首页 > 文章中心 > 统计学基本思想

统计学基本思想

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇统计学基本思想范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

统计学基本思想范文第1篇

【关键词】 缺血性心脏病;二尖瓣反流;左心室重塑;超声心动图

Abstract: Objective To discuss the different mechanisms of mitral regurgitation (MR) by comparison of the complex mitral geometry in patients with anterior myocardial infarction (MI) and patients with inferior MI. Methods 33 consecutive patients with prior inferior MI (inferior MI group), 61 consecutive patients with anterior MI (anterior MI group) and 22 subjects with normal echocardiograms (control group) were enrolled in our research. Based on systemic echocardiography, left ventricular (LV) volume, mitral annular area and MR fraction were quantified by 2D and color Doppler flow imaging. PM tethering distances were determined by measurement of interpapillary distances to the mitral valve annulus in apical four-chamber and corss-sectional two-chamber views. Results Significant MR (MR fraction >20%) was observed in 12 of the 33 with inferior MI and 7 of the 61 with anterior MI. In inferior MI patients complicated with MR, tethering distance was significantly longer in medial compared to lateral PM [(42.6±4.9) mm vs. (36.1±1.7) mm, P0.05], demonstrating symmetric bilateral PM displacement. Multiple regression analysis revealed that posteromedial papillary tethering distance and the sum of bilateral tethering distances were the independent influence factors contributing to inferior MI and anterior MI complicated with MR, respectively. Conclusion Patients with ischemic MR complicated with inferior MI have asymmetrically predominant medial PM displacement, while those with ischemic MR during anterior MI have symmetric bilateral PM displacements.

Key words: ischemic heart disease; mitral regurgitation; left ventricular remodeling; echocardiography

和传统的观念不同,近些年的研究表明缺血性心脏病时发生的二尖瓣反流主要由左心室重塑致肌向外侧和心尖方向移位所造成[1-6]。此外,下壁心肌梗死和前壁心肌梗死左心室重塑各具特点,前者主要影响后内侧肌而对前外侧肌影响较小,后者对肌的影响则是对称性的。临床观察也发现缺血性二尖瓣反流在下壁心肌梗死时更常见[7],提示反流的发生机制可能存在差异。本研究旨在通过对陈旧性下壁和前壁心肌梗死时二尖瓣装置的空间构型的分析,探讨两种情况下产生缺血性二尖瓣反流的可能机制。

1 对象和方法

1.1 研究对象和分组 纳入本研究的包括33例陈旧型下壁心肌梗死患者(下壁梗死组)、61例陈旧性前壁心肌梗死患者(前壁梗死组)和22例心脏超声心动图无异常的受试者(正常对照组)。心肌梗死患者的纳入标准为心肌梗死病史>3个月,心肌梗死的诊断基于:①血清肌酸磷酸激酶升高大于正常值2倍;②前壁/下壁室壁运动异常。排除标准包括:①心肌梗死病史<3个月;②复合部位的心肌梗死;③合并其他器质性瓣膜疾病;④合并其他器质性心脏病。3组临床基线情况见表1。表1 3组临床基线情况

1.2 超声心动图测量 患者取左侧卧位,记录二维、多普勒和彩色血流超声心动图,在心尖四腔和二腔切面显示前外侧和后内侧肌顶端,停帧于左心室收缩中期测量肌顶端至二尖瓣环的距离(l1、l2)作为反映肌移位的参数。测量瓣环内径(d1、d2),通过椭圆形公式计算瓣环面积,描测二尖瓣叶与瓣环连线间的面积作为反映瓣叶位移程度的指标(图1)。双平面Simpson法测算左心室容积和射血分数;二尖瓣和主动脉瓣瓣环面积与相应瓣口多普勒流速时间积分的乘积分别为左心室每搏充盈和排出容积,二者之差为每搏反流容积,其与左心室充盈容积之比为反流分数。反流分数大于20%者为有意义的反流。

1.3 主要观察指标 左心室舒张末期容积(LVEDV),左心室收缩末期容积(LVESV),左心室射血分数,前外侧肌牵引距离(l1),后内侧肌牵引距离(l2),运动异常节段数,瓣环面积等。

图1 二尖瓣装置超声心动图测量方法示意图

LV. 左心室;LA.左心房;d1、d2.二尖瓣环内径;l1、l2.肌牵引距离

1.4 统计学处理 测量结果用±s表示,2组间比较采用非配对t检验;率的组间比较采用χ2检验。采用多元回归分析评估左心室舒张末期和收缩末期容积、射血分数、二尖瓣环面积、肌牵引距离等与瓣叶移位程度和二尖瓣反流程度之间的关系。P<0.05为差异有统计学意义。

2 结 果

2.1 3组间心脏参数的比较 和下壁梗死组相比,前壁梗死组左心室容积增大更显著,射血分数也较小。2组的瓣环面积和正常对照组相比有所扩大,但各梗死组间差别无统计学意义(P>0.05)。从前外侧肌牵引距离(l1)看,前壁梗死组和下壁梗死组均较对照组延长,但各梗死组之间差别无统计学意义(P>0.05);而后内侧肌牵引距离(l2)的情况则不同,下壁梗死组延长更加显著,因而两肌牵引距离之和也是下壁梗死组大于前壁梗死组。结果,二尖瓣位移面积、二尖瓣反流分数以及反流的发生率等也是下壁梗死组高于前壁梗死组。见表2。表2 3组间心脏参数的比较 与正常对照组比较:#P

2.2 合并二尖瓣反流的下壁和前壁心肌梗死的心脏参数比较 左心室容积及射血分数的情形和整组比较的结果类似,前壁梗死左心室容积较大、射血分数较小;二者瓣环面积扩大的程度相同。合并二尖瓣反流的前壁梗死时,两侧肌的牵引距离呈现同等程度的延长;而下壁梗死时,前外侧肌牵引距离(l1)延长幅度明显小于后内侧肌(l2),即非对称性延长。尽管二尖瓣位移面积在合并反流的下壁和前壁梗死时差别不显著,但反流分数仍可见前者大于后者。见表3。表3 合并二尖瓣反流的下壁梗死和前壁梗死的心脏参数比较与下壁梗死组比较:*P<0.05,**P< 0.01

2.3 二尖瓣位移面积和反流分数的影响因素 虽然单因素分析显示多数左心形态和功能参数都与二尖瓣位移面积相关,但多因素分析结果显示后内侧肌牵引距离(l2)和LVEDV是其在下壁梗死时的独立影响因素,而前壁梗死时的独立影响因素仅见双侧肌牵引距离之和(表4)。二尖瓣反流分数的影响因素分析显示类似结果:多数参数在单因素分析时均与反流分数相关,而多因素分析显示反流分数在下壁梗死时主要和后内侧肌牵引距离(l2)及LVEDV相关,前壁梗死时和双侧肌牵引距离之和及LVESV相关(表5)。表4 二尖瓣位移面积影响因素的多元回归分析表5 二尖瓣反流分数影响因素的多元回归分析

3 讨 论

随着冠心病发病率的上升,缺血性二尖瓣反流也日益成为严重影响此类患者预后的危险因素,对其发病机制的深入理解是寻找有效治疗手段的基础。传统观念常强调瓣环扩大在此类功能性二尖瓣反流发病机制中的作用,实践证明单纯缩小瓣环对于纠治二尖瓣反流的作用有限[8]。近年来,肌移位在缺血性二尖瓣反流发病机制中的作用得到充分肯定,并由此派生出一系列富有探索精神的治疗方法[9-13],接受临床实践的检验。

鉴于下壁和前壁心肌梗死左心室重塑的不同特点,“肌移位”理论在这两种情况下应该有不同的表现方式。本研究的结果证实了这一假设,前壁梗死是在左心室显著扩大的基础上两侧肌对称性向外侧和心尖方向移位造成相对性二尖瓣关闭不全,而下壁梗死主要是由于后内侧肌非对称性的显著移位导致二尖瓣关闭不全。下壁梗死与后内侧肌的特殊解剖关系决定了其二尖瓣反流的发生率高、程度较重等特点,一般临床印象示前壁梗死时二尖瓣反流常见可能是前壁梗死在临床实践中所占比例较高导致的错觉。

不同部位心肌梗死导致二尖瓣反流的关键环节不同,理论上就要求在临床实践中对缺血性二尖瓣反流诊断的个性化,由此才可能实现治疗方案的个性化。对二尖瓣反流发病机制的深入理解对缺血性心脏病诊断和治疗水平的提高具有重要意义。

【参考文献】

[1] Ogawa S, Hubbard FE, Mardelli TJ, et al. Cross-sectional echocardiographic spectrum of papillary muscle dysfunction [J]. Am Heart J, 1979, 97(3):312-321. [2] Godley RW, Wann LS, Rogers EW, et al. Incomplete mitral leaflet closure in patients with papillary muscle dysfunction [J]. Circulation, 1981, 63(3): 565-571.

[3] Otsuji Y, Handschumacher MD, Schwammenthal E, et al. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry [J]. Circulation, 1997, 96(6):1999-2008.

[4] Messas E, Guerrero JL, Handschumacher MD, et al. Paradoxic decrease in ischemic mitral regurgitation with papillary muscle dysfunction: insights from three-dimensional and contrast echocardiography with strain rate measurement [J]. Circulation, 2001, 104(16):1952-1957.

[5] Yiu SF, Enriquez-Sarano M, Tribouilloy C, et al. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study [J]. Circulation, 2000, 102(12):1400-1406.

[6] Otsuji Y, Kumanohoso T, Yoshifuku S, et al. Isolated annular dilation does not usually cause important functional mitral regurgitation: comparison between patients with lone atrial fibrillation and those with idiopathic or ischemic cardiomyopathy [J]. J Am Coll Cardiol, 2002, 39(10):1651-1656.

[7] Kumanohoso T, Otsuji Y, Yoshifuku S, et al. Mechanism of higher incidence of ischemic mitral regurgitation in patients with inferior myocardial infarction: quantitative analysis of left ventricular and mitral valve geometry in 103 patients with prior myocardial infarction [J]. J Thorac Cardiovasc Surg, 2003, 125(1):135-143.

[8] Calafiore AM, Gallina S, Di Mauro M, et al. Mitral valve procedure in dilated cardiomyopathy: repair or replacement? [J]. Ann Thorac Surg, 2001,71(4):1146-1153.

[9] Liel-Cohen N, Guerrero JL, Otsuji Y, et al. Design of a new surgical approach for ventricular remodeling to relieve ischemic mitral regurgitation: insights from 3-dimensional echocardiography [J]. Circulation, 2000, 101(23): 2756-2763.

[10] Messas E, Guerrero JL, Handschumacher MD, et al. Chordal cutting: a new therapeutic approach for ischemic mitral regurgitation [J]. Circulation, 2001, 104(16):1958-1963.

[11] Hung J, Guerrero JL, Handschumacher MD, et al. Reverse ventricular remodeling reduces ischemic mitral regurgitation: echo-guided device application in the beating heart [J]. Circulation, 2002, 106(20):2594-2600.

统计学基本思想范文第2篇

关键词:贝叶斯;经典统计;统计思想;统计方法

一、引言

经典统计学派和贝叶斯统计学派是在统计学的历史上逐渐发展起来的两大主要学派。贝叶斯方法是由英国学者Bayes在其论文中首先提出来的,并在和经典学派的争论中逐渐发展起来,目前被越来越多的统计工作者所研究和广泛应用。经典统计在发展成熟的同时也逐渐暴露出了一些问题,而不少学者对两个统计学派的比较研究中发现,二者在其基本思想以及统计推断时不尽相同,与此同时,二者也都有自己的优点与缺点。正确理解这些不同,对于我们今后正确地运用统计方法分析实际问题起着举足轻重的作用。因此,本文对这两种统计方法的基本思想作了对比,分析了各自的优势及缺点,并说明了他们在用于统计推断时表现的差别,有助于我们进一步理解这两种基本的统计分析方法。

二、基本思想的对比

1.区别一

经典统计学认为概率必须符合科学的要求,是“客观的”,这可以用大量重复试验之后的频率去解释,而不能主观臆断。而贝叶斯统计认为一些事件的概率在大量重复试验中去获得是不现实的,而我们可以根据对此事件的了解和积累的经验做出此事件发生可能性的判断。

2.区别二

经典学派很注重利用已经出现的样本观察值,没观察到的样本不予考虑。贝叶斯学派很注重先验信息的收集、挖掘和加工,使他们数量化成先验分布,参加到统计推断中,以此提高统计推断的质量。

3.区别三

经典统计中把样本看作来自具有一定概率分布的总体,而总体中的参数是普通的未知变量;相反,贝叶斯统计把任何一个未知的参数都看作是随机变量,都有不确定性,用一个概率分布去描述这个未知的参数,在统计推断中只利用已经出现的数据,即样本信息,这就是贝叶斯统计中的“条件观点”。

4.区别四

经典统计学派判断方法是让检验统计量与临界值进行比较。贝叶斯的判断方法是在获得后验分布之后,可分别计算原假设H0和备择假设H1的后验概率。

5.总结

贝叶斯统计学派与经典统计学派在很多问题上都有分歧但是它们最根本的分歧是:第一,是否利用先验信息。由于产品的设计、生产都有一定的继承性,这样就存在许多相关产品的信息以及先验信息可以利用,贝叶斯统计学派认为利用这些先验信息不仅可以减少样本容量,而且在很多情况还可以提高统计精度;而经典统计学派忽略了这些信息。第二,是否将参数e看成随机变量。贝叶斯统计学派的最基本的观点是任一未知量e都可以看成随机变量,可以用一个概率分布去描述,这个分布就是先验分布。因为任一未知量都具有不确定性,而在表述不确定性时,概率与概率分布是最好的语言;相反,经典统计学派却把未知量e就简单看成一个未知参数,来对它进行统计推断。

三、两种统计方法的优缺点

1.贝叶斯统计的优点与缺点

贝叶斯统计以从经验中学习为目标,将历史信息与样本似然函数结合在一起,使之形成一套比经典统计更加灵活,更加直观,更加易于理解的统计方法,在计量模型中正在受到越来越广泛的应用。特别是在小样本的情况下,点估计和区间估计可以有比经典统计更加精确的结果;其次,在用贝叶斯后验分布进行推断后,可以将第一类、第二类错误所造成的损失考虑在内,因而比经典统计更加实用;另外,在处理多余参数的问题上,贝叶斯统计可以直接在后验密度中将多余的参数积分掉,这又比经典统计方法方便得多。

贝叶斯统计在很多方面比经典统计有明显的优势,然而,仍然有许多本身存在的问题和缺陷制约和阻碍着它的发展。例如,先验分布的确定是近几十年来研究的主要问题;其次,我们一般只知道后验分布的核,计算后验密度函数的推导与计算具有非常大的难度,也没有可以广泛应用各种模型的软件和程序。

2.经典统计的优点及缺点

经典统计学作为统计学的根基,有着它自身所无法比拟的优点。首先,它用于推断过程的数据是样本数据,排除经常很难量化的先验知识。其次,它对于方法的评估有一系列的准则。只要可能,就能找到最优方法。

但与此同时,它的缺点也比较显著:首先,在小样本的情况下,点估计和区间估计没有贝叶斯的结果精确;其次,它不能将第一类、第二类错误所造成的损失考虑在内;最后,在处理多余参数的问题上,没有贝叶斯统计方法方便。

3.总结

贝叶斯统计学派与经典统计学派虽然有很大区别,但是它们各有优缺点,各有其适用的范围,我们要具体问题具体分析,以获得一种更适合解决实际问题的方法。而且,在很多情况下,二者得出的结论在形式上是相同的。

四、两种统计方法在统计推断时的差别

1.在点估计与区间估计方面的区别

贝叶斯定理是贝叶斯统计学的理论基础,函数p(x|θ)集中了总体信息和样本信息,被称为似然函数,它是未知参数θ的函数。在经典统计中同样承认似然函数,在这一点的理解上,经典学派和贝叶斯学派的观点是一样的。我们强调似然函数是θ的函数,而样本x在似然函数中是一组观察值,使似然函数值达到最大的θ值有比其他θ值更大的说服力,此θ值即为经典统计中的最大似然估计而我们可以证明,在贝叶斯统计中,当在“无信息”的条件下,θ的最大后验估计就是经典统计中的最大似然估计。在上述情况下,我们可以认为,经典统计中的最大似然估计是贝叶斯统计中的最大后验估计的特例。而在贝叶斯统计中,我们可以看出,在有合理的先验信息时,贝叶斯统计可以利用更多的信息,以达到更好的估计效果。

在置信区间的解释和处理上,贝叶斯统计具有含意清晰,处理方便的特点,而经典统计则经常被统计工作者所误用而受到批评。

2.在假设检验方面的区别

经典统计学中,因参数被认为是常数,因而不存在H0和H1的概率大小,其判定标准是若H0为真时,小概率事件发生,则拒绝原假设H0。即判定的是P(x|H0为真),x是样本向量。而在贝叶斯统计中,可以直接求得在样本X给定的条件下,参数的后验概率,因而得出H0和H1和后验概率,即判定的是P(H0为真| x)和P(H0为假|x)。这是两种检验方法间的根本区别。

在贝叶斯统计的检验中,先验信息的分布和参数的变化可以引起拒绝域的变化,而贝叶斯统计在后验均值估计中的最基本特征是伸缩性。

贝叶斯统计在检验问题中的一个优势在于多重检验问题,这是经典统计所办不到的。例如:在一次企业对两种生产方法的比较检验中,我们将假设设为:H0:θ=0;H1:θ0,H0表示两种方法无显著差别,H1表示方法一优于方法二,H2表示方法二优于方法一。贝叶斯统计在后验概率中计算H1和H2的概率,而经典统计方法则很难去处理此类

问题。

五、实例分析

下面我们通过一个例子对两种思想进行一些比较。例:以随机变量θ代表某人群中个体的智商真值,θ i为第i个个体的智商真值,随机变量Xi代表第i个个体的智商测验得分,若该人群的期望智商为υ,则第i个个体在一次智商测验中的得分可以表示为:Xij=υ+ei+eij其中ei为第i个个体的自然变异,eij为第i个个体第j次测量的测量误差。根据以往积累的资料,已知在某年龄的儿童的智商真值θ~N(100,225),个体智商测验得分x~N(θ*,100)。现在一名该年龄的儿童智商测验得分为115,问:(1)该儿童智商真值是否高于同龄儿童的平均水平?(2)若取θ*在(a,b)为正常,问该儿童智商是否属于正常?

1.用经典统计方法解答

对第一问,建立检验问题:H0:θ*100,按照经典统计学方法,若取。α=0.05,则拒绝域为{x:x>=116.45}尚不能认为该儿童智商高于平均水平。

对第二问,经典方法需要进行两次分别针对a、b的单侧检验。过程与第一问相似,这里不再叙述。

2.用贝叶斯方法解答

在贝叶斯学派中,当θ i未知时,将其看作随机变量,与0具有相同的分布,这是贝叶斯学派与经典学派的一个重大区别。根据贝叶斯理论,θ的先验分布是N(100,225),测验结果x*~N(0,100),儿童智商的后验分布为正态分布N(110.38,69.23)。

对第一问,同样设H0:0‘100,查正态分布表可以得到P(H0lX=115)=0,106,P(H1lx=115)=0,894,根据风险最小原则拒绝H0,接受H1。

对第二问,设H0:a

由此可以看出:按贝叶斯的观点,多重假设检验的情形并不比两个假设的检验更困难,因为它只需要多算几个后验概率即可;它同时利用了样本和

的先验信息,且由于导出了样本x下的后验分布,可以对风险给出正面的回答,因而较经典方法下的间接判断更直观。

统计学基本思想范文第3篇

关键词:金融学;本科生;统计学;思维训练

中图分类号:G71 文献标志码:A 文章编号:1000-8772(2013)12-0225-02

随着金融创新的不断加深、金融学学科体系及内容的不断发展和变革,金融学本科专业课程越来越多地涉及统计学的相关知识。但长期以来,大多数金融学专业在招生中文理兼收,学生的数学功底参差不齐,学习专业课的难度加大,在教学中注重加强金融学专业本科生的统计学思维训练无疑是改善金融学专业课程教学效果的重要手段。因此,为了适应经济发展对金融学专业人才的需求,推动金融学专业本科生学科建设的不断完善,本文专门就如何在教学中加强金融学专业本科生统计学思维训练的问题提供了以下几点有益的思考及具有可操作性的建议。

一、在教学中注重统计学与金融学知识的交叉融合

(一)注重体现统计学与金融学各自的地位和作用

当前金融学专业课程教学中存在的问题是,专业课程内容对统计学特别是数理统计有着越来越高的要求,但统计学与金融学各自的课程体系之间却缺乏足够的内在沟通,课程体系目标不够明确。造成的结果往往是,一些金融学专业的学生学了概率论与数理统计、统计学原理甚至金融统计等,却不懂得运用统计分析的方法去分析金融领域的实际问题,两者脱节现象较为严重。

因此,在教学中加强金融学专业本科生的统计学思维训练,首先应注重统计学与金融学两门学科知识的交叉融合,在教学中引导学生认识两者各自的地位和作用。统计学是一门方法论和应用性学科,是一种定量认识问题的工具。统计学只有与实质性学科相结合,才能发挥强大的数据分析功效。在统计学与金融学的相互关系中,统计学为研究金融学服务,统计方法在这一应用过程中得以完善与发展;金融学为统计学的应用提供了基地,为统计学和自身的发展均提供了契机。

(二)注重统计学和金融学交叉融合的实践内容

注重统计学与金融学的交叉融合,反映在课程体系改革上,应适当调整课程设置和重新设计教学方案(特别是概率论与数理统计、统计学原理、金融统计等课程),使之与金融学专业的课程建设相适应;反映在教学实践过程中,教师的关键任务在于告诉学生如何运用统计知识,利用各种统计分析的工具(如统计应用软件)去分析现实中得到的数据,将培养统计思维习惯和训练统计应用能力有机结合。

在统计学和金融学专业课程的教学过程中,教师要善于把统计思维的基本思想与金融学的授课内容有机结合起来。在统计学相关课程的教学中大量运用金融学的案例;在金融学专业课程的教学中大量传输统计思维,使学生学到的不仅是统计和金融的专业知识,更重要的是学到如何用统计思维去观察、思考和处理金融问题的能力。

二、合理设计统计学相关课程的教学内容

统计思维的培养和训练与特定的教学内容紧密联系。加强金融学专业本科生的统计学思维训练需要改革金融学专业学生的统计学相关课程的教学内容,根据金融学专业学科发展的需要对金融学专业本科生开设的统计学相关课程的教学内容和教学方案进行调整和重新设计。

(一)统计学原理课程内容的调整

以统计学原理课程为例,建议调整的内容包括,一是简化统计指标理论,增加统计学数学理论基础的讲授内容。将原来统计学教学中重点讲授的时间数列分析、指数法等内容变为有选择的介绍;将概率论的有关内容纳入统计学课程,并在原有基础上充实参数估计和假设检验的教学内容。二是强化统计定量分析方法,向学生介绍多元线性回归分析、方差分析、因子分析等多种统计分析方法的基本思想和原理。同时,考虑到金融领域以时间序列数据为主,因此,在教学别要让学生对时间序列分析的基本模型有所把握和理解。这样一来,不但丰富和充实了统计学的教学内容,而且也会大大改善金融学专业课程的教学效果。

(二)关于金融统计学课程内容的调整

对于金融学专业开设的金融统计学,需要为金融统计建模做准备,所要掌握的内容更多、要求更高。这就要求在金融统计学课程教学中,结合金融建模思想适当调整教学内容,以提高学生统计思维下分析金融实际问题的能力。以连续性随机变量的分布为例,金融资产收益率序列的统计分布大多是非正态的。这就要求在教学中,一是要介绍非正态分布数据在模型应用中的常用的处理方法,如取对数等;二是要注意非正态分布的学习,可以向学生介绍t分布:贝塔分布、威布尔分布等非正态分布。

统计学相关课程的具体教学方案和内容确定以后,将会有利于统计思维与授课内容的有机结合,譬如概率论、随机过程知识就是用来描述事物发展过程中的不确定现象的,平均数、方差用来刻划现象的集中与波动程度,数字资料的搜集开发是为这些现象的过程控制提供决策依据,如此等等。让学生带着问题有针对性地学习,并把统计思维的基本思想贯穿于整个教学过程中。

三、注重培养学生灵活运用随机性思维的能力

(一)注重培养学生熟悉统计思维和随机性思维

统计思维是统计学中蕴含的一种思维和行为方式。良好的统计思维不仅是学习统计学的需要,也是统计学向其他学科嫁接的一条有效途径,会使学生终身受益。一般认为,统计思维就是人们自觉运用数字对客观事物的数量特征和发展规律进行描述、分析、判断和推理的思维方式。统计思维从内容上讲,包括了从资料收集到资料分析再到统计推断的整个过程,以认识和把握客观事物和现象的本质及其发展变化规律为其终极目的。其中,资料分析和统计推断的理论基础是随机性思维。

在教学中加强金融学专业本科生的统计学思维训练应注重培养学生灵活运用随机性思维的能力。所谓随机性思维,就是以随机性问题为载体和视角来发现问题和解决问题,达到对现实世界空间形式和数量关系的本质的一般性认识的思维过程。随机性思维是统计思维的思想内涵和本质内容,贯穿概率论和数理统计内容体系的始终。

(二)注重解读概率论与数理统计之间的联系与区别

培养灵活运用随机性思维的能力要求教师在教学中帮助学生清楚认识概率论与数理统计之间的区别与联系。虽然概率论和数理统计从严格意义上讲是不同的两门学科,他们研究的对象不同,思维方式也不同,但它们却是联系紧密、相辅相成的两个方面。前者偏重于基础理论,后者偏重于研究应用。随机性和不确定性是数理统计研究对象的最重要的特性。概率是对随机性的一种度量,基于概率的知识,将随机性归纳到可能的规律性中,这是随机性思维的基本特征。由于对随机现象的观察可以直接或间接地用数据来表现,因此对随机性进行描述的一个重要方式是拟合一个适当的分布。

(三)注重帮助学生深刻体会和应用随机性思维

灵活运用随机性思维的前提是能够深刻体会和认知随机性思维,因此,培养学生灵活运用随机性思维的能力还应当经常在课堂上联系现实世界中的随机现象,在教学过程中引导学生深刻理解和体会“随机性”的内涵,并激发学生自觉、自我培养随机性思维的意识。让学生的思维方式由“确定性”向“不确定性”过渡,认识到随机事件广泛地存在于客观世界之中,并且无处不在。

四、通过实验教学切实提高学生的理论水平和实践能力

(一)金融学专业本科生增设实验课的意义

在金融学的专业课程里增设实验课程是实践教学的重要方式,更是金融学专业课程建设的必然趋势。金融学学科建设中一个广泛存在的问题是不重视实践教学。在教学中,统计方法与金融建模、定量分析脱节,缺乏统计案例和统计软件的结合。没有实际的数据分析训练,学生们就无法对统计的广泛应用性有深刻的体会,也不利于保持和提高他们的学习兴趣。同时,对金融专业的本科生来讲,不掌握一门专业的统计软件,很难完成今后的进一步学习和研究工作。因此,在统计思维的训练和培养中,必须注重把统计知识应用于实践的训练,在实践中提高统计思维能力,使统计思维在金融学专业本科生在对金融学专业课的学习中发挥它应有的作用。笔者认为,统计学、金融统计学、计量经济学、金融工程等课程均可以考虑开设一定的实验课。

(二)有效率地上好实验课

处理金融数据所用的统计分析方法众多,每种分析方法都有各自的特点和适用对象,同时彼此联系。在实验课程的开设中,建议每种方法均遵循一现场演示二案例分析三鼓励学生自己动手处理实际金融数据的学习过程。譬如金融学专业本科生会接触到大量的金融时间序列数据,教师在实验教学过程中可以链接功能强大的统计分析软件,用统计软件进行处理金融时间序列数据的演示,并结合软件的输出结果进行讲解,帮助学生正确理解统计理论方法和统计软件输出结果的含义。通过实验课的教学,学生学会使用一种以上的统计应用软件进行统计整理和统计分析,不但提高了实际处理金融统计数据的能力以及金融统计的分析技能,产生比较具体的感性知识,而且加深了对金融统计规律性的认识,激发了对统计学和金融学专业课程的学习兴趣,为实现统计理论与金融实践的顺利结合奠定基础。

此外,将统计应用软件与案例教学有机结合已是国际统计教育的主流。金融统计的案例分析主要体现在统计分析方法的应用上。在案例教学中,应综合应用多种统计分析方法。同时,所选择的案例要与当前备受关注的金融问题、金融现象密切联系,难度也要适中,避免打击学生学习的积极性。在对案例分析过程有比较好的理解和掌握的基础上,学生开始自己动手处理实际金融数据就水到渠成了。

统计学基本思想范文第4篇

【关键词】统计学 普及教育 高校

一、大规模的统计学普及教育势在必行

从世界发达国家的情况来看,都比较重视统计学和统计学教育。美国的高等院校几乎都开设《统计方法》选修课,而且学生中选《统计方法》课程的人数要多于选修《微积分》课程的人数,因为他们觉得统计更有用。另外,从最近的英国、美国、日本以及港、台地区的中学教材来看,统计学与概率都是教学内容的重要组成部分,多数教材每个年级都有统计内容。

在国内,统计学也越来越受到重视。1993年12月,贺铿、袁卫两位教授提出的“大统计”的理念,在统计学界从认识上正趋于统一。1998年9月,教育部在将504个本科专业调整为249个的情况下,统计学从原来的二级学科反而被调整为理学类一级学科。这些都为统计学的发展和统计教育的大规模普及奠定了重要基础。

尽管如此,我国统计学教育与发达国家相比还是存在着很大的差距。我国所有的普通高等学校中,具有统计学专业或开设统计学课程的只有100多所,这与美国有成百上千所学校在提供统计教育的状况相比比例是较低的。从我国中学教材来看,统计的内容约占4%。相对上述国家的教科书来说比例也是较低的。

一个国家应用统计学知识的多少,反映一个国家的发达程度。随着我国社会主义市场经济和各项社会事业的快速发展,随着建设创新型国家战略目标的实施,随着高等教育的大众化进程,统计学提高教育和大规模的普及教育无疑都会得到长足发展。统计学教育也会在普及基础上进一步提高,在提高指导下进一步普及。因此笔者认为,较大规模的统计学普及教育已经势在必行。

二、高等院校是统计学普及教育的突破口

实际上,近年来我国的统计学教育已经开始突破统计学专业教育的界限,在一些理工农医以及社会学等大部分学科和专业中,开设了统计课程;统计知识还列入了中小学教学内容。这是可喜的,但笔者认为统计学普及教育还仅仅是初露端倪,大规模的统计学普及教育还未开始,还有许多工作要做。

目前,我国在一些财经类院校开设的基本是社会统计学,在理工类院校开设的基本是数理统计学,都还与“大统计”的理念和作为理学类一级学科的统计学存在着很大距离。中小学虽然在数学教材中加入了一些统计学的基本内容,但一方面比例较少,另一方面,据笔者了解,由于受应试教育和基层学校师资条件的制约,教育质量也还存在不少的问题。很多理科教师在大学仅学过数理统计课程,对抽样和描述统计的内容较生疏,因而感觉新教材内容体系较乱,内容不如老教材讲起来“顺溜”。于是知识可以传授给学生,也可以指导学生完成很多的练习题,但蕴涵在知识背后的统计思想能否也讲出来可能就要打很大的折扣了。

另外,国民的统计意识还不强,对统计学的认识也还不够,据笔者了解,一谈到统计,很多人就联想到统计局,联想到大量的统计数据和统计报表等。这些都说明,统计学的普及教育还任重道远。

大规模普及统计教育是一项浩大的系统工程,需要以强大的人力、物力、财力资源为基础。以人力资源为例,尽管我国有一支素质较高的统计学专家队伍,但由于他们承担着国家政府部门或科学研究机构的重要工作,因此显然不可能有过多的时间和精力从事大规模的普及教育工作。同样,国家目前也还不可能投入大量的物力和财力资源开展统计学的普及教育工作。那么,怎样解决人力、物力、财力的问题,开展大规模的统计学普及教育呢?

笔者认为,要进行全社会的统计学普及教育,首先应该在各类高等院校中普及统计学教育,即把高等院校作为统计学普及教育的突破口,而后推向全社会。各类高校现有专业教师可以承担统计学普及教育的教学工作,在学校教务部门的统一安排下,着力通过开设跨专业选修课的形式开展统计学普及教育。各类高等院校接受过统计学基础教育的成千上万名大学生会走向社会的众多工作岗位,他们会带着统计学的基本思想方法在各个岗位开花结果,同时也为他们进一步提高和继续进行全社会的统计学普及教育打下了基础。因此,把高等院校作为统计学普及教育的突破口是解决人力、物力、财力资源问题的最好方略和最佳途径。

当然,由中国统计教育学会、重点大学和一流专家牵头,以讲座班的形式开展对一般高等院校的师资培训工作,以研讨会的形式定期沟通和交流各高校统计学普及教育的情况和经验也是非常必要和重要的。

高等院校作为统计学普及教育的这个突破口一旦打开,全社会普及统计学教育的蓬勃局面也就很快到来了。笔者甚至认为,高等院校统计学普及教育的局面可能会很壮观,会受到学生的欢迎。

三、在高等院校进行统计学普及教育的一些思考

在各类高等院校中进行统计学普及教育实际上是相对现有教育体制来说的一项教育教学改革,是高等院校教学内容创新的一种尝试,需要领导的重视,教务部门的协调等基本条件作为保证。在这里,就有关教学指导思想和实施方法粗略地谈一下基本想法,以求抛砖引玉。

1.基本思想:将抽样技术、描述统计、概率初步、推断统计、非参数统计、Excel在统计分析中的应用结合在一起,并溶入案例教学,向学生较系统地介绍入门阶段最基本的统计思想和方法。

2.基本途径:通过在普通高等院校各专业开设《应用统计方法》选修课,解决统计意识的培养和统计方法普及教育问题,选修课一般为54~72学时为宜。

3.基本目标:各专业的学生通过《应用统计方法》的学习,初步树立统计意识,能够用基本的统计方法,借助于最普及的Excel统计分析软件解决工作中和生活中的实际问题。

4.教材选用:可以选用中国人民大学统计学院贾俊平等编著的《统计学》作为教材,也可以根据教学时间和其它具体情况,自编教材。

5.师资问题:各高等院校讲授统计学或者概率统计的教师承担统计学普及教育的教学工作,教务部门承担相关的教学管理工作都是没有太大问题的。当然教师很可能需要进行一些再学习,更新知识结构。例如,讲授概率统计的教师很可能需要学习实际的抽样技术和Excel统计分析软件的应用方法等。

6.学习评价:注重理论联系实际,将“学统计”转化为“做统计”,改革传统考试方法,通过撰写统计报告进行考核,从而使学生掌握从数据的收集、整理、分析、写出统计报告的全过程,提高教学效果。

统计学基本思想范文第5篇

关键词:统计学;教学模式;EXCEL

进入21世纪,随着我国市场化步伐的加快,社会对新知识的需求日益增加,无论是国民经济管理,还是公司企业乃至个人的经营、投资决策,都越来越依赖于数量分析,依赖于统计方法,统计方法已成为管理、经贸、金融等许多学科领域科学研究的重要方法。教育部也将《统计学》课程列为财经类专业本、专科专业的核心必修课程之一。力图通过《统计学》的学习,使学生掌握探索各学科内在的数量规律性,并用这种规律性的解释来研究各学科内在的规律。同时,由于统计学所倡导的尊重客观实事,通过调查研究用实事说话,这也有利于培养学生的实事求是的学习、工作和科学研究精神。

一、《统计学》课程教学面临的挑战

1、内容日益丰富。长期以来,在我国存在两门相互独立的统计学——数理统计学和社会经济统计学,分别隶属于数学学科和经济学学科。20世纪80年代以来,建立包括数理统计学和社会经济统计学在内的大统计学,逐步成为我国统计学界的共识。1992年11月,国家技术监督局正式批准统计学上升为一级学科。国家颁布的学科分类标准已将统计学单列为一级学科。随着大统计学思想的建立和统计学在实质学科中的应用的需要,大多数学校和老师在财经类专业的本、专科专业《统计学》教学过程中,除了保留社会经济统计学原理中仍有现实意义的内容,如统计学的研究对象方法、统计的基本概念、统计数据的搜集整理、平均及变异指标、总量指标、相对指标、抽样调查、时间序列、统计指数等;同时也系统的充实了统计推断的内容,如:统计数据的分布特征、假设检验、方差分析、相关与回归分析、统计决策等。这一变化使得《统计学》的内容更适合相关实质学科的发展需要。

2、学生的学习难度加大。首先、结合《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。对于财经类专业的本、专科专业的学生来说,本身的专业课学习负担已不轻。其次、对于财经类专业的本、专科专业的学生来说,由于其本专业的课程体系要求,使得学生的数学或者数理统计的基础不是特别好,对于专科学生来说更不用说,推断统计将是他们学习的困难。再说,《统计学》作为专业基础课,一般安排在一年级或二年级第一学期,在这个学习时段也是大多数专科生和本科生忙于计算机课程和英语课程的考证时段。如果以牺牲授课内容和降低要求来减轻学生的学习负担,显然有悖于《统计学》课程的教学和相关专业的发展要求。所有这一切对于学生学好这一课程面临的困难可想而知。

3、教师的教学难度加大。授课内容越来越丰富;课程难度太大可能导致学生兴趣下降;在倡导学生自主性学习的背景下,授课时数大为减少(一般安排一个学期共17~19教学周,每周2~3课时);高等教育扩招后,由于师资力量一时没有跟上,大多数学校,授课班级学生人数越来越多,一个教师跨越不同专业授课不再新鲜。这要求授课教师必须深刻领会授课内容的核心和相互关系,学会控制和驾驭课堂教学,学会激发学生的兴趣,注重统计学在不同专业领域的具体应用等等。作为这门学科的授课教师特别需要认真考虑该怎么办?

二、《统计学》教学的发展趋势分析

1、统计学从数学技巧转向数据分析的训练。在计算机及计算机网络非常普及的今天,统计计算技术不再是统计学教学的重点了。统计思想、统计应用才应该是重点。现代统计方法的实际应用离不开现代信息处理技术。统计软件的使用,不仅使统计数据的计算和显示变得简单、准确,而且使统计教学由繁琐抽象变得简单轻松、由枯燥乏味变得趣味盎然。所以,在统计教学过程中,大量的内容只需要给学生讲清楚统计基本思想、计算的原理和正确应用的条件、正确解读计算的结果,而对大量复杂具体的计算可以交给计算机去完成。

比如方差分析,手工计算量非常大,没有计算机软件的支撑,是很难教学实际问题分析的。现在我们只要讲清楚方差分析要做什么,为什么方差分析要解决的中心问题是判断有无条件误差,而原假设又是K种不同水平下总体的理论均值是否相等,检验结果表示什么等就可以了,大计算量的工作让计算机去完成。

2、通过统计实践学习统计。也就是以学生为中心,通过课堂现场教学、引导学生先读后写再议、模拟实验、利用课余时间完成项目、利用假期时间,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,如社会调查、专题研究、提供咨询、参与企业管理等方法。全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。

比如依同学们在设计调查问卷和调查方案的基础上,让他们组成若干调查小组(如以寝室为单位),在校园内真正进行一次统计调查活动,从具体调查对象和单位的确定,样本的抽取(不一定要很大),问卷的发放、回收与审核,数据输入与资料整理,估计与分析,一直到调查报告的编写,调查总结或体会的形成,全部由同学自己来完成。这样,同学们就亲身参与了统计调查、统计整理和统计分析(含统计推断)的整个过程,效果很好。

三、基于EXCEL的《统计学》教学设想

如何从烦琐的数理统计技巧转向数据处理的训练,同时还要使学生容易掌握并有机会辅之于实践。教师的导向是第一位的,要求必须选择容易获得而且普及性比较强的统计分析软件,并在课堂教学和引导学生实践中广泛采用。

(一)微软公司开发的EXCEL软件无疑是我们最好的选择

专业的统计分析软件SPSS、SAS、BMDP、SYSTAT其功能固然强大,统计分析的专业性、权威性不可否认,但是对于没有开设统计学专业的院校这些软件并不常用,如果学生要进行自主性学习也比较难以找到相应的工具,此外专业统计分析软件的英文操作界面,也让中国人用起来不是很顺手。微软公司开发的EXCEL软件作为一款优秀的表格软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握。在Windows操作系统极为流行的今天,EXCEL也是随处可见。对于《统计学》这门课程而言,利用EXCEL提供的统计函数和分析工具,结合电子表格技术,已能满足统计方面的要求。

(二)基于EXCEL的《统计学》教学设想

1、在教学内容上,依据EXCEL的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,整合教学内容。比如传统的统计学原理教学过程中,对统计数据的搜集主要强调统计报表制度,在EXCEL环境应该更注重抽样推断,EXCEL提供的随机抽样工具使得抽样调查不再是十分复杂的技术,统计图也可以被广泛运用于对数据的描述;再比如现有统计学教材很多都讲根据整理的数据计算平均数时,都用加权平均的方法,当用组距式变量数列计算平均数时,用组中值作为各组的代表值进行计算。我们知道,组中值作为各组的代表值是假定各组变量值在组内是均匀分布的,如果实际数据与这一假定相吻合,计算结果比较准确,否则误差比较大。事实上实际数据往往就不是均匀分布的,因此用组中值计算的平均数都是近似的,而且相同资料编制的不同变量数列计算的平均数还不相等。其实为了编制变量数列,我们必须输入原始数据,EXCEL的有关程序可以得到准确平均数,哪里还有必要按加权算术平均的方法计算近似的平均数呢?那么有没有必要编制变量数列、特别是组距式变量数列呢?有没有必要按加权的方法计算平均数呢?我们认为有必要,但是组距式变量数列的主要功能不再是提供计算资料了,而是用于表现资料的分布状况和进行分析用;加权平均方法主要是介绍和要求学生掌握加权平均的思想,用于综合评价分析中。

2、案例教学成为《统计学》课程的重要内容。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。结合学生所学专业精选案例教学,比如对于金融专业的学生可以设计用几何平均数计算投资的平均收益率、运用标志变异指标考察投资组合的风险大小等。对于经管专业的学生,精选抽样推断、假设检验、方差分析对于控制产品质量,经营决策等方面的案例,深入浅出地介绍这些方法的基本思想、并用EXCEL进行分析。既激发了学生的兴趣、扩大了学生的视野,也使统计学的课堂不再是教师一块黑板、一支粉笔、一本教材、一张嘴巴就能将一门专业课程从头讲到尾。

3、改革考试方式和内容,合理评定学生成绩。考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育,特别是应有利于学生的创造能力的培养之目的相差较远。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习《统计学》课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养新世纪高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不具一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。

参考文献:

[1]谢安邦.高等教育学[M].北京:高等教育出版社,1999.

[2]贾俊平.统计学[M].北京:中国人民大学出版社,2000.