[2]HUELSING DJ, SPITZER KW, CORDEIRO JM, et al. Modulation of repolarization in rabbit Purkinje and ventricular myocytes coupled by a variable resistance[J]. American Journal of Physiology. Heart and Circulation Physiology, 1999, 276:H572-H581.

[3]VIGMOND EJ, CLEMENTS C. Construction of a Computer Model to Investigate Sawtooth Effects in the Purkinje System[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(3):389-399.

[4]CHERRY EM, FENTON FH. Contribution of the Purkinje network to wave propagation in the canine ventricle: insights from a combined electrophysiological- anatomical model[J]. Nonlinear Dynamics, 2011, doi 10.1007/s11071-011-0221-1.

[5]ATKINSON A, INADA S, LI J, et al. Anatomical and molecular mapping of the left and right ventricular His-Purkinje conduction networks[J]. Journal of molecular and cellular cardiology, 2011, 51(5):689-701.

[6]ASLANIDI OV, STEWART P, BOYETT MR, et al. Optimal velocity and safety of discontinuous conduction through the heterogeneous Purkinje-ventricular junction[J]. Biophys, 2009, 97(1) : 20-39.

[7]STEWART P, ASLANIDI OV, NOBLE D. Mathematical models of the electrical action potential of Purkinje fibre cells [J]. Philos Transact A Math Phys Eng Sci, 2009, 367(1896): 2225-2255.