首页 > 文章中心 > 超高层建筑结构设计要点

超高层建筑结构设计要点

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇超高层建筑结构设计要点范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

超高层建筑结构设计要点

超高层建筑结构设计要点范文第1篇

关键词:复杂高层;超高建筑结构;设计要点

结构设计并不是一项简单的设计工作,其能效发挥与不确定因素的控制效果是相互关联的,尤其是复杂高层的层高特点,会直接造成设计难度的进一步增加,因此这就需要从建筑需求入手,开展有针对性的设计工作,并将相应影响因素纳入重点考量范畴中,一旦结构设计环节缺少对结构布置的合理性规划,不仅后续建筑施工流程难以正常推进,建筑质量更会受到直接影响,而建筑结构缺少稳定性,也会导致其使用寿命不断缩短,因此,这就需要不断强化对复杂高层及超高层建筑结构设计的研究,充分掌握其设计要点

一、复杂高层及超高层建筑结构设计要点

1.强化对概念设计的重视

在当今社会,设计可以说是建筑施工的灵魂,尤其是复杂高层及超高层建筑,结构设计的优化性也就显得至关重要。目前,我国的设计师也将工作重心放在了高层结构设计上,在实际设计环节根据对设计项目的研究及总结,也逐渐形成了一定的规范化标准,其中最为主要的就是强化概念设计。首先,复杂高层及超高层由于层高较高,这就对结构的稳定性提出了更要的要求,在实际设计环节应当以此为关键点,在结构设计中不断加强对结构受力的均匀性设计,使其更加符合应用的规范化标准。

其次,设计内容中应该涵盖着对应力高效传递的优化研究项目,使其能够在应用过程中实现力的快速分解及传递;第三,在结构设计环节,应当确保其标准内容能够直接体现在结构整体上,实现对结构的完善性规划整理;第四,当今社会的各个领域中都倡导应用绿色能源,减少浪费及污染问题,而这一理念也应当在结构设计中得以灌输,只有这样才能有效提升复杂高层及超高层建筑的环保性能;第五,在推进设计工作时应当在结合工程实际情况的基础上,将建筑材料与结构进行有机结合,使二者能够更加具有协调性,从而从根本上提高材料利用率,使其能够在后续应用中承受高强度的结构荷载力。总体来说,为了将以上几点落实到设计主w中,需要建筑以及结构工程师的密切配合,在互相交流经验及工程项目研讨过程中,不断对设计图纸进行优化调整,使其更加具有参考价值。

2. 科学选择结构抗侧力体系

为了在复杂高层与超高层建筑结构设计中,能够充分体现出安全性问题,我国相关设计师总结出,提高结构抗侧力体系的科学性是基础。选择该体系的过程中,应当注重以下几点:结构体系的合理选择应当根据具体的建筑高度来确定,我国相关工作人员在近年来的工作中总结出了不同结构抗侧力体系与不同高度建筑之间的关系。

例如,在建筑高度小于等于100m 的时候,该体系最佳组合为框架、框架剪力墙及剪力墙;当建筑物的高度在100~200m之间的时候,最佳体系为剪力墙和框架核心筒;当建筑物高度在200~300m之间时,该体系最佳组成为框架核心筒、框架核心筒伸臂;如果该建筑高度小于600m时,该结构抗侧力体系的最佳构成应该为筒中筒伸臂、巨型框架、桁架、斜撑及组合体;在进行设计的过程中,应注重以上提及的相关结构抗侧力构件能够保持高度的连接,最好能够形成一个统一的整体。

3. 高度重视建筑抗震设计

复杂高层与超高层建筑当中,其抗震设计应当在建筑功能充分发挥的基础上进行确立,同时该环节也是确保建筑拥有较高安全性的重要部分。抗震方案在高层建筑当中,最重要的一点就是科学选择建筑材料;实现有效减少地震过程中的能量增加。在这项工作当中,验收承载力是使用建筑构件最主要的方式,并且应当有效控制地震情况下建筑结构的层间位移限值;在实际高层建筑的过程中,结构抗震手段的应用应当在位移的基础上建立,并定量分析相关设计方案,促使地震发生时结构的变形弹性能够对建筑产生一定程度的保护作用;精确分析地震发生时建筑构件会产生的变形及位移在建筑结构中的体现具有重要意义,这样一来,能够对构建变形值进行有效的确立;针对性设计应当体现在建筑构件的生产要求及建筑界面的应变分别当中,同时应当注重场地的坚固性,这也是有效降低地震发生时能量输入的重要方式。

4. 坚持高程建筑结构设计经济理念

复杂高程和超高层建筑是一项较大的项目,在结构设计和施工过程中,会面临很多成本输出问题。因此,在建筑结构设计过程中,应该坚持经济型设计理念。对于结果设计方案,应该坚持优化处理,避免在建设过程中由于结构冗长而造成成本浪费的问题。

二、复杂高层与超高层建筑结构设计中确保计算和设计的准确性

1. 合理选择分析软件、合理计算结果

现阶段,复杂高程与超高层建筑结构计算软件的种类很多,侧重点也有所不同,在结构设计过程中,设计人员首先应该明确不同的软件的作用,然后根据实际需要合理选择合适的计算软件。与此同时,还应该对具体的设计计算结果进行科学分析,从力学理念和工程设计经验方面进行合理判断,确保计算结果的合理性和准确性。

2. 重视荷载与作用方面的考虑

对于复杂高层与超高层建筑的结构设计,由于高层建筑很容易受到风载荷的影响,因此在高层建筑,尤其是超高层建筑结构设计中,应该重点考虑风载荷的影响。例如,在某大楼设计过程中,不仅需要考虑相关设计规范,而且还进行了相关风洞试验,从而提高建筑物的抗风载能力。在具体的试验过程中,设计了一个以 1:500 为比例的模型在半径为 600m 的风场环境中进行试验,验证建筑在不同风况下的受力情况。

现阶段,对于地震灾害的预测,在技术方面还有一定的限制,很难准确预定地震灾害。有些发达国家对于地震的研究十分深入,但是依然无法准确预估地震发生的时间和地点。因此,在高层建筑设计过程中,应该加强抗地震力的设计。与此同时,还应该重点考虑建筑主楼、裙楼在地震力作用下的不同反应。

综上所述,随着科学技术水平的不断提高,人们生活质量不断上升,我国城市建设过程中复杂高层与超高层建筑增加,在对这类建筑进行设计的过程中,应当充分考虑到抗震设防烈度、结构方案及类型等因素。经过我国建筑行业近年来积累的经验,总结出复杂高层与超高层建筑结构设计要点包括概念设计、结构抗侧力体系及抗震设计等内容。新时期,我国建筑行业相关工作人员只有在实践中不断加强对这些方面的重视,才能够促进我国建筑业不断进步。

参考文献:

超高层建筑结构设计要点范文第2篇

[关键词]超高层建筑;结构设计;基础设计

[中图分类号]F407.9 [文献标识码]A [文章编号]1672-5158(2013)06-0252-01

前言

随着我国经济的进步,高层建筑已经无法满足社会发展的需求,超高层建筑就逐渐出现在人们的视线中,并且大范围的扩展,在我国的各个城市的角落,都能看到超高层的建筑。超高层建筑之所以发展的如此的迅速,有两个方面的原因,一是由于城市的发展的需要,需要超高层建筑作为城市的形象,另一个最主要的原因,还是由于土地资源的紧张,从而不断的研究建筑物的高度缓解土地短缺的压力。因此,本文重点介绍了有关超高层建筑结构设计的相关的问题。下面就对超高层结构设计进行具体的分析。

1 超高层建筑与高层建筑结构设计中的区别分析

首先,在建筑物高度的设计上,一般超高层建筑的高度超过100m到几百米之间,而高层建筑的高度一般在100m之内。超高层建筑物的结构类型比高层建筑物的结构类型要多。超高层建筑物的平面形状一般为方形,而高层建筑物的平面形状的选择比较多。超高层建筑物的基础形式一般为等厚板筏基和箱基,而没有高层建筑物所用的梁板筏基。超高层建筑物一般不采用复合地基,而高层建筑基本上采用的是复合地基。在对超高层建筑物进行设计的时候如果建筑物超过200m需要满足在风荷作用下的舒适度的相关要求,而对高层建筑物的设计一般不考虑上述的因素。

2 超高层建筑结构设计中主要考虑的因素分析

在进行超高层结构设计中对于结构类型的选择需要充分的考虑当地地质条件及其对抗震目标的设定等。对于地质的条件,在拟建筑基地需要具备能够采用天然地基的条件,并且具有抗震设防烈度较低的特点。因此,在建筑结构上,可以优先的考虑钢筋混凝土的结构。如果在地震高发区应该优先考虑钢结构及其混合结构。对于抗震方面的考虑主要是要确定抗震性能的目标。要求超高层建筑物的竖向构件承载力需要达到在中震的时候能够不被破坏,在这样情况下,钢筋混凝土结构很难达到抗震的目标,因此,需要钢结构或者混合结构;另外对于结构类型的选择上,需要充分的考虑经济条件。在一般的工程建筑中,钢筋混凝土结构类型造价比较低,全钢的结构类型是最贵的,因此,应根据超高层建筑物的经济上的条件进行合理的选择。现在超高层建筑结构多采用钢筋混凝土柱、钢筋混凝土核心筒这种混合型的结构。因其这种混合结构与全钢结构造价要便宜,与钢筋混凝土结构刚度要好,因此,被广泛的应用与超高层建筑结构设计中。

3 超高层建筑结构中的基础设计

在超高层建筑物,一般有多层地下室,超高层建筑物基础埋置的深度需要满足稳定性的要求。而对于一些地区的基岩埋藏较浅的特点,无法建构多层的地下室,需要设置嵌岩锚杆进而满足稳定性的要求。超高层建筑物的地基基础的形式需要根据建筑场地工程地质的条件,在满足其稳定性的要求的情况下,还需要满足其沉降和变形设计的要求。当超高层建筑物的基底砌置在黏性土层或者海沉积的土层的时候,而这种土层的地基承载力不能够满足变形设计的时候,需要应用合理的用桩基方案。当超高层建筑物在40层以上的时候,而基底砌置在厚度较大的卵石层的时候,这种基底的承载力特征值以及压缩模量都比较高,因此,需要考虑天然地基的方案。如果基底砌置在中风化以及微风化基岩上的时候,都需要采用天然地基的方法。

3.1 天然地基基础

在卵石层或者微风化基岩上的地基都需要天然地基的方法。但是其基础的形式是不同的,当基底是卵石层的时候,一般采用等厚板筏形的基础。等厚板筏基在板厚的要求上,应该具有非常大的刚度,从而使基底的压力能够均匀的分布,从而减小外框以及内筒的沉降变形,在设计时,等厚板筏基的板厚取外框以及内筒之间的跨度应该保持在四分之一左右。超高层建筑物的结构设计中对于基底砌置在微风化的基岩上,这种基岩承载力的特征值是比较高。因此,外框柱应该采用立基础,内筒应该采用条形基础或者等厚板筏形的基础。并且,由于微风化基岩的刚度非常的大,在荷载作用下沉降以及变形比较微小,因此,在地下室的底板厚应该按照构造的设置以及按照岩石裂隙水有关的水浮力进行计算。在基岩上独立柱的基础,通常情况下,为了使施工不破坏基岩达到整体性的效果,一般采用人工挖孔桩的方式进行开挖。

3.2 桩基础设计

对于超高层建筑物桩基础的设计,主要考虑桩基底承受的压力比较大,从而要求单桩竖向能够承载很高的压力。因此,我们在对超高层建筑物的桩基础设计的时候一般采用大直径钻孔灌注桩以及采用大直径人工挖孔扩底灌注桩。对于选择桩端持力层上,最主要的是应该充分的考虑层厚较大以及密实的卵石层或者微风化基岩,从而减少桩端的沉降和变形。在对超高层建筑物桩基础设计的主要的原则是,应该集中布于柱下及墙下。如果在进行桩基础设计的时候采用的是端承桩或者摩擦端承桩,因为单桩竖向的承载力特征值比较高,因此,需要的桩数比较少,可以布于柱下以及墙下。如果对桩基础的设计采用的是端承摩擦桩或者摩擦桩,因为单桩竖向承载力的特征值比较低,因此需要整个基底都采用满布桩才能够满足其稳定性和不变形的要求。对于上述所探讨了不同的布桩形式,桩承台板的厚度上是不同的,满布桩于柱下以及墙下承台厚度需要冲切进行确定。并且超高层建筑物的地下室底板的厚度可以小于外框和以及筒承台的厚度。对于满布桩承台的厚度需要和天然地基基础的等厚板筏基的要求一样,承台板应该具有很大的刚度,从而以便基底承台桩能够承受相当大的压力。由此可见,一般承台板的厚度并不是由冲切所决定的。有关满布桩等厚板承台内力方面的计算,可以根据单桩竖向的承载力及其平均反力进行计算,这样计算出来的结果比较符合工程受力的实际情况。另外,对于钻孔灌注成孔的方法,在以往,一般采用的反循环钻机进行施工,但是现在对于桩长一般采用的是旋挖钻机,其施工的速度比较快,尤其是桩端沉渣厚度很小,进而能够确保钻孔桩的施工质量。这种钻机在实际的工程实施中,凡是有条件的都应该优先采用这种钻机。

4 结束语

本文对超高层建筑结构设计进行了相关方面的研究与探讨,通过了解超高层建筑与高层建筑在实际的设计中的区别,从而能够更加的清楚在超高层建筑结构设计中应该针对于高程建筑设计的不同点。通过分析在超高层建筑结构设计中的需要考虑的因素,进一步了解了超高层建筑结构设计中应该把握哪些重点的问题。并且具体的分析了超高层建筑结构设计中的基础设计,全面了解其基础设计中的设计要点。通过本文的分析,能够为日后的超高层建筑结构设计提供一些理论性的参考价值,进一步促进超高层建筑结构设计能够更加的科学和合理。

参考文献

[1]陈天虹,林英舜,王鹏罛,超高层建筑中结构概念设计的几个问题[J],建筑技术,2006(05)

[2]陈天虹,林英舜,徐琎,高层建筑结构楼板设计方法探讨[J],浙江科技学院学报,2008(01)

超高层建筑结构设计要点范文第3篇

(1)高层建筑结构计算简图的合理化原则计算简图是计算高层建筑结构设计的基础,其合理性能直接关系到高层建筑的结构的安全性。由此可见在进行高层建筑结构设计时要坚持计算简图合理化原则,且高层建筑实际结构的节点不是单一的,故必须要将简图的误差控制在规范的范围内。

(2)高层建筑结构基础方案的合理化原则高层建筑的地质条件是高层建筑结构基础方案的设计参考依据。其结构基础方案的合理化要求对高层建筑的结构类型、施工条件、荷载分布情况、与邻近既有建筑物的关联性等因素进行综合考虑。高层建筑结构设计基础方案通常情况下要确保其能够最大程度发挥地基的潜力,高层建筑设计必须要具备相应的地质勘察报告。

(3)高层建筑方案的合理化原则高层建筑结构方案的合理化指的是高层建筑结构设计方案必须要与结构体系的结构形式的要求保持充分的一致性,同时要满足经济性的要求。结构体系的具体要求要保证具有简单性、受力明确性等,综合考虑工程设计的需求、施工材料、地理条件、施工条件等,同时还要兼顾建筑的暖气、水和电额的相互协调。

2高层建筑及超高层建筑结构抗震设计目标分析

高层建筑的抗震设计在整个建筑设计中具有重要的作用。在设计时要考虑到重现期大约为7度的地震,建筑物只能出现的损伤都可以忽略,在进行结构设计时要使结构的反应状态基本处于弹性反应状态。对于重现期与9度的地震水准较为接近的地震,在设计时要对最大地震的震动进行预计,并设计为在真正遇袭情况下能有效防止倒塌情况,并能够证实以下几点:

(1)对于结构中的所有的延性的构件,要保证其非弹性变形必须低于其变形能力;

(2)对于非延性破坏模式的结构部件,要求其对于力的需求要大于等于其名义上的强度;(3)对于超高建筑物或者较为复杂的建筑物的设计上,对于起到控制作用的构件还需要保证其在受到中等震级地震的振动下仍能够保持其自身一定的弹性。

3设计要点分析

(1)重视概念设计对于超高建筑结构设计以及复杂建筑结构设计上,要重视其结构概念的设计,在设计时要尽量提升建筑结构的规则性和均匀性;要确保结构的传力途径清晰和直接,尤其是结构的竖向和抗侧力传力的途径;在设计上包保证结构具有较高水平的整体性设计;设计时要将节能减排的置入,以建立合理的耗能机制,创建绿色建筑;在设计时要充分考虑到结构与建筑结构材料的利用率,确保形成较为完整的结构受力整体。这一设计过程的实现,得力于建筑师以及结构工程师之间的良好沟通交流,以更好的实现建筑和结构之间的统一。

(2)选择科学、合理的抗侧力体系大量研究表明,在设计时选择较为合理的结构抗侧力体系,能有效保证高层建筑以及复杂高层建筑的安全性。在选择时要注意结合建筑物的实际高度对结构体系进行选择;在进行建筑设计时要尽可能的确保结构抗侧力构件之间相互联结和组合;对建筑设计中可以根据多重抗侧力结构体系的具体情况进行设计,要综合分析每种结构体系的优点及适用性,对各种体系的贡献度进行合理的评估与评判。

(3)注重抗震设计在满足建筑的功能性的基础上,高层建筑和超高层建筑的重要设计环节就是抗震设计,该设计是建筑安全性较为重要的一步。在对高层建筑进行抗震结构设计时,建筑材料的选择一定要慎重,保证质量。大量研究表明,在地震时要减少能量的输入能够有效减少地震对高层建筑的损害。

要做到以下几点:

(1)在对建筑构件的承载力进行验收时要对建筑结构在地震作用下的层间位移限值实施较为有效的控制。

(2)在对高层建筑的具体工程项目进行设计时,要积极采取基于位移的结构抗震方法,对设计方案要进行定量的具体分析,确保结构的变形延性能够满足地震的预期要求。

(3)综合分析建筑构件的变形以及建筑结构的位移之间存在的精确大关系,有效确定构件的具体变形值。

(4)结合建筑物的实际情况,如建筑界面的应变分布以及建筑界面的具体大小具有针对性的分析,并结合其具体构建要求进行设计。

超高层建筑结构设计要点范文第4篇

您好,根据作者的专业,这篇论文我把电气内容放在前边,结构内容放后边了

关键词:高层;钢结构建筑;消防;电气;结构;设计要点

中图分类号:S611文献标识码: A

前言:高层钢结构建筑的电气消防设计水平和结构设计的安全、可靠,直接关系到高层建筑物和民用建筑建筑物的安全使用性能,建筑行业在进行建筑结构设计和消防电气设计中应该根据国家标准和规范,做好建筑工程的消防电源及配电设计、火灾自动报警系统设计、钢结构设计等方面的设计工作,通过优化建筑工程结构设计和消防电气设计不仅可以有效避免安全隐患的出现,防止重大安全事故的发生保障人员的人生安全。

一、高层钢结构建筑消防电气设计的特点

高层钢结构建筑的结构本身在高温下容易失去承载力,室内装修的材料也是可燃的,加上存在人员及货物过于密集、楼层过多的问题,高层建筑存在着严重的安全隐患。高层钢结构建筑容易发生的“烟囱模式”是由于竖井内电气管线多、管道敷设弯曲、电梯间通风设备多等多种原因造成的。烟囱模式在遇到明火的时候,会加快火势的增大和蔓延。经过对许多火灾事故和现场的分析,相关部门发现火灾发生十五分钟之后,火势会不断加大并以极快的速度蔓延,烟雾的扩散程度也会迅速加快。所以,高层钢结构建筑的火灾扑救十分困难,假如发生火灾,就会对人民的身体健康和财产安全造成极大的损害。

二、高层钢结构建筑的消防电气设计要点

1、供配电设计

高层建筑的防火规范必须按《高层民用建筑设计防火规范》GB50045-95执行。国家标准《供配电系统设计规范》GB50052-2009规定了供电负荷等级和供电要求。一级负荷应由独立的双重电源供电,当一电源发生故障时,另一电源不应同时受到损坏。许多高层钢结构的建筑为一类高层建筑,所以它的供电负荷等级也应该是一级。一类高层钢结构的消防控制室、消防水泵、消防电梯、防烟排烟设施、火灾自动报警、漏电火灾报警系统、自动灭火系统、应急照明、疏散指示标志和电动的防火门、窗、卷帘、阀门等消防电气的负荷应该是一级负荷别重要的负荷供电。

2、火灾事故照明和疏散指示照明

高层钢结构建筑的楼梯间、前室、配电室、消防控制室、消防水泵房、防烟排烟机房、供消防用电的蓄电池室、自备发电机房、电话总机房以及发生火灾时仍需坚持工作的其它房间、人员密集的场所、公共建筑内的疏散走道和居住建筑内走道长度超过20m的内走道应设置应急照明。疏散用的应急照明,其地面最低照度不应低于0.5Lx,疏散照明最少持续供电时间为30min。

3、先进可靠的火灾自动报警控制系统

高层钢结构建筑的火灾报警系统按《火灾自动报警系统设计规范》GB50116-98的要求执行,将火灾报警系统分为三种基本形式:区域报警系统,集中报警系统和控制中心报警系统。火灾自动报警系统的保护对象应根据其使用性质、火灾危险性、疏散和扑救难度等分为特级、一级和二级。钢结构的高层建筑的火灾自动报警系统基本上采用控制中心报警系统。控制中心报警系统中至少应设置一台集中火灾报警控制器、一台专用消防联动控制设备和两台及以上区域火灾报警控制器;或至少设置一台火灾报警控制器、一台消防联动控制设备和两台及以上区域显示器,应能集中显示火灾报警部位信号和联动控制状态信号,系统中设置的集中火灾报警控制器或火灾报警控制器和消防联动控制设备在消防控制室内的布置应满足规范要求,宜用于特级和一级保护对象。

4、火灾漏电探测报警系统

高层钢结构建筑内火灾危险性大、人员密集,根据《火灾自动报警系统设计规范》GB50116-98的要求需设置漏电火灾报警系统。火灾漏电探测报警系统主要探测线路的漏电电流、过电流等信号,发出声光信号报警,准确报出故障线路地址,监视故障点的变化,并储存各种故障和操作试验信号不应少于12个月。火灾漏电的探测模块安装在供配电的每一个回路的空气开关下端,探测每一路需要检测回路的漏电电流、过电流情况。每一个探测回路只发出声光信号报警,准确报出故障线路地址,监视故障点的变化,不切断回路的电源。火灾漏电探测报警系统的主机安装在消防控制中心的墙上,给值班人员提供准确的报警信号和故障点位置。

5、做好建筑物的防雷与接地

高层建筑的火灾中,由雷击造成的原因占一定的比例。所以建筑设计时必须计安全可靠的防雷和接地装置 ,防止直击雷、侧击雷的直接破坏和雷电波的浸入造成的破坏。钢材是良好的导电体,钢结构的高层建筑像一个导电的铁笼子,所以更要做好建筑物的防雷和接地,还应及时与结构等专业沟通,合理确定位置,使其满足规范要求,减少和预防由于雷击造成的安全事故。

三、高层钢结构建筑的结构设计应注意的问题

1、钢结构设计要安全可靠

钢结构要做到安全合理、符合电气专业相关要求、节点构造方便可靠,并为构件生产、运输、安装提供保障。 结构方案尽可能节约钢材,减轻钢结构重量;钢结构设计生产尽可能缩短制造、安装时间,节约劳动工日;钢结构必须有足够的强度、刚度和稳定性,保证整个结构安全可靠,符合建筑物的使用要求,有良好的耐久性;结构构件应便于运输、便于维护。而且还要注意钢结构使用价值和观赏价值兼备。

2、钢结构建筑设计要实用、安全

钢结构建筑设计要发挥钢结构的优势,满足电气消防设计规范,建筑钢结构的平面布置应力求规则、对称,而且避免钢结构带来的建筑平、立面单调呆板;注意设计深度,保证达到有关的规定要求;注意解决钢结构建筑建筑防腐蚀、防火、防震问题。做好钢结构防锈、防腐处理,使结构布置符合规则性要求,提高防震能力,保证钢结构建筑的实用安全性统一。

四、高层钢结构建筑结构设计技术要点

1、判断钢结构在建筑设计中的适用性

在进行钢结构建筑设计、选用结构设计方案之前,要充分考察建筑项目建设是否适合用钢结构 。钢结构通常用于大跨度、高层、荷载、体型复杂或有较大振动、密封性要求高、吊车起重量大、要求能便于安装拆卸的结构。为了避免不必要的经济损失,要认真考察钢结构在建筑设计中的适用性。

2、确定结构选型与结构布置

“概念设计”这一理念应贯穿于在钢结构设计的整体过程中,运用概念设计可以在早期迅速、有效地进行构思、比较与选择,它在结构选型与布置阶段尤其重要。国内常见的钢结构类型主要有:框架、塔桅索膜、网架、平面架、轻钢等。在钢结构选型环节,要注意依据结构设计中主体系与分体系之间试验现象、破坏机理、工程经验、力学关系与震害等因素的综合深入分析,从而全面性整体性的选择最为科学、合理的结构,并且注意合理布置细节。

3、分析结构、预估截面

建筑设计在确定钢结构选型和布置后要注意对钢结构进行分析,以便钢结构于在实际设计中的合理应用,例如利用线弹性分析钢结构。另外还需对构件截面作初步估算,包括梁柱和支撑等的断面形状与尺寸的假定。设计时应及时与电气等专业沟通,使设计更加优化,这些也是钢结构建筑设计的重要环节。

结语:综上所述,在高层钢结构建筑的消防电气设计以及结构设计过程中,深入了解其消防电气的设计特点以及结构设计特点是关键,做好电气和结构两个专业间的相互配合工作,这既是现代化高层建筑物得到安全保障的体现,也是建筑火灾得到有效控制的体现,极大地保障了人们的生命财产安全。并且随着现代科学技术的快速发展的同时,促进人们不断在建筑电气消防技术中引入了很多新型的现代化设备,不断的完善结构优化设计,进而大幅度地提升了超高层建筑物的安全稳定功能,使其更加符合现代化超高层建筑设计的新要求。

参考文献:

[1] 郭艳靓.消防电气技术在超高层建筑中的应用[J].科技致富向导,2013,(08).

[2] 刘海鸥.探析高层建筑设计中的低碳设计理念[J].价值工程,2011,(06).

[3] 燕日权,任鹏.超高层建筑燃气设施安全问题的探讨[J].山西焦煤科技, 2004,(03).

[4] 陈颖辉,黄明.浅谈高层建筑的发展[J].昆明大学学报,2005,(01).

[5] 郭彦杰.浅谈超高层建筑节能设计[J].科技信息(科学教研),2008,(13).

[6] 杨小珊.对超高层建筑中泵送混凝土有关问题的分析[J].建材与装饰(下旬刊),2008,(07).

[7] 吕明芳.超高层建筑的电梯设计的探讨[J].科技致富向导,2010,(26).

超高层建筑结构设计要点范文第5篇

关键词:建筑结构 ;超高层 ;结构设计 ;抗震

中图分类号:TU3文献标识码: A

传统的建筑防震技术主要是以加强建筑物的刚性和韧性之间的配合度来实现的,而近年来,我国开始引进国外的先进技术,采用了隔震的防震新技术,并结合我国的实际建筑施工水平进行了改良。目前以我国的建筑隔震结构设计技术水平来讲,主要的隔震技术方式是基础隔震,除此之外,还有中间隔震和悬挂隔震等技术方式。在实际的超高层建筑工程结构设计中,对于隔震的技术方式选用还需要结合具体建筑工程的要求来确定。

1. 隔震技术的应用

自我国引进隔震建筑物结构设计技术以来, 就在高层建筑工程中得到了广泛应用,并且随着技术人员的不断改进与创新,目前隔震技术除了能够在建筑工程建造设计中发挥重大作用,还能够对已经建设完工的高层建筑进行隔震结构改造,以提高现有高层建筑的抗震性能。一般来讲,隔震结构层可以设计在高层建筑的不同位置, 如防火层或设备层的结构部位,或者基础层和中间层也可以,甚至在高层建筑的顶层也能起到良好的抗震加固效果。

2. 隔震建筑物

隔震建筑物是指在建筑物结构中的某个层面采用了隔震层的加固技术, 这种隔震层装置是各种侧向劲度较小的隔震组件相互作用而形成的。其目的是为了加长整个隔震建筑物的周期,以消减外力作用在建筑物上的影响。其作用原理是因为在加长了建筑物的周期以后,会增大建筑物的位移,再加上各种消能组件的作用,就可以大幅度增高结构的阻尼比,而实现减少建筑位移量的目的。

3. 基础隔震技术

基础隔震技术是目前我国高层建筑抗震技术中应用最广泛, 也是效果最好的抗震加固技术,并且基础隔震的技术成本较低,但在隔震功能上却发挥巨大的效应,因地震而引起的地面运动频率对于基础隔震效果的影响非常小,共振现象的发生频率非常小,可以忽略不计。

3.1 基础隔震的概念

通常所指的基础隔震是指在建筑物的结构设计中, 为建筑基础与上部结构之间加设一层高度不大但有足够可靠的隔震设置,用以吸收由地面运动所带来的作用力,从而减少建筑上部结构中受到的地震影响,保证建筑物的稳定和安全,保护建筑物内部的人群和设备不受伤害,也有效制止了因整体结构破坏而引起的次生灾害。

3.2 基础隔震设计中需要注意的问题

由于基础隔震层要充分吸收建筑周边的所有地面运动作用力, 因此,在设计中,最好要将隔震层的面积范围稍大于建筑基础的范围,因此,在建筑施工中,要保证施工场地足够宽绰。在设置隔震层周边的挡土墙时,由于在其上部会产生墙外狭道等现象,因此在设计中要充分考虑到这一部分结构在地震作用中是否会发生位移而引起其他不良问题的出现。

3.3 基础隔震结构体系动力分析

在高烈度区地震波影响下, 高层隔震结构体系的上部结构弯曲变形已开始占了较大部分,在高烈度地区应用橡胶隔震结构,结构中的隔震支座可能会出现一定的拉应力或者非线性变形,但是结构整体是安全的。对于高层隔震结构体系,上部结构的倾覆弯矩较大,水平地震作用会引起隔震层的转动,结构的垂直荷载也较大,隔震层可能产生明显的竖向变形。对于这种情况, 隔震结构的地震反应不仅要按多质点平动体系进行分析,并且要考虑结构的摆动。因此应采用多质点平动加摆动计算模型,如图1 所示。

图1 基础隔震体系多质点平动加摆动动力分析模型

4. 中间层隔震技术

在实际的建筑工程中, 尤其是在城市中心的地区进行高层或超高层建筑施工时,往往会受到地面施工空间的限制,这时候也可以采用中间层隔震技术。这种隔震建筑物的结构可以分为三部分,即隔震层以下的建筑结构包括建筑基础、隔震层、隔震层以上的建筑结构。

5. 悬挂隔震技术

悬挂隔震技术是利用一定的装置将建筑物整体结构或大部分结构悬挂起来,以达到在地震时,地面运动作用不到建筑主体结构上的目的,从而实现有效抗震。但这种隔震技术结构中,悬杆所要承受的荷载较大,必须用高强钢来实现,但高强钢的柔性较差,容易在较大的垂直作用力下断裂。

6. 超高层建筑结构的隔震设计

针对超高层建筑结构的隔震设计,需要严格按照有关高层建筑规范条例的相关内容,结合建筑物所在环境的实际情况,遵循隔震设计的一般要求,采取合理的设计步骤,确保超高层隔震建筑物的结构设计达到最优化的效果。

6.1 隔震设计要求

(1)设计方案:建筑结构的隔震设计,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与建筑抗震的设计方案进行技术、经济可行性的对比分析后,确定其设计方案。(2)设防目标:采用隔震设计的房屋建筑,其抗震设防目标应高于抗震建筑。在水平地震方面,隔震结构具有比抗震结构至少高0.5 个设防烈度的抗震安全储备。竖向抗震措施不应降低。(3)隔震部件:设计文件上应注明对隔震部件的性能要求;隔震部件的设计参数和耐久性应由试验确定;并在安装前对工程中所有各种类型和规格的部件原型进行抽样检测,每种类型和每一规格的数量不应少于3 个,抽样检测的合格率应为100%;设置隔震部件的部位,除按计算确定外,应采取便于检查和替换的措施。

6.2 隔震设计步骤

(1)结构隔震控制目标的确定。依据设防烈度或地震危险性场地条件以及工程的重要性,确定设防标准。(2)结构设计。确定上部结构方案与结构布置,初步确定上部结构构件尺寸及材料强度等级。由于设置了隔震层,上部结构所受地震作用降低很多。因此,对柱子轴压比的限制可适当降低,柱子的截面也可适当减少。这部分设计内容与非隔震建筑相同。(3)隔震装置的选用。根据隔震装置的承载力、刚度、变形等性能要求和规定,确定隔震支座的类型、个数和隔震支座的尺寸、布置并进行隔震支座设计。(4)结构隔震体系动力参数的确定。选择隔震结构动力计算分析模型,确定结构的刚度、自振周期、阻尼比等动力参数。(5)结构隔震控制验算。计算结构地震作用和结构的加速度、速度、位移、隔震的水平位移、支座轴力等地震反应,确认是否满足设防标准。

7.超高层隔震建筑物设计技术

超高层隔震建筑物设计技术主要有下列关键因素:

7.1长周期建筑物之隔震效果

隔震建筑物之最优越抗震效果即在延长建筑物基本振动周期,但高层建筑物基本振动周期往往超过3秒,隔震后即使将建筑物基本振动周期拉长至5秒以上,由反应谱显示,两者加速度反应相差有限。但是在增加阻尼比降低地震位移反应,则有其贡献。

7.2 倾覆作用造成隔震组件受拉力

隔震组件设计时必须考虑拉力作用,因此拉力试验成为规范修订之首要任务。

7.3风力作用

隔震层设计时必须考虑地震力作用,但是小地震或风力作用,隔震组件是否发挥功能?仍有待深入探讨。

8. 结束语

隔震建筑结构设计是目前抗震效果较为理想的技术方法,但其设计技术仍有很大的发展空间,还需要技术人员不断提高技术水平,完善技术方法,使我国的高层建筑抗震性能得到更进一步的加强。

参考文献: