首页 > 文章中心 > 化学元素的分类

化学元素的分类

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇化学元素的分类范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

化学元素的分类

化学元素的分类范文第1篇

元素周期表有16个族,分别为7个主族、7个副族和一个0族、一个VIII族。

化学元素周期表是根据核电荷数从小至大排序的化学元素列表。列表大体呈长方形,某些元素周期中留有空格,使特性相近的元素归在同一族中,如碱金属元素、碱土金属、卤族元素、稀有气体等。这使周期表中形成元素分区且分有七主族、七副族、Ⅷ族、0族。由于周期表能够准确地预测各种元素的特性及其之间的关系,因此它在化学及其他科学范畴中被广泛使用,作为分析化学行为时十分有用的框架。

主族元素是化学上对元素的一种分类,是指周期表中s区及p区的元素。主族元素另外一种定义是除了最外层电子层以外的电子层的电子数都是满电子的化学元素。周期表中除了过渡金属、镧系元素、锕系元素、惰性气体之外的都是主族元素。

同主族元素从上到下原子序数逐渐增大,电子层数逐渐增多,原子半径逐渐增大,得电子能力逐渐减小,失电子能力逐渐增大,元素金属性逐渐增大,非金属性逐渐减小,气态氢化物稳定性逐渐减小。主族元素在水溶液中的离子(包括含氧酸根)无色。

(来源:文章屋网 )

化学元素的分类范文第2篇

关键词:化学鉴原 傅兰雅 徐寿 碱

中图分类号:O6-6 文献标识码:A 文章编号:1003-9082(2017)02-0163-02

《化学鉴原》是中国最早的一部系统地介绍近代化学的译著之一[1],该书成书于1872年,由英国化学家傅兰雅(John Fryer,1839-1928)与其在江南制造局的同事徐寿(1818-1884)共同翻译Well’s Principles of Chemistry中的无机化学部分。Well’s Principles of Chemistry一书则是当时美国流行的化学教科书。《化学鉴原》主要介绍了当时西方无机化学中的元素、基础理论以及一些实验方法。

自19世纪中叶起,中国引进了大量西方化学书籍,同时进行了汉译的尝试。以1885年所出版的《博物新编》[2]为发轫,诸如《金石识别》[3]、《化学指南》[4]、《化学阐原》[5]、《化学初阶》[6]、《格物入门》[7]等翻译西方化学著作的书籍陆续出版,掀起了一波西学东渐运动。作为其中成书较早的译著,《化学鉴原》一书对西方化学术语的翻译并无先例可循,理所当然的,其中的一些译法在后世悉数被,例如“Elements”在《化学鉴原》中就被译作“原质”[8],而在1933年南京国立编译馆编订的《化学命名原则》一书中则被改为“元素”沿用至今。然而正是在这样一个中国化学启蒙阶段,《化学鉴原》中所译定的64种化学元素名竟有36种被保留了下来,成为了日后修订、增补化学元素汉译名的标尺,而其所采用的化学元素定名方法也成为了后世元素命名之滥觞。

一、化学鉴原中的元素命名

彼时对化学元素的译法并无一定之规,同一时代的化学译著有采用完全音译的译法,如《金石识别》中将硼(Boron)译为布而[9],锰(Manganese)则被译为孟葛尼斯[10];也有采用以中国原有物质名词为基础的意译,如《化学阐原》中将钙译为石精[11],《化学指南》将铝译为矾精等[12],这些译法或者过于繁杂,不便于运用;或者依据个人经验之谈,晦涩难明。相比较而言,《化学鉴原》中的译法则更为简便与系统。《化学鉴原》主要采用几种方式:

1.采用前人意译

养气(氧):因循《博物新编》的命名,然而傅兰雅与徐寿剔除了《博物新编》中“生气”这一别名。“凡生L之物,B樽钜之品,而游镏能活,火之l光l幔皆所必焉”,因而《博物新编》将养气这一译法沿袭了下来。

轻气(氢):与养气相同,轻气这一说法同样最早出现于《博物新编》,意指“其质为最轻”,此外还有“水母气”的别称,“因cB饣合樗”也。

淡气(氮):同样因循了《博物新编》,虽然傅兰雅与徐寿并未对淡气的命名做出解释,但据《博物新编》中的记载:“淡气者,淡然无用,所以调淡生气之浓者也”,这种释义应当也为傅兰雅与徐寿所接受

绿气(氯):首次出现在《金石识别》,“因其色黄绿故名之为绿气”。

炭(碳):严格来说,炭作为一种元素最早是出现在《化学鉴原》之中,虽然《博物新编》中有炭气的词条,然而此时的炭气并非是如上述养气、轻气之类,虽有“气”字,实则是指元素。《博物新编》中的炭气指的是二氧化碳,“炭者何?烟煤之质,火烬之余,气之最毒者也。”而在《化学鉴原》中,炭则是第一次作为一种元素被描述,“最多最要之原质,炭居其一焉…与养气二分剂化合者为炭气”。

2.古已有之的元素名称

即金、银、铜、铁、铅、锡、汞、硫、等。

3.根据英文发音新造的元素译名

大部分的元素采用此种命名方式,两位译者认为“西|名,字多音繁,gA文,不能M叶。今惟以一字樵|之名,原|B即殡s|之名。非特各原|明,而各s|亦不^底帧薄8据这一原则,除了一些“昔人所译而合宜者”如养(氧)、轻(氢)、淡(氮)等,以及“中华古昔已有者”,如金、银、铜、铁、铅、锡、汞、硫、等,傅兰雅与徐寿以钅、氵、石等偏旁表示元素的性|,配合各种元素英文音的第一个或是第二个发音结合而成。依据这种与“形声”法造字颇为相似的方法,傅兰雅与徐寿一共造出了48个新元素字,分别是钾、钠、锂、^、铷、钡、、钙、镁、铝、`、锆、碘、硒、碲、、矽、镉、铟、铪、铋、铀、钒、钨、钽、、钼、钍、K、铒、铽、错、锒、镝、锰、铬、钴、镍、锌、铌、锑、、铂、钯、j、钌、、铱。

虽然当时的另一部著作《化学初阶》同样采用类似的造字方式,但是具体的中文译名与《化学鉴原》有极大的不同,而其中的中文译名留存至今的不足三种。可以说虽然当时存在多种不同的命名方式,但现行的命名习惯应当是参考自《化学鉴原》一书无疑。

4.溴、弗

溴并非是依照英文发音所生造的“形声字”,而是根据“孛罗明,即溴水,其意此物有臭气也”所生造的“会意字”。而弗则是完全以英文发音生造而来。

化学元素的分类范文第3篇

关键词:元素周期表;总结积累本;判断与推导

谈到化学,总是有人欢喜有人忧。究其原因,无非两种。一部分人认为化学太难了,每次考试成绩都不理想,也有一部分人认为化学很简单,每次考试成绩都稳中有升。为什么会出现这种认识分歧?是因为他们对化学学科的学习内容没有理解,对化学学科的学习方法没有掌握。今后,大家可以尝试以下做法:

一、借助元素周期表去思索任何一种化学反应

化学元素周期表根据原子序从小至大排序的化学元素列表。化学的反应原理都是最外电子层是否“饱和”的问题。通过复习反应方程式(按课本章节逐步复习出现的方程式),对照周期表思考,就能得出结论。你会发现,根据同一周期元素电子层数相同,同一族最外层电子个数一样,自己就可以推断出该元素的金属性或非金属性,甚至是物理性质,如,金属的硬度,气体的密度、颜色、沸点等,还可以根据已知元素在周期表的位置推断未知元素的性质。

二、借助总结积累本去牢记所有特殊元素

什么是特殊元素?就是通过反应能够产生特殊气体、特殊沉淀、特殊颜色的元素,此外,还有变价元素、组合元素(酸根)等,这些常常是高考化学的考点以及解题的入手点。因此,每一个学生都要有一个专门属于化学学科的笔记本,把那些非规律性的、不常见的、又很重要的问题分类整理在总结积累本上。

三、借助判断与推导去解答多数化学题目

其实,高中化学知识并不多,考点相对其他学科而言也非常少。所以,有的学生就存在一种侥幸心理,平时不努力,临时抱佛脚。我想告诉你的是,一定要找准学好化学的基本点和明确学好化学的大方向,并且一定要记住:功在平时。从入学之初就用心学起,并持之以恒,如此,才能打好坚实的基础。分析近年来各地区的高考化学试卷,不难发现物质推断题依然是化学高考中的重要题型,这类题具有条件隐蔽、关系复杂、思维强度大、综合性强等特点,而且题目构思、内容、思维方法正呈现新的变化趋势,更加注重知识的综合、联系,注重分析和解决问题的能力,注重多种思维方式的运用,注重科学探究。

参考文献:

化学元素的分类范文第4篇

关键词:哈沙克斯坦东哈沙克斯坦州地区;植物界;重金属积累;生态特点

中图分类号:X173文献标识码:A文章编号:1674-9944(2012)12-0011-04

1引言

目前,人对生物圈的人为影响具有全球性的特点,因此很多有毒物质在高浓度时局部、地区、全球散射和进入生物圈问题就变得非常迫切,这其中就包括重金属,所有生物圈不断增长的“金属压力”正成为经常起作用的生态因素。研究地区在这方面具有很大的需要,因为这里既有前核试验场的土地,同时也有阿巴亚博物馆保护区土地。这个地区没有进行详细的研究,因为在众多自然对象中,重金属背景值的研究数据不足,这其中包括植物中的,在大多数情况下它们将作为自然标准。具备这样的数据可以提高对当前形势评价的客观性,也有可能计算污染的速度,但首先必须成功对环境进行监测。

由于人对生物圈工艺基因影响的增长,对环境负面影响的真正的危险也开始出现,现在很多有毒物质高浓度时环境对象中含量研究是一种最大的社会和经济问题。在解决人为污染对环保的实际问题时,自然对象中有毒成分背景含量的资料具有非常重要的地位,其中包括植物和具体地区中的[1~3]。重金属是环境中非常重要的污染,其中包括铅、镉、锌和铜,这是以工业发展趋势为条件的,还有重金属生理—生物化学特性,它们在活的有机体中具有积累高毒性的能力。由于工业生产的增长研究自然对象中重金属含量监控的科学依据就成为非常重要和迫切的任务,其中包括代表很大科学和实践兴趣的植物。

2植物中的重金属

2.1植物中重金属的形成机制

生物圈中重金属问题具有两个方面——与重金属微量元素缺乏有关的生物面和生态毒理学面。因此必须对不同地区环境对象中重金属含量进行监控,首先就是植物中的,因为植物是活的有机体,它们是生物圈水平高信息指示剂中大量化学元素的主要来源。在科学方法上考虑另外一种情况,植物元素组成具有的稳定的—不稳定性。生命物质尽可能保留前几代形成的特性,但又不得不接受当前的环境状况,并随之发生变化。植物的化学组成有特定的功能,由于有机体对土壤中含有的元素的选择性的关系, 地球化学环境形成了冗余或不足的植物元素。在多种多样的地球化学条件下,植物的化学成分及代谢,可能会有显著不同[4,5]。

2.2植物中重金属积累的生态方法

植物将根系扎到很深的土壤中通过生物积累把化学元素从地下传输到上面,之后经过植物残留物在土壤上层的矿化作用积累了这些元素,它们的生物吸收系数超过计算单位。影响重金属进入植物的因素有很多,比如植物种类、土壤类型、浓度、重金属发现的方式、土壤pH值、土壤颗粒组成、有机物质含量、土壤中离子吸收能力和是否具有生态系统污染的工艺基因来源。重金属在植物中的分布首先取决于各种植物器官进行的生理职能、植物形态结构和化学元素进行的生理职能,因此应该更广泛地研究现有的植物对化学元素的选择性吸收:不仅可以选择新陈代谢需要的元素,还可以对抗不需要元素的进入。植物有机体存在好几个选择性吸收的级别:从较低准确(在根-环境界限内)到非常严格(在地上机构中,尤其是茎-种子(果实)界限内),正因为选择性吸收化学元素才以适合存活的比例进入植物。

3哈萨克斯坦东哈萨克斯坦州地区植物

界重金属积累生态特点研究地区的植物覆盖具有多样性的特点,这里是典型的草原地带,还有部分是沙漠-草原地带。古老冲击平原上主要是沙-针茅-远东羊茅类植物,它们生长在土壤中,除了传统的Festuca sulgata 和Stipa Joannis外,这里还可以看到其他一些禾本科植物,比如Festuca beckeri, Gleistogenes squafrosa и разнотравье Taraxa-cum sibiricum, Artemisia scoparia, Potentilla acaulis等。Г·Я.林吉斯与Е·А.德米特里耶夫共研究了草原和沙漠-草原典型地带的6个科,18个种类,50个植物样本。植物和其形态器官中重金属含量是通过Г·Я. 林吉斯/1/双硫棕比色法法确定的,所有分析数据是通过Е·А.德米特里耶夫/9/数学分析法处理的[6]。

3.1同一种植物在不同土壤中重金属积累的生态特点

研究结果证明,同一种植物类型在不同土壤类型中重金属积累数量不同。比如,研究元素含量在不同土壤植物中含量变化如下:铜-0.1~2.5倍,锌-0.1~2.2倍,锰-0.1~1.5倍,钴-0.1~1.0倍,铅-0.1~2.3倍,镉-0.1~5.3倍。研究地区植物中重金属含量取决于它们在土壤中的含量和具体土壤中形成的矿物供给情况[7~9]。生物吸收系数数值可以间接证明元素达到土壤的程度,通常生物吸收系数值越高,植物中元素含量就越高。同一植物中重金属含量不同既取决于植物的生物特性,又取决于环境条件——元素在土壤中/3, 4, 5. 6/含量和生物利用度(表1)。

3.2各科研究植物中重金属含量

各科植物中重金属含量变化不大,平均情况如下:铜-35.0%,锌-19.0%,锰-34.8%,钴-46.7%,铅-43.3%,镉-51.5%。由于选择性吸收化学元素才以适合存活的比例/7, 8, 9, 10, 11/进入植物,这在不同的植物器官中表现尤为明显,因为化学元素在不同植物器官中具有自己特定的职能(表2)。

3.3不同植物器官中重金属含量的分布

从表3中可以看出,锌在植物器官中是向基部的分配,铜和锰是向顶分布,钴、铅、镉在根分布稍多,到叶和茎中减少,它们含量在茎中最低。只有镉元素在各科植物剖面研究时形态器官中发现了共同规律(表4),其他元素没有确认。

3.4各科野生植物形态器官中重金属含量

各科野生植物形态器官中重金属含量见表4。

菊科和藜科形态器官中铜和锰具有向基部和向顶分布的特点,其他科则不同。因此除了镉之外,植物科所属会影响其他研究重金属在其形态器官中的含量。各科植物和植物器官中重金属吸收强度(生物吸收系数)研究是一体的,茎对铜和锌平均吸收强度要低于叶和根:生物吸收系数茎>生物吸收系数叶>生物吸收系数根;铅和锰——生物吸收系数根>生物吸收系数茎>生物吸收系数叶;钴和镉——生物吸收系数根>生物吸收系数叶>生物吸收系数茎[10]。

研究区域整个特点如下:铜、锰、钴和铅在植物生物吸收水平属于中等吸收元素,锌和镉属于强吸收元素。很显然,最近的生物迁移可以作为这些元素在地形中迁移的主要因素。

4总结

4.1同一植物在不同土壤中重金属数量不同

同一植物在不同土壤中重金属积累不同既取决于植物的生物特性,又取决于环境条件——具体土壤中原色的含量和生物利用度。研究元素含量在不同土壤植物中含量变化如下:铜-0.1~2.5倍,锌-0.1~2.2倍,锰-0.1~1.5倍,钴-0.1~1.0倍,铅-0.1~2.3倍,镉-0.1~5.3倍。

4.2科植物中重金属含量变化

科植物中重金属含量变化不大,平均情况如下:铜-35.0%,锌-19.0%,锰-34.8%,钴-46.7%,铅-43.3%,镉-51.5%。

4.3各重金属元素在锌植物器官中的分布状况

锌植物器官中是向基部的分配,铜和锰是向顶分布,钴、铅、镉分布不是这样的,他们在根分布稍多,到叶和茎中减少,他们含量在茎中最低。

4.4植物不同部分生物吸收系数

茎对铜和锌平均吸收强度要低于叶和根:生物吸收系数茎>生物吸收系数叶>生物吸收系数根;铅和锰——生物吸收系数根>生物吸收系数茎>生物吸收系数叶;钴和镉——生物吸收系数根>生物吸收系数叶>生物吸收系数茎。根据生物吸收系数值铜和钴在植物中属于中等生物захват和弱积累元素[11];锌、锰和铅——强生物积累元素;镉——极强生物积累元素。所有元素生物吸收系数在豆科植物中要强一些。

总之,研究哈萨克斯坦东哈萨克斯坦地区不同类型、形态学器官和各科野生植物重金属积累的地区背景水平,一方面能够给予生态系统由于全球和地区认为影响而可能的气候和地球化学变化课题稳定的评估,另一方面也能够对认定生物的各种疾病提供重要依据,因此这项研究,具有重要的科研价值和现实意义。

参考文献:

[1]Ринькис Г.Я., Рамане Х.К. и др. Методы анализа почв и растений[D].Рига:Зинатне, 1987.

[2]Дмитриев Е.А. Математическая статистика в почвоведении[M].Издательство: Издательство Московского университета, 1983.

[3]Перельман А.И. Геохимия ландшафта[M].Высшая:Высшая школа, 1975.

[4]Беус А.А., Грабовская Л.И., Тихонова Н.В. Геохимия окружающей среды[M].Недра:Недра, 1976.

[5]Ильин В.Б. Элементный химический состав растений. Факторы его определяющие//Известия СО РАН[J]. Серия биологических наук, 1997(10), 3~13.

[6]Ковалевский А.Л. Биогеохимия растений-Новосибирск[M].Наук: Наука, 1991.

[7]Ивлев А.М. Биогеохимия[M].Высшая: Высшая школа, 1986.

[8]Ковальский В.В. геохимическая экология[M].Наука:Наука, 1974.

[9]Добровольский В.В. География микроэлементов Глобальное рассеяние[M].Мысль:Мысль, 1983.

[10]Ильин В.Б., Гармаш П.В. Тяжелые металлы в растениях[J].Агрохимия, 1985(6),7~13.

[11]Алексеев Ю.В. Тяжелые металлы в почвах и растениях[M].Агропромиздат:Агропромиздат,1987.

化学元素的分类范文第5篇

关键词:化学实验;金属;物理性质;化学性质

文章编号:1005—6629(2012)9—0003—03

中图分类号:G633.8

文献标识码:B

初等化学的主要任务是进行化学学科的启蒙教育,它之所以必不可少,在于它的研究对象、研究方法和学生已经学过的物理学、生物学、以及不很系统的天文学和自然地理学有所不同。化学以与人类社会物质生活紧密相关的化学物质为主要研究对象。这里所说的化学物质,不仅包括已经存在于自然界的化学物质,还包括自然界并不存在的,由化学家以现有物质为原料制造出来(或未来可能制造出来)的新物质,而且后者的数量和所能体现的功能将远远超出前者。所以化学研究不仅着力于发现,还致力于创造,最能体现出人类的智慧和创造力!更为令人感到神奇的是,对于数量近于天文数字的化学物质,其组成和结构的研究可以归结为对总数约百个左右化学元素性质的认识和反应性能的调控。化学元素之间的结合规律——化学键理论并不复杂,当化学物质的组成比较复杂时,组成元素原子之问的空间排布对原子之间相互作用的影响——化学结构理论,也不很复杂。化学键理论和化学结构理论可以帮助我们认识或预见化学物质间存在差异性的物理因素,但是至今尚无法对这种差异导致的物理性质和化学性质的差别作出比较完备并可靠的判断或推测。所以化学的学科研究工作中除去理论方法的研究外,无不依赖实验工作来完成,这是化学至今仍然是一门实验性科学的原因。

基于以上的原因,由于化学物质数量庞大,反应类型虽然屈指可数,但是反应过程及产物对外界条件甚至反应物本身的状态(例如固体的分散程度、溶液的浓度等)却十分敏感,甚至接近几乎无规律可循的情况。这从另一个角度表明了化学是一门正在发展中的科学,是一门基于百十个化学元素,而作为研究对象的化合物却可能达到1014量级(目前已知的化合物数仍在107的量级)的科学。因此从组成结构和性质问都存在差异的近乎天文数字的研究对象中,探索具有普适性的客观规律是一项正在进行且远未完成的艰巨任务。众多的机会和严峻的挑战,意味着化学是一门正在蓬勃发展的基础科学,也正是化学引人入胜之处。但是对于初学者而言,虽然所涉及的化学知识和化学物质并不很多,却很难做到像初等物理学那样依据为数不多的基本定律,就可以认识并探究大量相关的物理现象,初学者因此感到困惑的反映,应当认为是合理的。这是初等化学教学中必须着重研究和力求解决的问题。也许是为了减轻学生学习时出现的困惑,很多没有经过大量实验事实证实的、以偏概全或概念模糊的所谓“规律”,在正式教材中虽然罕见,但在坊间出版的教辅一类学习材料之中却屡见不鲜(有的甚至自诩为“应试宝典”)。这种做法,不仅不能真正解决初等化学教学中的困惑,而且由于模糊了对化学学科任务和方法的认识,对于化学教学特别是后继课程的学习,将会导致不必要的困扰。把“例外”作为某些“规律”失效时的借口和师生们由此感到尴尬的心态,只会留下事与愿违的遗憾。我认为在解决这个问题的过程中,厘清学科概念和某些规律的理论或实验依据是关键的一步,应当引起我们的重视。只要我们肯于面对问题,有关的实例并不难找到。把金属活泼性和反应激烈程度想当然地直接相关联,就是问题之一。

1 金属化学活动性和反应激烈程度没有必然的相关性

金属活动次序在初等化学中是一个有趣,而且运用时比较得心应手的重要知识点。首先因为元素周期表中金属元素的数目远远超过非金属元素,除去汞外,它们的单质在通常条件下均呈固态,可以直接观察和测量的方面比较多;其次因为它们的盐溶于水中后大都会发生电离,这时将以离子形式存在。用简单的试管实验,就可以通过A金属元素的单质是否能够与B金属元素的离子发生置换反应来比较A和B金属的氧化还原性(或日金属活动性)的强弱。实验要求的技能水平很低,实验现象却十分明显。置换反应发生时,产物首先沉积在金属性较强的金属表面上,底物表面和沉积在反应区的置换产物的形貌、颜色,甚至于变化过程都可以清晰地观察到,足以引起实验者极大的兴趣。由此扩展得出的包括十几个常见金属元素的金属活动次序,不仅应用起来得心应手,读来更是朗朗上口,便于记忆,因而成为初中化学中最为师生喜爱的一个知识点。