前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇欧姆定律的比值问题范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:初中;物理;欧姆定律;教学问题
中图分类号:G633.7 文献标志码:A 文章编号:1008-3561(2015)09-0056-01
一、在实验探究中让学生学习欧姆定律
欧姆定律是电学重要内容之一,也是中考重点考查内容,所以能否教好欧姆定律关系到之后对中考的重点知识复习,更有可能影响学生对于物理学的热情。在实验探究的过程之中以学生为主,教师起引导作用,让学生通过观察电压表、电流表、滑动变阻器的微量变化发现问题、提出问题,他们对于自己发现的问题会比老师直接教导的印象深刻,从而达到了教学目的。
二、在欧姆定律的学习中最经常遇到的问题
在实际的教学之中,教师要把电路的认识与画电路图、连接电路作为主要的教学任务,开阔学生的思维,加强对电路的认识。物理是一门比较枯燥的课程,只有激发学生的热情,才能更好地完成授课。电流、电压、电阻的概念及单位,电流表、电压表、滑动变阻器的使用,是最基础的概念。电流表测量电流、电压表测量电压、变阻器调节电路中的电流,这部分则比较重要,需要重点讲解。电流、电压、电阻的概念是基本的电学测量仪器,明确这些仪器的使用与操作,是非常重要的,关系到后期实验的正确性与对知识的理解。以上基础知识的理解与运用又是进一步学习欧姆定律的基础。
三、欧姆定律的主要内容是电流、电压、电阻的关系
这部分知识是在实验的基础上概括、归纳出了电路中电压、电流、电阻三者相互关联的关系。教师在实验中要让学生理解电流随电压和电阻的变化而变化,对于多个变量问题的研究是采用固定一个量不变,研究其余两个量的变化的处理方法,从而让学生学会物理学中常用这种方法。欧姆定律在初中只讲部分电路的欧姆定律,是电学中的基本定律,是进一步学习电学知识分析和进行电路计算的基础,是初中电学的重点知识。
欧姆定律是初中物理学电学的重点、也是难点,想要研究欧姆定律必须要建立电流、电压、电阻的关系,并在实验的基础上得出欧姆定律,做好演示实验,归纳、分析、概括实验结果,使学生正确理解欧姆定律的基础。所以,使用电流表、电压表、滑动变阻器是这部分知识中的重点实验的基础。
电流、电压、电阻的概念是学生学习的难点,由于初中学生水平有限,对电流、电压的概念要求较低,并没有下准确的定义。因此,电阻的概念就成了学生理解的难点。教师要多举例子帮助学生理解电阻是导体本身的属性,决定于导体的材料、长度、横截面和温度,它用两端的电压和通过的电流的比值来表示是为了测量的方便,与外加电压、电流无关。同时,教师一定要纠正一些学生经常出现的电阻随电压、电流的变化而变化的错误概念,也就是对欧姆定律的错误理解。欧姆定律在学生头脑的建立过程是十分重要的,认真做好演示实验,用实验来探索一个量随两个量变化的定量关系是第一次。首先要向学生交代清楚实验的研究方法,本实验彩用控制变量法来研究,即“固定电阻不变,研究电流跟电压的关系;固定电压不变,研究电流跟电阻的关系”。在连接如图(图略)所示的实验电路时,要将具体接法演示给学生看。可以先从电源正极开始,按电流方向依次为电池、开关S、滑动变阻器R′、定值电阻R、电流表串联起来组成一个闭合回路,最后将电压表并联在定值电阻R两端。同时提醒学生注意电流必须从电流表和电压表的正接线柱流进电表,负接线柱流出电表及量程选择,电流表与R串联,其示数等于通过R的电流。电压表与R并联其数等于R两端的电压。
运用欧姆定律可以推导串联电路中的总电阻跟各串联电阻之间的关系及电压分配跟导体电阻的关系,具体推导如下:
在串联电路中:I=I1=I2;U=U1+U2;由欧姆定律公式I=U/R,可得U=IR;U1=I1R1;U2=I2R2将这些式子代入上式得:IR=I1R1+I2R2即R=R1+R2;也就是说串联电路的总电阻等于各串联导体的电阻之和。
在串联电路中:I=I1=I2;由欧姆定律公式I=U/R,可得:I1=U1/R1;I2=U2/R2;将这些式子代入上式得:U1/R2=U2/R2 变换一下形式得:U1/U2=R1/R2;即串联电路中,电压分配跟导体电阻成正比。
四、结束语
通过对物理教学内容的分析、思维方法、能力训练的具体研究,对教学内容进行归纳总结,可以使初中物理教师掌握欧姆定律的基本理论方法,更好地驾驶物理教材,提高物理教学质量,把重点真正落实在教学过程中,帮助学生提高实验操作能力、归纳概括能力、演绎推理能力、逻辑推理能力、抽象思维能力及灵活运用知识解决问题的能力,让学生学会控制变量法研究多个变量的问题,学会用等效法分析复杂电路。因此,教师要注重培养学生实事求是的科学态度,从而有效培养学生的物理素质。
参考文献:
1 与牛顿运动定律相关的图象问题
1.1 图象用于规律探究
探究“加速度与力、质量的关系”,最后的数据处理和规律的得到就是借助于图象进行分析的,尤其是“加速度与质量的关系”,学生很难直接从数据上看出两者成反比关系,不过当作出如图1所示的a-m函数图象时,学生从经验出发很容易猜测其是双曲线,继而猜测是反比,是不是呢?再进一步变化坐标,作出如图2所示的a-1[]m图象,得到一条过原点的直线,归纳出结论:得到当合力一定时,加速度与质量成反比的结论.
1.2 提取图象信息解运动学问题
从图象中找出解题信息,把图象与物理图景相联系,应用牛顿运动定律及其相关知识解答.
1.3 借助于v-t图象切线斜率的变化比较加速度
x-t图象切线的斜率表示瞬时速度,同样可以推理得v-t图象切线的斜率能表示加速度a,切线斜率的变化可以反映加速度大小的改变.
例2 木块A、B质量相同,现用一轻弹簧将两者连接置于光滑的水平面上,开始时弹簧长度为原长,如图4所示,现给A施加一水平恒力F,弹簧第一次被压缩至最短的过程中,有一个时刻A、B速度相同,试分析此时A、B的加速度谁比较大?
解析 在弹簧压缩过程中,隔离A、B进行受力分析,对A有:F-kx=maA,弹簧形变量变大,A做加速度减小的加速运动;对B有:kx=maB,B做加速度增大的加速运动.接着定性画出A、B运动的v-t图象如图5所示,交点为C表示两者速度相同,直观地呈现该处B切线的斜率大于A的斜率,即aB>aA.[HJ1.5mm]
2 电路中的图象问题
2.1 U-I图象问题
导体的伏安特性曲线能直观的体现导体电流随所加电压的变化关系.线性元件对应的伏安特性曲线是斜直线,直线的斜率k=I/U,物理意义是电阻的倒数.对于非线性元件来说,伏安特性曲线是曲线,任意一点对应坐标的比值k=I/U,物理意义也是电阻的倒数.计算阻值时两者有很大的区别.但任意一点对应坐标的乘积P=UI的物理意义是元件的实际功率,这个结论对两种元件都适用.
电源的路端电压与干路电流的关系图象也是考查的重点.根据闭合电路欧姆定律的变形式:E=U+Ir,可得出路端电压与电流的关系式为:U=E-Ir.作出此图象可以得出是一个一次函数的图象.斜率物理意义k=-r,纵截距的物理意义b=E.
[TP9GW879.TIF,Y#]
例3 小灯泡通电后其电流I随所加电压U变化的图线如图6所示,P为图线上一点,PN为图线的切线,PQ为U轴的垂线,PM为I轴的垂线,则下列说法中正确的是
A.随着所加电压的增大,小灯泡的电阻增大
B.对应P点,小灯泡的电阻为R=U1[]I2
C.对应P点,小灯泡的电阻为R=U1[]I2-I1
D.对应P点,小灯泡的功率为图中矩形PQOM所围的面积
解析 坐标的比值等于电阻的倒数,所以A选项正确,B选项正确.因为是非线性元件,欧姆定律不再适用,所以不能用切线的斜率等于电阻,C选项错误.坐标的乘积代表实际功率D正确.
点评 本题即为伏安特性曲线的数形结合考查,根据R=U1[]I2,得出图象上点的坐标比值为电阻倒数,根据P=UI得出图象上点的坐标的乘积为实际功率.
2.2 闭合电路中的常见的功率的图象问题
闭合电路中经常遇到的三个功率:电源总功率P=EI,电源的输出功率P=EI-I2r,电源的内热功率:P=I2r.
例4 某同学将一直流电源的总功率PE、输出功率PR和电源内部的发热功率Pr随电流I变化的图线画在了同一坐标上,[TP9GW880.TIF,Y#]如图7中的a、b、c所示,根据图线可知
A.反映Pr变化的图线是c
B.电源电动势为8 V
C.电源内阻为2 Ω
D.当电流为0.5 A时,外电路的 [LL]电阻为6 Ω
解析 a为P总-I关系图象,根据P=EI,可得E=4 V,b为P出-I关系图象根据P=EI-I2r,可得r=2 Ω;c为Pr-I关系图象.再根据闭合电路欧姆定律可得R=6 Ω,正确答案:A、C、D.
点评 根据图象和表达式的数形结合,待定系数法可以求出电源的电动势和内阻结合闭合电路欧姆定律求出外电阻的大小.
2.3 电源电动势和内阻测定的常见图象问题
测量电源电动势和内阻的常见方法有三种:U-I法,I-R法,U-R法,三种方法都是围绕闭合电路欧姆定律的表达式来的.在研究图象问题上却是有所不同,斜率和截距的物理意义大不一样,需要我们数形结合明确各自的含义.
课题:闭合电路的欧姆定律(第一课时)
课型:复习课
【教学目标】
一、 知识目标
1. 理解闭合电路的欧姆定律,并用它进行有关电路问题的分析和计算.
2. 理解路端电压与负载的关系.
二、 能力目标
1. 通过对U-I图线的分析培养学生应用数学工具解决物理问题的能力.
2. 利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力.
三、 情感目标
通过本节课教学,加强对学生科学素质的培养,通过探究物理规律培养学生创新精神和实践能力.
【教学重难点】
1. 闭合电路的欧姆定律
2. 路端电压与电流(外电阻)关系的公式表示法及图线表示法.
【考点再现 设疑激思】
一、 电动势
1. 电源是通过非静电力做功把 的能转化成 的装置.
2. 电动势:非静电力搬运电荷所做的功跟搬运的电荷电量的比值,E= ,
单位:V .
3.电动势的物理含义:电动势表示电源 本领的大小,在数值上等于电源没有接入电路时两极间的电压.
电动势与电压有什么区别?
(1、其它形式、电能 2、 Wq 3、将其它形式的转化为电能)
(电动势反映其它形式的能转化为电能的本领,电压形成电场,促使电流做功.)
二、闭合电路欧姆定律
1.定律内容:闭合电路的电流跟电源电动势成 , 跟内、外电路的电阻之和成 .
2.定律表达式为I=
3.适用条件
4.闭合电路欧姆定律的两种常用关系式:
(1)E=
(2)E=
你认为电源的内阻是恒定的还是不断变化?定律表达式怎样推导出来的?
电路中电流一定从高电势流向低电势,对吗?
(1、正比、反比;2、I=ER+r; 3.纯电阻电路;4.E=U内+U外、E=U外+Ir)
(电源内阻短时间可认为不变、定律从能量守恒推导、不对,内电路电流方向从低电势流向高电势)
三、路端电压U与外电阻R的关系
根据U= 知,当外电路电阻R增大时,电路的总电流I ,电源内电压U内 ,路端电压U外 .
(E-Ir 、减小、减小、增大)
四、U-I关系图
由U= 可知,路端电压随着电路中电流的增大而内电压 ;
1.当电路断路即I=0时,纵坐标的截距为 .
2.当外电路电压为U=0时,横坐标的截距为 .
3.图线的斜率的绝对值为电源的 .
注意点:纵轴起点是否为零.
电源的U-I关系图与电阻的U-I关系图有什么不同?
(E-Ir、减小 1.E 2.I短 3.r)
(电源的U-I关系图反映路端电压与电流关系、电阻的U-I关系图反映电阻两端电压与通过它的电流关系)
五、电源的功率
1.电源的总功率P总= .
2.电源的输出功率P出=.
(1.EI 2.UI)
考点说明: 闭合电路欧姆定律是二级要求,常在选择题中出现动态电路分析,实验中常考查U-I图线的有关知识点.
复习考点还须引导学生多阅读教材,多思考,多归纳总结,多联系实际.
【典型例题剖析 学会归纳总结】
题型1闭合电路欧姆定律的动态分析
例1 如图所示,电源电动势E=12 V,内阻r=1 Ω,R1=5 Ω,R2=12 Ω,R3的最大阻值为6 Ω.
(1)求:流过电流表的最小电流?
(2)若R3的阻值减小,其它元件均不变,判断电路中电压表、电流表的示数如何变化?
答案:(1)0.8A;(2)V1、V2减小A增大
方法点拨:支路-干路-支路
学生的疑点:1.总电阻的变化不清;
2.内电压变化忘了分析;
3.路、支路,电压、电流变换搞昏了头.
【当堂巩固1】
如图所示,电源电动势E=8 V,内阻不为零,电灯A标有“10 V,10 W”字样,电灯B标有“8 V 20 W”字样,滑动变阻器的总电阻为6 Ω.闭合开关S,当滑动触头P由a端向b端滑动的过程中(不考虑电灯电阻的变化) ( A )
A.电流表的示数一直增大,电压表的示数一直减小
B.电流表的示数一直减小,电压表的示数一直增大
C.电流表的示数先增大后减小,电压表的示数先减小后增大
D.电流表的示数先减小后增大,电压表的示数先增大后减小
探究:P移动电路总电阻怎样变化?
题型2探究含电容电路的判断与计算
例2 如图所示,E=10 V,r=1 Ω,R1=R3=5 Ω,R2=4 Ω, C=100 F,当S断开时,电容器中带电粒子恰好处于静止状态.求:
(1)S闭合后,带电粒子加速度的大小和方向.
(2)S闭合后流过R3的总电荷量.
答案:(1)10 m/s2向上;(2)400 C
方法点拨 电容器两极电压与R2两端电压关系?R3在电路中有什么作用?
学生疑点:1.电容两端电压变化没搞清;
2.与电容串联的电阻作用不明;
3.电路结构认识不清.
【当堂巩固2】
如图电路中,当滑动变阻器的触头P向上滑动时,则 ( D )
A.电源的总功率变小
B.电容器贮存的电荷量变大
C.灯L1变暗
D.灯L2变亮
题型3 探究 U-I图象的应用
例3 如图所示,直线A为电源的路端电压U与电流I的关系图象,直线B是电阻R的两端电压与通过其电流I的关系图象,用该电源与电阻R组成闭合电路,则电源的总功率为 W,电源的输出功率为 W电源的效率为
.
答案:6 W 4 W 23
探究:图线的交点有什么物理意义?(工作点)
【当堂巩固3】
如图所示,为一个电灯两端的电压与通过它的电流的变化关系曲线.由图可知,两者不成线性关系,这是由于焦耳热使灯丝的温度发生了变化的缘故.参考这条曲线探究下列问题(不计电流表的内阻).
(1) 若把一个这样的电灯串联,接到电动势为6 V,内阻为10 Ω的电源上,如图甲所示求流过灯泡的电流和灯泡的电阻?
(2) 若将两个这样的电灯并联后接在这个电源上,如图乙所示,则通过电流表的电流值和每个灯泡的电阻?
方法点拨:写出U=E-Ir其中I为通过电源的电流,并作图找交点.
答案:(1)0.35 A 7.1Ω (2)0.24 A 17.5Ω(提示写出U=E-2Ir其中2I为通过电源的电流,并作图找交点)
学生难点:
1.图像特别是曲线,不会找具体信息;
2.对电阻与电源的U-I图象的区别不清楚;
既然都是用“伏安法”测量,故在实验器材的选取上必存在着相同的地方,如均要用到电压表(电压单位为“伏”)、电流表(电流单位为“安”),简称“伏安”.用“伏安法”可测定许多物理量.现从以下几个方面逐一分析.
1 实验原理的类比
①用“伏安法”测定值电阻:根据欧姆定律的变形公式:“R=UI” 测出待测电阻两端的电压和通过的电流,就可以求出导体的电阻.
②用“伏安法”探究欧姆定律:“I=UR”,保持定值电阻两端的电压不变,换用不同阻值的电阻,当接入电路中的电阻发生改变时,探究电流与电阻的关系;通过移动滑动变阻器滑片的位置,改变定值电阻两端的电压,观察电流表读数的变化,探究电流与电压的关系.
③用“伏安法”测小灯泡在不同电压下的电阻:根据欧姆定律的变形公式:“R=UI” ,测出灯泡在不同电压下工作时两端的电压和通过的电流,就可以求出灯泡在不同电压下的电阻.
④用“伏安法”测小灯泡在不同电压下的电功率:根据公式:“P=UI”测出灯泡在不同发光情况下两端的电压和通过的电流,就可以求出灯泡在不同电压下的电功率.
2 实验电路设计,类比并迁移知识点
下图分别为测定值电阻的阻值、测小灯泡的电阻、和测小灯泡的电功率实验的电路图.
比较图1和图2相似及不同之处,可以发现:图2仅仅是比图1多一个滑动变阻器,请问:这一较小的改动对测定值电阻的阻值究竟有什么好处?显然图1只能测到一组数据,而图2由于滑动变阻器的介入,通过移动滑片能测多组数据,而多次测量取平均值能减少误差,这一概念的引入就非常自然化了.在探究欧姆定律电流与电阻关系时,要用到“控制变量法”的基本思想,当换用不同阻值的电阻接入电路时,通过移动滑动变阻器的滑片,应确保电阻两端的电压保持不变时,这样探究才有意义.而图3与图2比较,仅仅是将定值电阻替换为小灯泡,但需要指出的是:后者与前者的实验原理不同,是因为所测量的物理量不同.图2只能测定值电阻在不同电压下的电阻值,随着定值电阻两端电压的改变,电路中的电流也作相应的变化,由测出的电压与电流的比值关系可以看出:其比值几乎为一定值(变化不大),即“R=U1I1=U2I2=U3I3…”.从而引出电阻是加在导体两端的电压与通过的电流的比值来描述的,它是由导体本身因素所决定的所谓 “属性”的物理量.而图3既能测小灯泡在不同电压下的灯丝电阻,又能测小灯泡在不同电压下的电功率.在测小灯泡灯丝电阻时,由于金属导体的电阻虽是导体本身的一种“属性”,除与导体的长度、材料、横截面积有关外,还与温度有关.因电流的热效应会引起灯丝温度的变化,故:“R=UI”比值并不是定值!这一点应十分关注.
3 实验操作及应该注意的事项
(1)在上述图2、图3电路中,除应合理地选择电表的量程外,还应注意:当滑片向右移动时接入电路的电阻变小,故因电路中总电阻变小的原因而会导致电路中电流变大.最终均会导致定值电阻、小灯泡两端的电压升高,并引起电阻和灯泡温度的升高,故“定值电阻和小灯泡两端的电压不宜太高”.否则会由于温度的影响而导致所测电阻的阻值有较大的误差,同样也会由于小灯泡两端的实际电压超过额定电压值较大时,会导致小灯泡炸掉而引起电路断路!另外,在探究电流与电阻的关系时,除应保持电阻两端的电压不宜过高外,还要确保定值电阻两端的电压为定值应作为前提,譬如:当将阻值较小的电阻从电路中拆下而换用阻值较大的电阻时,变阻器的滑片应向阻值较大的方向(如图2中的左方)移动.
(2)在测小灯泡电功率时应注意:
a.在闭合开关前,滑动变阻器的滑片P应移至阻值最大位置.
b.在测量小灯泡的电功率时,应先调节滑动变阻器使小灯泡两端的实际电压分别小于、等于或略大于额定电压,然后测出电路中对应的电流大小,根据公式“P=UI”算出小灯泡的额定功率.
4 根据实验设计表格记录数据,描点绘图并作分析
表一是根据图2的装置,用“伏安法”测量定值电阻所记录的3组数据及由此数据描绘出的“U—I”图像.
由实验数据及描绘出的“U—I”图像可知:①随着定值电阻两端电压的逐渐增大,通过它的电流也相应的增大.②但电压与电流的比值为一定值.这通常是求电阻的一种方法.
因该图像类似于数学中的正比例函数(“y=kx”,即:k=yx ),由“R=UI”可知:U与I的比值为一定值,该比值即为导体的“电阻”.由此便可说明:导体的电阻与导体两端的电压和通过导体电流的大小无关,电阻是导体本身的一种物理“属性”.这样通过“类比”并将此“迁移”必产生共鸣的效果!
表2仍是根据图5的实验装置,用“伏安法”“探究电流与电阻关系”所记录的3组数据及由此实验数据所描绘出的“R—I”图像.
由实验数据及描绘出的“R—I”图像可知:保持导体两端的电压一定时,通过导体的电流与导体的电阻成反比;结合用“伏安法”测量定值电阻的实验,我们还可以得到:“保持电阻一定时通过导体的电流与导体两端的电压成正比”.综合这两点,欧姆定律的得出便顺理成章了.
相关链接一 小刚用如图6所示电路探究“一段电路中电流跟电阻的关系”,在此实验过程中,当A、B两点间的电阻由5 Ω更换为10 Ω后,为了探究上述问题,他应该采取的唯一操作是
A.保持变阻器滑片不动
B.将变阻器滑片适当向左移动
C.将变阻器滑片适当向右移动
D.适当增加电池的节数
分析 因电源电压一定,当将5 Ω的电阻更换为10 Ω的电阻后,电压表的示数必增大,为此便不能保持电阻两端的电压为原来的数值,故应将滑片向右移动,方能减小电路中电流,从而使电阻两端的电压与原来一样.所以本题应选C.
表3是根据图3的实验装置,用“伏安法”测量额定电压为“2.5 V”的小灯泡的灯丝电阻所记录的3组数据及由此数据描绘出的“U—I”图像.
相关链接二 观察表3和图7的图像,同样是用“伏安法”测量电阻,为什么小灯泡的灯丝电阻却不是一“定值”呢?
究其原因是因为金属导体(钨丝)的电阻还与温度有关,温度越高电阻越大,由此可见:电流的增加并不是成正比例增加的.所以我们绝不能用多次测量取平均值来作为小灯泡的电阻值.
表4仍是根据图3的实验装置,用“伏安法”测量小灯泡电功率所记录的3组数据.
在测小灯泡在不同电压下的电功率时,我们发现:灯泡的亮度(由实际电功率决定)随其两端的电压的变化而改变.从而得出:
①当小灯泡U实>U额时,P实>P额;
②当小灯泡U实=U额时,P实=P额;
远近及周围介质有关。这说明对物理“定义式”的学习不能简单的只看形式,更应从本质上去理解。又如磁感应强度概念,定义式为B=F/IL.从形式看,垂直放入磁场中某处的通电导线磁感应强度大小似乎与导线受力、导线在磁场中的有效长度、受力导线内的电流强度有关;而本质上与这三方面的因素无关。通电导线在磁场中某点的磁感应强度与导线在磁场中所处的位置、“原场源”导线的电流强度有关。因此,定义式的学习不仅要注重形式,更应把握本质。2.“基本规律”公式的学习“基本规律”在这里要区别于概念描述的规律,主要指一些基本定律等。如牛顿第二定律、第三定律,部分电路域闭合电路的欧姆定律,动量守恒定律、机械能守恒定律、万有引力定律等等。这些规律是人类千百年来智慧的结晶,在掌握了公式的形式的同时应结合实际理解公式。如对万有引力规律公式的学习,其公式为:F=GM1M2/R2。万有引力规律告诉了我们什么?它揭示宇宙天体什么运行规律?原来在我们人类赖以生存的自然界物与物之间存在相互作用的引力,无论是宏观物体,还是微观粒子,它们之间都存在或大或小这样的作用力。微观领域我们觉察不到这些粒子之间的相互作用力(可以通过实验测定),觉察不到但不等于它不存在;在宏观领域,我们可以感知宇宙的斗转星移、四季轮回,潮涨潮落,这些都是万有引力在起作用;发射宇宙飞船,卫星环绕地球飞行,人类成功登月……这无不是人类利用了万有引力规律的结果。在学习规律公式时还应注意公式的适用条件。有些物理规律公式目前现有的科学技术条件下是适用的,而有些在使用时则有条件制约。如机械能守恒定律限定的适用条件为:系统内只有重力或弹力做功。在这种条件下,物体运动过程中动能和势能相互转化,而系统内的机械能总量保持不变,
才适用公式EK1+EP1=EK2+EP2。又如公式I=U/R只适用于纯电阻电路,相应公式P=U2/R及P=I2R都只能适用于纯电阻电路,余不赘述。3.“导出公式”的学习“导出公式”是指将“定义式”和“基本规律公式”进行适当的数学变形,或依据现有的规律公式与其它公式相结合推导得出来的物理规律公式。这些“导出公式”在物理学习中比较常见。如将定义式E=F/q可变形为F=Eq,公示形式变化的同时其物理意义也会发生变化。前者用来计算电场强度大小;后者用来计算电荷在电场中受力大小。如加速度公式的定义式为a=(Vt-V0)/t,经变形后可得Vt=V0+at,该公式即为匀变速直线运动的速度―时间公式,由此可计算出作匀
变速直线运动的物体在任意时刻的即时速度;又可变形为t=(Vt-V0)/a,即可用来计算物体的运动时间问题;将该公式与平均速度公式V=(V0+Vt)/2、位移公式S=Vt相结合可导出