前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇初中物理模型法范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)2-0068-4
国外对物理模型教学的研究主要集中在:美国亚利桑那州立大学物理教育家David Hestenes 教授在上世纪八十年代提出的以物理模型教学为中心的教学策略,以提高学生解决物理问题的能力。David Hestenes 教授与其合作者,随后进行了大量的实证研究和课程开发,并且在《American Journal of Physics》上发表了一系列文章,从认知心理、教育学、物理学等各个不同角度对比了传统教学和物理模型教学的优劣,并大力呼吁物理课程改革应该以物理模型的建构为中心。受此影响,美国西部很多高中都推行物理模型教学。David Hestenes 教授认为物理建模过程包括:建立模型、分析模型、验证模型[1]。
因此,教师在教学过程中,应该注重指导学生能根据不同的物理情景,确定需要研究的物理量,抓住主要因素,忽略次要因素,建立物理模型。在物理模型教学中,通过学习物理模型的建立及其应用,可使学生逐步认识模型的设计依据,建立模型的方法,从而初步掌握模型方法[2]。
高三物理复习教学,从知识、思维能力层次的要求来看,不同于高一、高二的物理复习,从培养创造型人才的目标看,高中物理复习必须注重物理模型的思维训练,为发展学生的创造性思维打下良好的基础。笔者在高三复习的课堂上,尝试以一些高三复习时常见的物理训练题为例,探索高三物理复习中实施模型教学法的有效途径,为今后物理教学中进一步培养学生的创造性思维指明方向。
开展物理模型教学,首先必须充分认识高中阶段的物理模型。物理模型本身是一种高度抽象的理想化的心理构造物,尤其在高三复习的过程中经常碰到。笔者查阅相关文献,认为高中物理模型可以大致分为3类:
(1)对象模型:指的是用来代替研究对象实体的理想化模型。高中物理中的对象模型主要有以下一些:质点、轻绳、轻杆、轻滑轮、轻弹簧、不可伸长的细线、理想气体、点电荷、检验电荷、匀强电(磁)场等。
(2)条件模型:把研究对象所处的外部条件理想化,所建立的模型为条件模型。高中物理主要的条件模型有:光滑表面、恒力、真空等。
(3)过程模型:实际的物理过程都是诸多因素作用的结果。忽略次要因素的作用,考虑主要因素引起的变化过程为过程模型。高中物理主要的过程模型有:匀速直线运动、匀变速运动、匀速圆周运动、弹性碰撞、非弹性碰撞、等温、等容、等压变化等。
在高三物理的复习课中,大部分学生对于常见的物理情景,已经有了初步的认识,对于上述三类模型中的前两类——对象模型、条件模型,应该说相当熟悉。但是,在过程模型的运用上,还不够熟练。表现在:(1)对于陌生的物理情景,不能有效地通过类比建立起过程模型;(2)对于已经很熟悉的物理过程模型,稍微有点变化,就不能够识别,无法建立起正确的模型,模型迁移能力严重不足。
尤其是上述情况(2),出现这类情况的学生有一定的物理基础,但是缺乏阶梯让他们更上一层楼。其实,无论问题情景多么新颖多变,或是与日常生活密切联系的实际问题,都可以归结为学生熟悉的物理模型。在高三物理复习中,应该突出模型的横向联系与延伸,通过模型迁移,提高学生解决问题的能力[3]。笔者下面就力学复习中比较典型的一个过程模型:完全非弹性碰撞模型,进行物理模型教学法的探索。
(一)课堂引入:基本模型的理解
如图1,质量为m的子弹(可视作质点),水平向右速度为v0,射入光滑水平面上质量为M的静止木块中,子弹射入木块的深度为d后,两者共同运动,速度为v,子弹射入木块时所受的阻力大小恒为f。假设子弹对地位移是s1,木块对地位移为s2。请画出运动的初、末状态示意图,并按如下提示写出上述物理过程的基本规律。
■
图1 基本模型
基本规律:
动量守恒定律: (1)
(参考答案:mv0=(m+M)v)
动能定理:子弹 (2)
(参考答案:-fs1=■mv2-■mv■■)
木块 (3)
(参考答案:fs2=■Mv2-0)
(2)+(3)得: 。
(参考答案:-f(s1-s2)=■(m+M)v2-■mv■■)
所以,根据摩擦生热原理,可知产生热量Q:
(4)
(参考答案:Q=fd=■mv■■-■(m+M)v2)
提问:
1. 子弹打木块模型有什么重要特征?
答: 。
2.方程(4)中的d应该如何正确理解?
答: 。
在上述的教学过程中,主要针对高三力学复习中比较重要的一个碰撞:完全非弹性碰撞来展开。利用模型“子弹打木块”进行教学设计,引导学生强化完全非弹性碰撞的模型特征。 本文由WWw. dYlW.net提供,专业和以及教育服务,欢迎光临dYLW.neT
模型强化时,还应注意以下3点:
【关键词】物理模型;初中物理教育;简单性原理
模型在我们日常生活、工程技术和科学研究中经常见到,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。
既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面我们逐个加以说明。
(一)物理对象模型――直接将具体研究对象的某些次要因素忽略掉而建立的物理模型。这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。
(二)物理条件模型――忽略研究对象所处条件的某些次要因素而形成的物理模型。在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。
(三)物理过程模型――忽略物理过程中的某些次要因素建立的物理模型。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考]过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。
(四)理想化实验――在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。
一、重视初高中物理教学的衔接,改进学习高中物理方法
在教材的内容、教师教学的方法和学生学习的能力要求以及学生的思维方法等方面,高中与初中物理有着明显的区别.初中物理教材的很多内容与日常生活现象有密切的联系,学习过程中学生的思维方法是形象思维方式,这种思维方式的依据是自然现象和直观实验,学生极少应用抽象思维方式,而抽象思维是应用原理和概念进行的逻辑思维,高中物理是一门严密的,有着公理化逻辑体系的学科,对于高中学生的抽象逻辑思维要求很高.初中物理练习的特点一是对物理现象的有效解释,二是用公式直接做计算题求出结论,这样的练习不利于培养学生的物理解题能力.在物理学习内容的难度上,高中比初中有明显的加大,物理现象的研究更趋复杂,与日常生活现象也没有太大的联系.教师要从实验、建立物理模型和物理情境出发指导学生分析问题,探究问题,从多层次、多方面入手解决问题.教师要注重培养学生物理学科空间想象的能力,学会并掌握归推理和演绎推理方法.例如,教学《加速度》,重点是让学生理解和掌握加速度的物理意义.因此教师要总结归纳诸如,“速度”、“速度变化量”、“速度变化所用时间的慨念”、“单位时间内速度变化大小”等概念,先为学生扫清学习中的相关障碍.在布置学生练习中,必须把握好题型和难度:练习新学习的基础问题在先,加深题目难度在后;分析物体受一个恒定加速度问题在先,分析物体加速度变化问题在后;研究单向运动问题在先,深入分析双向运动问题在后.
在教学过程中,教师要使学生了解初中物理与高中物理之间的联系和区别.在此基础上优化学习方法,深化和迁移物理知识.高中教师应全面深入了解学生掌握初中物理知识的情况以及对物理分析的能力,把高中物理教材与初中物理教材分别研究的物理问题在文字表达的方式、研究的方法、思维形式与特点等方面进行比对,明确高中物理教材与初中物理教材联系与差异;运用科学的教学方法,深化初中物理知识,促使学生有效地掌握高中物理知识,这样就可以有效地降低高中物理学习的难度.教师应指导和要求学生认真地复习初中物理知识,在此基础上指导学生建立学习、分析、研究高中物理的方法,用新的物理知识和新的学习方法来调整和替代旧的认识结构,以缓释新知识给学生造成的心理压力,让学生认识到高中的新知识是初中旧知识的承启和深化.
帮助学生建立一些物理模型是高中物理教学的一个特点.物理模型源自于实践,其具有普遍的共性和一定的抽象概括性.高中物理难学,是因为学生习惯了初中阶段的形象思维方式.他们只满足于记忆概念、规律,而对得出结论的缘由过程则漠不关心;只会简单性、参照性地解决一些物理问题,而不会借助观察分析,构建现实情景的物理模型,再运用于相关知识体系去加以处理,最后解决问题.为了使复杂的问题简单化,在研究物理现象的过程中高中物理往往忽视建立物理现象模型,使得物理概念抽象化.初中学生进入高中后,对物理模型的建立感到困难,这就需要教师多做实验、多举例子,以具体的物理现象使学生建立物理模型和对应的物理情景,从而加深对所学知识的理解.物理教师在教学过程中,要切实重视培养学生的建模意识,促使学生在解决物理问题的过程中,构建出清晰的情景条件的物理模型,并快速找到解决问题的方法,从而有效地培养学生创造性思维的能力.
二、集中精力提高听课效率,强化课后有效总结复习
听课过程中学生要集中精力注意本节课的重点知识和要解决的重点问题,对于重要知识点的例题,更要严格审题,寻找切入点,认真地理解物理情境和物理过程,重视分析问题的思路,掌握解决问题的策略,有效提高迁移知识和解决问题的能力.强化复习工作.教师要指导学生采取解题和复习相结合的方法,务必做好当天的复习,使上课内容得到有效巩固,及时归纳所学章节的主要内容、解题思路、解题方法、典型题型、物理模型等.认真记载好本章节内做错的题目,及时分析错误原因并纠正,把本章节最佳的解题思路、解题方法或例题以及未解决的存在问题记录下来,以便今后再探讨、再复习、再巩固.
三、准确把握基本知识技能,正确设计处理练习题目
关键字:对比 物理模型 学习习惯
学生普遍认为高一物理难学,原因就是学生能力与高中物理教学要求的差距大。由于高一物理是高中物理学习的基础,因此高中物理教师必须认真研究教材和学生,掌握初、高中物理教学的差别,把握初、高中物理教学的衔接,才能提高高中物理教学质量,才能让学生完成由初中到高中的过渡,进入高中的物理良性学习。
一、高中与初中物理教学的对比
初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。
初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学知识分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深。
二、如何搞好初、高中物理教学的衔接
1.重视教材与教法研究
高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次,实施适当的教学方法,降低“阶差”,保护学生物理学习的积极性,使学生树立起学好物理的信心。
2.坚持循序渐进原则
高中物理教学大纲指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深,教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。
3.透析物理概念和规律
使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生在掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位、规律的适用条件及注意事项。
4.物理模型的建立
高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法,通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。
5.学习习惯的培养
教育家叶圣陶先生指出:“教育的本旨原来如此,养成能力,养成习惯。”培养学生良好的学习习惯是教育的一个重要目的,也是培养学生能力、实现教学目标的重要保证。如何培养良好的学习习惯,首先是要培养学生独立思考的习惯,独立思考是学好知识的前提,学生经过独立思考,就能很好地消化所学知识,才能真正想清其中的道理,从而更好地掌握它。其次培养学生自学能力,使其具有终身学习的能力。阅读是提高自学能力的重要途径,阅读是对学生进行智育的重要手段,阅读物理教材不能一扫而过,而应潜心研读,边读边思考,挖掘提炼,对重要内容反复推敲,对重要概念和规律要在理解的基础上熟练记忆,养成遇到问题能够独立思考以及通过阅读教材、查阅有关书籍和资料的习惯。
为了提高学生的阅读兴趣与效果,教师可以根据教材重点设计思考题,使学生有目的地带着问题去读书,设计些对重点的、关键性的内容能激起思维矛盾的思考题,引起学生的思维兴趣和思维活动,同时还可以充分利用现代信息技术,利用电脑动画再现物理情景。同时强调科学记忆,反对死记硬背,现在学生不重视知识的记忆和理解,或是什么都不记,或是死记硬背。准确的记忆是正确应用的基础,理解是物理记忆的关键,对比联系是记忆的有效方法,将所学知识与该知识应用的条件结合起来,形成条件化记忆才能有效地用来创造性地解决问题。
一、控制变量法在教材中的应用
控制变量法——就是实验者通过控制某个或某几个自变量保持不变,从而研究因变量与其中某一变量的关系的一种研究方法。
控制变量法在初中物理教材中运用是最普遍的一种方法。例如:在“怎样比较运动的快慢”一节开头的问题“同时启程的步行人和骑车人,我们怎样看出他们运动的快慢?同是百米运动员,我们是怎样比较他们运动快慢的?”教材问题的处理实际上已提供了研究V的两种方法:…通过控制变量t来研究V与s的关系;(2)通过控制变量s来研究V与t的关系。在教材中如:密度、压强、功率、电阻、欧姆定律等的研究,都采用了控制变量的研究方法。
二、等效法在教材中的应用
在研究平面镜成像时,我们用一根未点燃的蜡烛来代替点燃的蜡烛在镜中的像,以确定像的位置,这种物理的研究方法叫做等效法。
等效法在教材中也有多处体现,例如:在“探究浮力的大小”一节中“信息浏览”——王冠之谜和阿基米德原理,讲述的就是用等体积的水代替王冠体积的求体积的方法;“自我评价与作业”——曹冲称大象的故事,也说明了等体积代换的等效法。研究“液体的压强”也是通过固体压强的计算得出液体压强的计算方法。在测量大气压强的值试验中,托里拆利在实验中通过测量水银(液体)压强得出测量大气压强的值的方法,等等。
三、转换法在教材中的应用
分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象去认识它,这种方法在科学上叫做“转换法”。
转换法的运用使研究变得直观、具体。例如:“怎样认识和测量电流”,在比较电流大小时,教材在“活动1”是通过“把一只小灯泡用导线跟一节干电池连通,再把这只小灯泡跟两节干电池连通,注意观察这两种情况下小灯泡的发光亮度。”这一热效应试验来使学生认识电流大小和有无。课本中还有磁场、电流的磁场、内能等许多规律的认识都是通过转换的方法来认识的。
四、类比法在教材中的应用
类比法是从两个或两类对象中某些共有的相同或相似的属性,推出一个对象可能具有的另一个对象或另一类对象已经具有的属性的一种研究方法。
类比是非逻辑创造思维形式中主要的形式之一。通过类比法能有效地揭示自然规律,促进创造思维的发展,达到“它山之石,可以攻玉”的效果。初中物理教材运用类比法对阐述某些较抽象的概念,从而使学生领悟其实质,例如“怎样认识和测量电压”,将电流类比于水流,将电流形成的原因“电位差”类比于水流形成的原因“水位差”,学生通过旧和新的知识的迁移领悟电压这一较为抽象的概念;在“怎样认识和测量电流”,在“最快的信使”一节,都运用类比的方法,它有利于克服初中生抽象思维能力较差对学习造成的障碍,使教学得以顺利进行。
五、建立模型法在教材中的应用
为了研究的方便,一般是将复杂的事物经过科学的抽象,成为简单的模型,使复杂的实际问题转化为理想的、简单的问题来处理。这样的一种研究方法,在物理学中称之为建立模型法。物理模型的建立方法有很多种:模拟式物理模型、实体理想化模型、系统理想化模型、过程理想化模型,例如:“磁场”的定义,“光线”的概念,这种模拟式物理模型使一些看不见、摸不到的客观事物变得具体化、形象化,并显示出客观的主要特征,方便了对其性质、特点及规律的研究。另外,“简单机械”中的杠杆、滑轮、不变形不计质量的绳索;“点光源”、“薄透镜”、“纯电阻”。再有,理想化模型的“匀速直线运动”,等等。对于一定问题中的研究对象,通过模型法,充分近似的,也便于讨论和计算。物理学家在研究中采用的方法有多种,在初中物理教材中主要是应用了以上几种方法,当然其他方法也有所提及,在此不再一一细谈。