首页 > 文章中心 > 欧姆定律的决定式

欧姆定律的决定式

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇欧姆定律的决定式范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

欧姆定律的决定式

欧姆定律的决定式范文第1篇

一、运用逆向思维分析机械能守恒定律表达式的推论式

高中物理中机械能守恒定律的使用条件是“只有重力或弹簧弹力做功”.运用逆向思维辨析研究可知,“只有重力或弹簧弹力做功”仅是一种特例,如果除重力和弹簧弹力对物体系统做功之外,还有其他力对物体系统做功(用W它表示),则机械能必然发生增加或减少的相应变化(用ΔE表示),并且其它力对系统做了多少功,物体系统的机械能就会变化多少.由此得机械能守恒定律的推理式W它=ΔE.

例1具有一定初速度的物块沿倾角为30°的粗糙斜面向上运动过程中,还受到一个沿斜面向上的恒定拉力F的作用,此时物块的加速度大小为4 m/s2,方向沿斜面向下.则在物块向上的运动过程中,正确的叙述是

A.物块的机械能一定增加

B.物块的机械能一定减小

C.物块的机械能可能不变

D.物块的机械能可能增加也可能减小

分析由题意知,除重力做功外还有拉力F和摩擦力f做功,则物块机械能的变化决定于拉力F和摩擦力f做功的大小关系.

由牛顿第二定律得

mgsinα+f―F=ma,

所以F―f=mgsinα―ma

=5m―4 m>0,

拉力F做的功WF大于摩擦力f做的功Wf,即WF―Wf>0.

由推论式W它=ΔE知,ΔE>0.

故物块的机械能增大,选A.

可见,机械能守恒定律固然重要,其推论式W它=ΔE的应用更为便捷.

二、运用整体思维分析物理概念中比值形式的定义式

高中物理概念有很多运用比值关系定义,并以比值形式表示其定义式(称为比值定义式).如:速度定义式v=ΔxDΔt、加速度定义式a=ΔvDΔt、牛顿第二定律公式F=ΔpDΔt(Δp为物体的动量变化量)、功率定义式P=ΔWDΔt;电流强度定义式I=ΔqDΔt、感应电动势定义式E=ΔφDΔt等,均以物理量的变化量与时间的比值形式(即物理量的时间变化率)出现.

此外,高中物理中还有用几个物理量的比值作为另一个新物理概念的定义式,并用这个比值形式的表达式作为新物理概念的定义式.如:电场强度定义式E=FDq、电势定义φ=EpDq、电容定义式C=QDU、磁感应强度定义式B=FDIL等.

不难看出,这些比值形式的公式体现的全是高中物理中的重要概念和主干知识.无论是“a=ΔvDΔt”类的变化率形式、还是“E=FDq”类的比值形式,其物理意义均由此“比值”整体体现.因而,教学中必须运用整体思维全面辨析、系统对待这种比值定义式的“整体”形式所包含的物理意义,切勿因定义形式而简单的视作“分子”与“分母”的组合.

三、运用求异思维分析物理概念定义式的变形式

高中物理中很多物理量的计算公式是依据相关物理概念的定义式,通过增加内涵、扩展外延、更新物理模型,运用求异思维加以辨析、推导、证明而成的变形式.如:带电粒子在电场中所受电场力的计算公式F=Eq,是由

电场强度定义式E=FDq推证而得到的变形式;带电粒子在电场中所具有的电势能的计算公式Ep=qφ,是由电势定义式φ=EpDq推证而得到的变形式;长直通电导体在均强磁场中所受安培力的计算公式F=BIL,是由磁感应强度定义式B=FDIL推证而得到的变形式等.

下表列出的是电场强度定义式E=FDq与形式F=Eq的对比内容.物理量D定义式E=FDqD变形式F=Eq电量qD①指放入电场中的检验电荷,必须是点电荷;

②带电量应足够小;

③电性可为正也可为负(一般为正电荷).D①指处在电场中的带电绝缘小物体(液滴、小球、微粒等);

②带电量可大些也可小些;

③电性可为正也可为负,视为点电荷.电场强度ED①指电场(可以是均强电场也可以是非均强电场)中某一点的电场强度;

②是矢量,与放在该点的带正电的检验电荷所受电场力的方向相同;

③表征该点的电场力的性质,与F的大小和方向无关,与q的有无、大小和正负无关,仅由电场自身决定D①在高中物理中指均强电场强度;

②是矢量,其方向由电场自身决定;

③电场强度与带电绝缘小物体的是否放入无关.电场力FD①检验电荷在电场中某点受到的电场力;

②不是E∝F,而是FDq为定值.D①带电绝缘小物体在电场中受到的电场力;

②存在F∝E、F∝q的关系对于定义式B=FDIL、φ=EpDq与变形式F=BIL、Ep=qφ亦有类似的内容对比.

四、运用形象思维分析物理量的定义式和决定式

在高中物理中,物理量的定义式和决定式是所有物理公式的先决和前提,故而在教学过程中应着力引导学生运用形象思维细加甄别、辨析和类比.

所谓物理量的定义式,指能够表征和量度物理量的本质属性、物理状态与物理过程的关系式,有比值定义式和乘积定义式两种数学形式.

所谓物理量的决定式,指能通过研究对象的物理属性和几何特征而直接、形象的表达物理量的大小、方向(对矢量)正负(对标量)的计算公式.

高中物理中,凡是乘积定义式一定是该物理量的决定式.如:功的公式W=Fs、动能公式Ek=1D2mv2、重力势能公式Ep=mgh、冲量公式I=Ft、动量公式P=mv、磁通量公式F=BS等,既是对应物理量的定义式,同时也是对应物理量的决定式.

比值定义式一般不是物理量的决定式.如v=ΔxDΔt、a=ΔvDΔt、F=ΔPDΔt、P=ΔWDΔt、I=ΔqDΔt、E=ΔφDΔt、E=FDq、φ=EpDq、C=QDU、B=FDIL等,只能是对应物理量的定义式而不会是对应物理量的决定式,这些物理量对应的决定式另有其表达形式.

高中物理中常见物理量的定义式与决定式对比如下表.

物理量D定义式D决定式加速度Da=ΔvDΔtDa=FDm(牛顿第二定律)电场强度DE=FDqDE=KQDr2(点电荷的场强公式)电容DC=QDUDC=εSD4Kπd(平行板容器公式)电阻DR=UDIDR=ρLDS电阻(电阻定律公式)电流强度DI=ΔqDΔtDI=UDR(欧姆定律公式)

I=EDR+r

欧姆定律的决定式范文第2篇

关键词:公式;电学;串联电路;并联电路

中图分类号:G632.41 文献标志码:A ?摇文章编号:1674-9324(2014)04-0115-02

在初中阶段,电学是中考中的重点,占有重要地位。由于这部分内容的容量大、概念多,学生容易混淆,因此电学的复习对于学生有一定的难度。我认为,复习好电学应从以下三个方面入手。

一、在学生头脑中建立起明确的知识体系

在复习中,首先让学生知道电学有什么仪器、公式、物理量、定律,对电学内容有一个整体的认识。电学主要有三个基本电学实验仪器——电流表、电压表、滑动变阻器;七个电学物理量——电量、电流、电压、电阻、电功、电功率、电热;两个基本电路连接方式——串联电路、并联电路;一种典型的电学实验方法——伏安法;两个规律——欧姆定律、焦耳定律;三种电路状态——通路、开路、短路。这些基础知识让学生熟练地背下来,是复习好电学的前提,也为解决电路分析题做好准备。

二、教给学生判断电路的连接、状态的正确方法

电路的连接方式主要是串联和并联,让学生快速掌握,可以从以下几个方面入手:通过定义判断;根据循流法,让电流从正极出发经过用电器回到电源负极,途中电流只有一条路径的,连接方式为串联;若电流在某处分流,出现支路,连接方式为并联;有的时候还必须用拆除法,拆除其中的一个用电器,如果其余用电器都不工作,则用电器为串联连接,如果其余用电器照样工作,则用电器为并联连接。我找一些典型的电路图,画在黑板上,让学生识别,然后说明识别的依据,再适当布置相应的作业,巩固练习。我还用生活中的常见现象说明串联和并联:节假日,很多小彩灯为什么有一个坏了,其余都不发光?它们是什么连接方式?我用这些现象去激发学生的求知欲,经过很短的时间,学生就能准确判断串联和并联了。电路有三种状态——通路、开路、短路,通路和开路学生容易理解,但对于短路的分辨显得力不从心,总犯糊涂。我先给学生做了这样一个实验,用导线给两节干电池短路,结果只需要很短的时间,我让学生摸摸导线,学生发现导线已经热了。告诉学生,电源短路是很危险的,容易发生电路起火,生活中应避免电源短路,让学生在心中对短路有较深刻的认识。给学生指出电流具有走捷径的特点,捷径是指这条路径中电阻很小,小到可以忽略不计,当一根空导线,或开关、或电流表与某个用电器并联时,电流只走空导线、开关或电流表而不走用电器,使该用电器被短路,从而不能工作。再找适当的典型电路题给学生讲解,练习,一定能收到很好的效果。

三、讲清七个重要的物理量

电学部分有七个重要的物理量——电量、电流、电压、电阻、电功、电功率、电热。学生对这七个物理量中涉及到的概念、单位、公式、计算,特别吃力,而且经常混淆。能否学好这七个物理量,是学好电学的关键,我用最长的时间给学生复习这部分知识。

1.讲清七个物理量的定义、特点。电荷的定向移动形成电流,这是电流的形成定义,简单便于理解;电压是形成电流的原因,没有电压就没有电流;电阻是指导体对电流的阻碍作用,即阻碍作用越大,电流越小。物理学中电功没有确切的定义,当电能转为其他形式能时,就说做了电功。即电功就表示有多少电能转化为其他形式的能,如果知道了电功的多少,就知道了消耗多少电能。而用电器单位时间内消耗的电能叫做电功率。电功率的大小不仅取决于消耗电能的多少,也取决于所用的时间的长短。电流通过导体时所产生的热量叫电热,即电流的热效应。我对学生的要求就是能清楚这些物理量的定义,知道它们的表示符号、单位,不用死记硬背。

2.讲清七个物理量的公式。有些公式,学生不知道什么时候该用哪个,比如公式:I=Q/t和欧姆定律的表达式I=U/R。给学生指出,公式:I=Q/t是电流的定义式,I=U/R是电流、电压、电阻的定量关系式,只适用于电能转化成内能的纯电阻电路,这样学生就知道这两个公式的区别和用法了。电功定义式——W=UIt=Pt、导出式——W=I2RtW=(U2/R)t、电功率定义式——P=W/t、决定式—P=UI(因为W=UIt=Pt)、导出式——P=U2/R=I2R、电热定义式——Q=I2Rt(焦耳定律)、导出式——Q=W=UIt、Q=(U2/R)t。学生会问:这么多公式,怎么用呀?遇到具体问题有些慌。有一道2010年中考电学题:某校师生自制了一台电烘箱,电烘箱的电阻丝通过5A的电流时,每分钟可产生6.6×104J的热量,求①此时电阻丝的电功率。②此时电阻丝的电阻。③此时电阻丝的工作电压。告诉学生首先明确已知物理量,然后想用学过的哪个公式去解题,挑选好公式后,这个题就容易解决了。还要强调,公式的运用必须注意适用范围,可以给学生多出一些关于电动车、洗衣机等电动机的计算题,练练定义式和导出式的区别。

3.讲清七个物理量在串、并联电路中的特点。做电路综合题时,除了能准确识别电路,正确运用公式外,还必须明白上述七个物理量在串、并联电路中的特点,就像我们开门的钥匙一样重要。在串联电路中:电流处处相等;电路两端的总电压等于部分电路两端电压之和;总电阻等于各导体的电阻之和;电压、电功、电功率、电热,和电阻成正比。在并联电路中:干路中电流等于各支路电流之和;各支路两端的电压相等;并联电路总电阻的倒数等于各并联导体的电阻倒数之和;电流、电功、电功率、电热,和电阻成反比。熟记这些规律,我们做题的时候又快又准,只要我们知道了两个或几个定值电阻的阻值比,就很容易知道在串、并联电路中的电压、电流、电功率的比了,基本上口算都不会出错,学生做起类似的题来就很轻松,感觉电学的计算也不是那么难了。

欧姆定律的决定式范文第3篇

[关键词]探究性实验方法 素质教育 物理教学

在新课程改革下,提倡“以学生为主体”的教学理念,而物理学科就是为解决“是什么,为什么,怎么做”。过去我们一直强调“就是这样的”,而物理学的发展过程,就是人类用已知世界不断探究未知世界一部历史。它包含了人类探究未知世界、认识世界的基本方法。构建物理学理论基石的两大基本方法:一种是理论推导加验证性实验;一种是探究性实验。实验是推动物理学发展的一大法宝。

提高学生成绩的关键是要转变学生观念:从“要我学”,转变到“我要学”。然而激发学生学习的兴趣,是转变学生这一观念的前提。这是在新课改背景下,最常说的话。选学物理的大多数学生认为物理难学,到底物理难学在哪里?多数学生认为:物理概念不能理解,物理公式记不住,更不知道如何应用,不会构建物理模型等等。总之一个字“难”。如何让物理知识与学生的生活相结合,降低学生学习物理思维认知的难度,才是调动学生学习物理积极性的突破口。

根据人类认识事物,解决问题的一般思路,应该使用已有知识能动的解决未知事件的方法一在物理中就是探究性实验法。也是科学家探究未知领域的基本方法,它符合人类探索认识未知世界的一般规律。因此如果把它应用在教学当中,能让学生在思维认知方面更容易接受,更符合人类发展的一般规律,进一步说,学生掌握这种方法对自己的生活和生产更有指导性和能动性。

探究性实验法一般有五个大的环节:猜想与假设、设计并进行实验、分析讨论、得出结论和交流合作。在中专物理教学中可以根据不同的知识和需要分别侧重于不同的环节。

关于物理概念利用探究实验法讲授时,需要教师首先通过搭建知识台阶作为铺垫,在此基础上让学生自主猜想和假设。关于老师的知识铺垫工作有几种常见的方式:一是生活常识再现;既有构建知识平台作用,还可以借此培养学生仔细观察,善于思考的习惯。二是演示实验再现;既有有构建知识平台作用,还可以培养学生多角度观察分析的习惯。三是以前学习过的知识再现;既有搭建知识平台的作用,还能复习知识,继续知识的再运用。四是当时的历史背景再现;既有搭建知识平台的作用,也可以经历科学家探究物理规律的过程,感知历史等等。

例如,在讲授平行板电容器的电容的决定式时,也可以让学生猜想与假设:影响平行板电容其电容的因素,教师可以启发学生类比与杯子盛水,杯子能容纳多少水与杯子的自身容积有关。与你倒水多少无关,即电容器的电容也与两端电压无关,所以C=Q/U只是它的定义式,但是从公式上看u一定的时候只要不同的电容器的极板上电荷量Q越大,电容器的电容就越大。这也能说明电容是用来描述电容器容纳电荷本领的物理量。学生可以想到当两个极板越大时,分布的电荷会更多,即平行板电容器的电容应该与极板正对面积有关;当两个极板靠的越近时,正负电荷吸引更大,电荷也会增多,即平行板电容器的电容也应该和两极板间的距离有关。至于电介质学生不能猜想出来。教师可以引导学生从电容器的结构上去分析。让学生理解猜想也应该与电介质的性质有关。

第二个环节是设计并进行实验。该环节大体可分四个步骤:一是设计实验原理;二是根据实验原理选取实验器材;三是根据实验原理和选取仪器组装;四是进行实验。该环节主要是应用在实验当中。

在演示实验中教师也可以利用此方法启发学生思考,更重要的是该环节可以更好的发挥学生在中专物理实验中主体作用。

比如:在《实验:测定电池的电动势和内阻》中,学生很快想到闭合电路的欧姆定律:I=E/R+r,根据其变形得到E=IR+Ir,在公式中有两个物理量R和I,只要有两组对应值,就能联立方程求出E和r来,而对应的R可以用可读的电阻箱,而I可以用电流表。所以这个实验学生可以自己设计出实验电路如图中间的电路图。同样的方法学生也可以根据E=U+Ir,选择仪器:电流表、电压表,设计出如图左一电路图进行实验;根据E=u+(U/R)r,选择仪器:电阻箱、电压表,设计出如:图4。

第三个环节是得出结论。它包括两大步骤,一是实验数据处理,其中包括一般两种方法:①图表法;②公式法。二是结论,如果是验证性实验,就看是否能验证。如果是探究性实验,就看结论和假设一致,如果不一致,继续以上步骤。

第四个环节是分析论证。目的在于找出实验的误差来源。实验的误差主要有两大类,一是系统误差,是由实验原理,或者是仪器自身的精确度造成。它总是使测量值偏向一端。二是偶然误差,是测量读数造成的,可以通过多次测量求平均值法消除。通过这个环节培养学生的严谨的科学态度和创新意识。

欧姆定律的决定式范文第4篇

3、电路简化原则和方法 ①原则:a、无电流的支路除去;b、电势相等的各点合并;c、理想导线可任意长短;d、 理想电流表电阻为零,理想电压表电阻为无穷大;e、电压稳定时电容器可认为断路 ②方法:a、电流分支法 电流分支法:先将各节点用字母标上,判定各支路元件的电流方向(若无 电流分支法 电流可假设在总电路两端加上电压后判定) ,按电流流向,自左向右将各元件,结点,分支 逐一画出,加工整理即可;b、等势点排列法 等势点排列法:标出节点字母,判断出各结点电势的高低(电 等势点排列法 路无电压时可先假设在总电路两端加上电压) ,将各节点按电势高低自左向右排列,再将各 节点间的支路画出,然后加工整理即可。注意以上两种方法应结合使用。

4、滑动变阻器的几种连接方式 a、限流连接:如图,变阻器与负载元件串联,电路中总电压为 U,此时负载 Rx 的电压调节范围红为UR x ~ U ,其中 Rp 起分压作用,一般称为限流电阻,滑线变阻器的连 Rx + R p接称为限流连接。

b 、分压连接:如图,变阻器一部分与负载并联,当滑片滑动时,两部分电阻丝的长度发生变化,对应电阻也发生变化,根据串联电阻的分压原理,其中 UAP=R AP U ,当 R AP + RPB滑片 P 自 A 端向 B 端滑动时,负载上的电压范围为 0~U,显然比限流时调节范围大,R 起分 压作用,滑动变阻器称为分压器,此连接方式为分压连接。

一般说来,当滑动变阻器的阻值范围比用电器的电阻小得多时,做分压器使用好;反之 做限流器使用好。

5、含电容器的电路:分析此问题的关键是找出稳定后,电容器两端的电压。

6、电路故障分析:电路不能正常工作,就是发生了故障,要求掌握断路、短路造成的 故障分析。路端电压随电流的变化图线中注意坐标原点是否都从零开始 电路动态变化分析(高考的热点)各灯、表的变化情况 1 程序法:局部变化 ? R 总 ? I 总 ? 先讨论电路中不变部分(如:r) ? 最后讨论变化部分 局部变化 R i ? R 总 ? I 总 ? U内 ? U 露 ? 再讨论其它 2 直观法:3 ①任一个 R 增必引起通过该电阻的电流减小,其两端电压 UR 增加.(本身电流、电压) (称串反并同 ②任一个 R 增必引起与之并联支路电流 I 并增加; 与之串联支路电压 U 串减小 法)?I ?I 局部 R i ? ? i ? 与之串 、 并联的电阻 ? 并 ?u i ?U 串 当 R=r 时,电源输出功率最大为 Pmax=E2/4r 而效率只有 50%, 路端电压跟负载的关系 (1)路端电压:外电路的电势降落,也就是外电路两端的电压,通常叫做路端电压。

(2)路端电压跟负载的关系 当外电阻增大时,电流减小,路端电压增大;当外电阻减小时,电流增大,路端电压减 小。

E 定性分析:RI(= )IrU(=E-Ir) R+r E RI(= )IrU(=E-Ir) R+r 特例: ∞ 外电路断路:RIIrU=E。

E 外电路短路:RI(= r )Ir(=E)U=0。

00 0U E UU=I1Rr=0U 内=I1rOI图象描述: 路端电压 U 与电流 I 的关系图象是一条向下倾斜的直线。

U—I 图象如图所示。

直线与纵轴的交点表示电源的电动势 E, 直线的斜率的绝对值表示电源的 内阻。

闭合电路中的功率 (1)闭合电路中的能量转化 qE=qU 外+qU 内 在某段时间内,电能提供的电能等于内、外电路消耗的电能的总和。

电源的电动势又可理解为在电源内部移送 1C 电量时,电源提供的电能。

(2)闭合电路中的功率:EI=U 外 I+U 内 I ? EI=I2R+I2r 说明电源提供的电能只有一部分消耗在外电路上,转化为其他形式的能,另一部分消耗 在内阻上,转化为内能。

E2 (3)电源提供的电功率:又称之为电源的总功率。P=EI= R+r RP,R∞时,P=0。

E2 RP,R0 时,Pm= r 。

RE U 外=E-Ir= R+r(4)外电路消耗的电功率:又称之为电源的输出功率。P=U 外 I E 定性分析:I= R+r从这两个式子可知,R 很大或 R 很小时,电源的输出功率均不是最大。RE2 E2 定量分析:P 外=U 外 I= = (当 R=r 时,电源的输出功率为最大,P 外 max (R+r)2 (R-r)2 +4r R U P 2 R=r E E4rE/24O R rR 1 2ROI E/2r E/r E2 =4r) 图象表述: 从 P-R 图象中可知,当电源的输出功率小于最大输出功率时,对应有两个外电阻 R1、 R2 时电源的输出功率相等。可以证明,R1、R2 和 r 必须满足:r= R1R2。

(5)内电路消耗的电功率:是指电源内电阻发热的功率。

rE2 P 内=U 内 I= (R+r)2 RP 内,RP 内。P外 R (6)电源的效率:电源的输出功率与总功率的比值。η= P = R+r 当外电阻 R 越大时,电源的效率越高。当电源的输出功率最大时,η=50%。电学实验 ---测电动势和内阻 ---测电动势和内阻 (1)直接法:外电路断开时,用电压表测得的电压 U 为电动势 E ;U=E (2)通用方法:AV 法测要考虑表本身的电阻,有内外接法;①单一组数据计算,误差较大 ②应该测出多组(u,I)值,最后算出平均值 ③作图法处理数据,(u,I)值列表,在 u--I 图中描点,最后由 u--I 图线求出较精确的 E 和 r。

(3)特殊方法 (一)即计算法:画出各种电路图 E = I1 (R 1 + r) I R -I R I I (R - R ) r = 1 1 2 2 (一个电流表和两个定值电阻) E= 12 1 2 E = I 2 (R 2 + r) I 2 - I1 I 2 - I1E = u 1 + I1r E = u 2 + I2r变阻器)u1 r R1 u E = u2 + 2 r R2 E = u1 +E=I1u 2 - I2 u1 I1 - I 2r=u 2 - u1 I1 - I 2(一个电流表及一个电压表和一个滑动E=u 1u 2 (R 1 - R 2 ) u 2 R 1 - u1R 2r=(u 1 - u 2 )R 1R 2 (一个电压表和两个定值电阻) u 2 R 1 - u1R 2(二)测电源电动势ε和内阻 r 有甲、乙两种接法,如图 甲法中所测得ε和 r 都比真实值小,ε/r 测=ε测/r 真; 乙法中,ε测=ε真,且 r 测= r+rA。

(三)电源电动势ε也可用两阻值不同的电压表 A、B 测定,单独使用 A 表时,读数是 UA, 单独使用 B 表时,读数是 UB,用 A、B 两表测量时,读数是 U,则ε=UAUB/(UA-U) 。

电阻的测量法测:要考虑表本身的电阻,有内外接法;多组(u,I)值,列表由 u--I 图线求。怎样用 作图法处理数据 欧姆表测:测量原理两表笔短接后,调节 Ro 使电表指针满偏,得 接入被测电阻 Rx 后通过电表的电流为 Ig=E/(r+Rg+Ro) Ix=E/(r+Rg+Ro+Rx)=E/(R 中+Rx)由于 Ix 与 Rx 对应,因此可指示被测电阻大小 使用方法:机械调零、选择量程(大到小)、欧姆调零、测量读数时注意挡位5 G R1 R2 S2VR2 R1 S (即倍率)、拨 off 挡。

注意:测量电阻时, 要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。电桥法测:R R R R1 = 3 ?R= 2 3 R2 R X R1半偏法测表电阻: 断 s2,调 R1 使表满偏; 闭 s2,调 R2 使表半偏.则 R 表=R2;一、测量电路( 内、外接法 ) 记忆决调 “内”字里面有一个“大”字 测量电路( 计算比较法 己知 Rv、RA 及 Rx 大致值时类型电路图V AR 测与 R 真比较条件R R 测=UR + UA =RX+RA > RX IR x ≈ R v ?R A适于测大电 阻 Rx > R A R v内V AR x ≈ R A ?R vR 测=RR xR v U = <Rx Iv + IR R x + R v阻适于测小电RX < R A R v外 当 Rv、RA 及 Rx 末知时,采用实验判断法:动端与 a 接时(I1;u1) ,I 有较大变化(即 u1 - u 2 < I1 - I 2 )说明 v 有较大电流通过,采用u1 I1内接法 动端与 c 接时(I2;u2) ,u 有较大变化(即 u1 - u 2 > I1 - I 2 )说明 A 有较强的分压作用,采u1 I1用内接法 测量电路( 内、外接法 )选择方法有(三) ①Rx 与 Rv、RA 粗略比较 ② 计算比较法 Rx 与 R A R v 比较③当 Rv、RA 及 Rx 末知时,采用实验判断法: 供电电路( 限流式、 二、供电电路( 限流式、调压式 ) 电路图 电压变化范围 电流变化范围 优势 选择方法R E E E ~E ~ Rx + R滑 Rx + R滑 Rx限流电路简单 附加功耗小Rx 比较小、R 滑 比较大, R 滑全>n 倍的 Rx 通电前调到最大0~ 调压 0~EE Rx电压变化范围 大 Rx 比较大、R 滑 比较小 要求电压 R 滑全>Rx/2 从 0 开始变化 通电前调到最小: 以“供电电路”来控制“测量电路” 采用以小控大的原则 供电电路”来控制“测量电路” 电路由测量电路和供电电路两部分组成,其组合以减小误差,调整处理数据两方便 R 滑不唯一:实难要求 ? 确定控制电路 ? R 滑 R 滑唯一:比较 R 滑与 Rx 确定 控制电路 ? 实难要求:①负载两端电压变化范围大。

②负载两端电压要求从 0 开始变 Rx<R 滑<10 Rx ? 限流方式6 RX ? 10R 滑 ? R x ? 分压接法化。

③电表量程较小而电源电动势较R 滑≈Rx 两种均可,从节能角度选限流大。

有以上 3 种要求都采用调压供电。

无特殊要求都采用限流供电三、选实验试材(仪表)和电路, 选实验试材(仪表)和电路, 按题设实验要求组装电路,画出电路图,能把实物接成实验电路,精心按排操作步骤,过程中 需要测?物理量,结果表达式中各符号的含义. (1)选量程的原则:测 u I,指针超过 1/2, 测电阻刻度应在中心附近. (1) (2)方法: 先画电路图,各元件的连接方式(先串再并的连线顺序) (2) 明确表的量程,画线连接各元件,铅笔先画,查实无误后,用钢笔填, 先画主电路,正极开始按顺序以单线连接方式将主电路元件依次串联,后把并联无 件并上. (3)注意事项:表的量程选对,正负极不能接错;导线应接在接线柱上,且不能分叉;不能用 (3) 铅笔画 用伏安法测小电珠的伏安特性曲线:测量电路用外接法,供电电路用调压供电。

(4)实物图连线技术 (4) 无论是分压接法还是限流接法都应该先把伏安法部分接好;即:先接好主电路(供电电路). 对限流电路,只需用笔画线当作导线,从电源正极开始,把电源、电键、滑动变阻器、伏安 法四部分依次串联起来即可(注意电表的正负接线柱和量程,滑动变阻器应调到阻值最大 处)。

对分压电路,应该先把电源、电键和滑动变阻器的全部电阻丝三部分用导线连接起来,然后 在滑动变阻器电阻丝两端之中任选一个接头, 比较该接头和滑动触头两点的电势高低, 根据 伏安法部分电表正负接线柱的情况,将伏安法部分接入该两点间。分压(滑动变阻器的下两个接线柱一定连在电源和电键的两 实物连线的总思路 端) 画出电路图连滑动变阻器 限流(一般连上一接线柱和下一接线柱) (两种情况合上电键前都要注意滑片的正确位 电表的正负接线柱 连接总回路: 总开关一定接在干路中 导线不能交叉微安表改装成各种表: 微安表改装成各种表:关健在于原理 首先要知:微安表的内阻、满偏电流、满偏电压。

采用半偏法先测出表的内阻;最后要对改装表进行较对。

(1)改为 V 表:串联电阻分压原理7 ug Rg=u - ug R?R=(u - ug ug) R = (n - 1)R g(n 为量程的扩大倍数)(2)改为 A 表:串联电阻分流原理Ig R g = (I - Ig )R ? R =(3)改为欧姆表的原理Ig I - IgRg =1 Rg n -1(n 为量程的扩大倍数)两表笔短接后,调节 Ro 使电表指针满偏,得 接入被测电阻 Rx 后通过电表的电流为Ig=E/(r+Rg+Ro) Ix=E/(r+Rg+Ro+Rx)=E/(R 中+Rx)由于 Ix 与 Rx 对应,因此可指示被测电阻大小四、磁场基本特性,来源, 方向(小磁针静止时极的指向,磁感线的切线方向,外部(N S)内部 (S N)组成闭合曲线 要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关 健) 脑中要有各种磁源产生的磁感线的立体空间分布观念;会从不同的角度看、画、识 各种磁 感线分布图 能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图) 安培右手定则:电产生磁 安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰 实验 安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向 标量 F 安=B I L 推导 f 洛=q B v 建立电流的微观图景(物理模型)?从安培力 F=ILBsinθ和 I=neSv 推出 f=qvBsinθ。典型的比值定义 (E=w a b W F Q F I ? A = A 0 ) ( R= u R= ρ L ) (C= Q E=k 2 ) (B= B=k 2 ) (u= q q q IL I S u r rC=磁感强度 B:由这些公式写出 B 单位,单位 ? 公式 单位, : B=εs ) 4π k dF φ ; B= IL S;E=BLv ? B=E I ; B=k 2 (直导体) ;B= ? NI(螺线管) Lv rv2 mv mv ? R= ? B= qBv = m R qB qR电学中的三个力: 电学中的三个力:F 电=q E =q 中的三个力E d u = = ; qBv = qE ? B = v v dvf 洛= q B vuu dF 安=B I L注意:①、BL 时,f 洛最大,f 洛= q B v (f 、 、 三者方向两两垂直且力 f 方向时刻与速度 v 垂直)? 导致粒子做匀速圆周运动。

B v ②、B || v 时,f 洛=0 ? 做匀速直线运动。8 ③、B 与 v 成夹角时, (带电粒子沿一般方向射入磁场) , 可把 v 分解为(垂直 B 分量 v,此方向匀速圆周运动;平行 B 分量 v|| ,此方向匀速直线运 动。

) ? 合运动为等距螺旋线运动。

带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范 。

画图应规范) 带电粒子在磁场中圆周运动(关健是画出运动轨迹图 画图应规范)2 规律: qBv = m v ? R = mv (不能直接用) R qBT=2πR 2πm = v qB1、 找圆心: ①(圆心的确定)因 f 洛一定指向圆心, 洛v 任意两个 f 洛方向的指向交点为圆心; f ②任意一弦的中垂线一定过圆心; ③两速度方向夹角的角平分线一定过圆心。2 2、 求半径(两个方面 两个方面):①物理规律 qBv = m v ? R = mv 两个方面RqB②由轨迹图得出几何关系方程 程 )( 解题时应突出这两条方几何关系:速度的偏向角 ? =偏转圆弧所对应的圆心角(回旋角) α =2 倍的弦切角 θ 相对的弦切角相等, 相邻弦切角互补 由轨迹画及几何关系式列出: 关于半径的几何关系 式去求。

3、求粒子的运动时间:偏向角(圆心角、回旋角) α =2 倍的弦切角 θ ,即 α =2 θt=圆心角(回旋角) 2π (或 360 )0×T4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件 a、 从同一边界射入的粒子, 又从同一边界射出时, 速度与边界的夹角相等。

b、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。

注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。9

高中物理知识点总结电路_高二物理串联电路和并联电路知识点总结高二物理串联电路和并联电路知识点总结凡事预则立, 不预则废。

学习物理需要讲究方法和技巧, 更要学会对知识点进行归纳整理。下面为大家整理的高二物 理串联电路和并联电路知识点,希望对大家有所帮助!高二物理串联电路和并联电路知识点总结1.部分电路基本规律知识点总结(1)形成电流的条件:一是要有自由电荷,二是导体内部 存在电场,即导体两端存在电压。(2)电流强度:通过导体横截面的电量 q 跟通过这些电量 所用时间 t 的比值,叫电流强度。(3)电阻及电阻定律:导体的电阻反映了导体阻碍电流的 性质, 定义式;在温度不变时, 导体的电阻与其长度成正比, 与导体的长度成正比,与导体的 横截面 S 成反比,跟导体 的材料有关,即由导体本身的因素决定,决定式 ;公式中 L、 S 是导体的几何特征量,r 叫材料的电阻率,反映了材料的 导电性能。按电阻 率的大小将材料分成导体和绝缘体。对于金属导体,它们的电阻率一般都与温度有关,温度升 高对电阻率增大,导体的电阻也随之增大,电阻定律是在温 度不变的条件下总结出的物理规律,因此也只有在温度不变 的条件下才能使用。将公式错误地认为 R 与 U 成正比或 R 与 I 成反比。

对这一 错误推论,可以从两个方面来分析:第一,电阻是导体的自 身结构特性决定的,与导体两端是否 加电压,加多大的电 压, 导体中是否有电流通过, 有多大电流通过没有直接关系; 加在导体上的电压大, 通过的电流也大, 导体的温度会升高, 导体的电阻会有所变 化,但这只是间接影响,而没有直接 关系。第二,伏安法测电阻是根据电阻的定义式,用伏特表 测出电阻两端的电压,用安培表测出通过电阻的电流,从而 计算出电 阻值,这是测量电阻的一种方法。(4)欧姆定律通过导体的电流强度,跟导体两端的电压成正比,跟导体 的电阻成反比,即,要注意:a:公式中的 I、U、R 三个量必须是属于同一段电路的具 有瞬时对应关系。 b:适用范围:适用于金属导体和电解质的溶液,不适用 于气体。在电动机中,导电的物质虽然也是金属,但由于电 动机转动时产生了电磁感应现象,这时通过电动机的电流, 也不能简单地由加在电动机两端的电压和电动机电枢的电 阻来决定。(5)电功和电功率: 电流做功的实质是电场力对电荷做功, 电场力对电荷做功电荷的电势能减少,电势能转化为其他形 式的能,因此电功 W = qU = UIt,这是计算电功普遍适用的 公式。单位时间内电流做的功叫电功率,这是计算电功率普 遍适用的公式。(6)电热和焦耳定律:电流通过电阻时产生的热叫电热。Q = I2 R t 这是普遍适用的电热的计算公式。 电热和电功的区别:a:纯电阻用电器:电流通过用电器以发热为目的,例如 电炉、电熨斗、白炽灯等。b:非纯电阻用电器:电流通过用电器以转化为热能以外 的形式的能为目的,发热是不可避免的热能损失,例如电动 机、电解槽、给蓄电池充电等。在纯电阻电路中,电能全部转化为热能,电功等于电热, 即 W = UIt = I2Rt =是通用的,没有区别。同理也无区别。

在非纯电阻电路中,电路消耗的电能,即 W = UIt 分为两部 分:一大部分转化为热能以外的其他形式的能(例如电流通 过电动机,电动机转动将电能转化为机械能);另一小部分不 可避免地转化为电热 Q = I2R t。这里 W = UIt 不再等于 Q = I2Rt,而是 W &gt; Q,应该是 W = E 其他 + Q,电功只能用 W = UIt,电热只能用 Q = I2Rt 计算。2.串联电路和并联电路知识点总结(1)串联电路及分压作用a:串联电路的基本特点:电路中各处的电流都相等;电路 两端的总电压等于电路各部分电压之和。b:串联电路重要性质:总电阻等于各串联电阻之和,即 R 总 = R1 + R2 + …+ Rn;串联电路中电压与电功率的分配 规律:串联电路中各个电阻两端的电压与各个电阻消耗的电 功率跟各个电阻的阻值成正比 c:给电流表串联一个分压电阻,就可以扩大它的电压量 程,从而将电流表改装成一个伏特表。如果电流表的内阻为 Rg,允许通过的最大电流为 Ig,用这样的电流表测量的最大 电压只能是 IgRg;如果给这个电流表串联一个分压电阻,该 电阻可由或 计算,其中为电压量程扩大的倍数。(2)并联电路及分流作用a:并联电路的基本特点:各并联支路的电压相等,且等 于并联支路的总电压;并联电路的总电流等于各支路的电流 之和。b:并联电路的重要性质:并联总电阻的倒数等于各并联 电阻的倒数之和,即;并联电路各支路的电流与电功率的分 配规律:并联电路中通过各个支路电阻的电流、各个支路电 阻上消耗的电功率跟各支路电阻的阻值成反比,即,c:给电流表并联一个分流电阻,就可以扩大它的电流量 程,从而将电流表改装成一个安培表。如果电流表的内阻是 Rg,允许通过的最大电流是 Ig。

用这样的电流表可以测量 的最大电流显然只能是 Ig。将电流表改装成安培表,需要给 电流表并联一个分流电阻,该电阻可由计算,其中 为电流 量程扩大的倍数。

高中物理知识点总结电路_高中物理知识点总结:专题复习三专题复习三 电场、电路、磁场一. 本周教学内容:专题复习三 电场、电路、磁场 【典型例题】 例 1. 如图所示,P、Q 是两个电量相等的正的点电荷,它们连线的中点是 O,A, B 是中垂线上的两点,OA<OB。用 EA、EB、UA、UB 分别表示 A、B 两点的场强和 电势,则( )A. EA 一定大于 EB,UA 一定大于 UB B. EA 不一定大于 EB,UA 一定大于 UB C. EA 一定大于 EB,UA 不一定大于 UB D. EA 不一定大于 EB,UA 不一定大于 UB 解析:等量同号点电荷电场分布,沿 OA 方向电势降低,场强先增大后减小,但 由于不能确定场强最大值出现在哪儿,故选 B。

例 2. 如图所示,虚线 a、b 和 c 是某静电场中的三个等势面,它们的电势分别 是 Ua、Ub、Uc,且 Ua>Ub>Uc,一个带正电的粒子射入电场中,其运动轨迹如 实线 KLMN 所示,由图可知( )A.ab 间电路通,cd 间电路不通 B. ab 间电路不通,bc 间电路通 C. ab 间电路通,bc 间电路不通 D. bc 间电路不通,cd 间电路通 解析:Uad=220V,Ubd=220V,说明 ab 间通,由 Uad=220V,Uac=220V,说明 cd 间通,由于无电流,故只能 bc 间断,选 CD。

例 4. 如图所示,在粗糙水平面上固定一点电荷 Q,在 M 点无初速度释放一带有 恒定电量的小物块,小物块在 Q 的电场中运动到 N 点静止,则从 M 点运动到 N 点的过程中( )A. 小物块所受电场力逐渐减小 B. 小物块具有的电势能逐渐减小 C. M 点的电势一定高于 N 点的电势 D. 小物块电势能变化量的大小一定等于克服摩擦力做的功 解析:小物块在库仑斥力和摩擦力作用下从 M 至 N,先加速后减速,加速度变化 是先减小后增大。但库仑斥力一直做正功,电势能减小。由于小物块远离 Q,电 场力逐渐减小。对小物块由 M 点至 N 点运用动能定理,W 电-Wf=0-0,故 W 电 =Wf。由于不知 Q 的电性,故 M、N 点电势无法比较。选 ABD。

例 5. 目前世界上正在研究一种新型发电机叫磁流体发电机,它可以把气体的内 能直接转化为电能。如图所示为它的发电原理。将一束等离子体(即高温下电离 的气体,含有大量带正电和负电的微粒,从整体来说呈电中性)喷射入磁感应强 度为 B 的匀强磁场,磁场中有两块面积为 S,相距为 d 的平行金属板与外电阻 R 相连构成一电路。设气流的速度为 v,气体的电导率(电阻率的倒数)为 g,则 流过外电阻 R 的电流强度 I 及电流方向为( ) 解析:放电电流方向 ARB,选 D。

例 6. 在如图所示的电路中,当可变电阻 R 的阻值增大时( )A. AB 两点间的电压 U 增大 B. AB 两点间的电压 U 减小 C. 通过 R 的电流 I 增大 D. 回路中的总电功率增大 解析:当可变电阻 R 增大时,R 外增大故闭合电路总电流 I 减小,电源两端电压 U 端增例 7. 如图所示,虚线框 abcd 内为一矩形匀强磁场区域,ab=2bc,磁场方向垂 直纸面;实线框 a'b'c'd'是一正方形导线框,a'b'与 ab 边平行,若将导线框匀 速地拉离磁场区域, W1 表示沿平行于 ab 的方向拉出过程中外力所做的功,W2 以 表示以同样速率沿平行于 bc 的方向拉出过程中外力所做的功,则() 例 8. 电磁流量计如图所示,用非磁性材料制成的圆管道,外加一匀强磁场。当 管中导电液体流过此区域时,测出管道直径两端的电势差 U,就可以得知管中液 体的流量 Q,即单位时间内流过管道横截面的液体的体积(m3/s)。若管道直径 为 D,磁感应强度为 B,则 Q=_____________。A. 保持 K 接通,减小两极板间的距离,则两极板间电场的电场强度减小 B. 保持 K 接通,在两极板间插入一块介质,则极板上的电量减小 C. 断开 K,减小两极板间的距离,则两极板间的电势差减小 D. 断开 K,在两极板间插入一块介质,则两极板间的电势差增大 解析:K 接通,电容器电压不变,减小板间距 d,则电场强度增大。在两板插入 介质, 例 11. 如图所示,光滑绝缘半球槽的半径为 R,处在水平向右的匀强电场中,一 质量为 m 的带电小球从槽的右端 A 处无初速沿轨道滑下,滑到最低位置 B 时,球 对轨道的压力为 2mg。例 12. 汤姆生在测定阴极射线的荷质比时采用的方法是利用电场、磁场偏转法, 即通过测出阴极射线在给定匀强电场和匀强磁场中穿过一定距离时的速度偏转 角来达到测定其荷质比的目的。利用这种方法也可以测定其它未知粒子的荷质 比,反过来,知道了某种粒子的荷质比,也可以利用该方法了解电场或者磁场的 情况。

假设已知某种带正电粒子(不计重力)的荷质比(q/m)为 k,匀强电场的电场 强度为 E,方向竖直向下。先让粒子沿垂直于电场的方向射入电场,测出它穿过 水平距离 L 后的速度偏转角 θ (θ 很小,可认为 θ ≈tanθ )(见图甲);接 着用匀强磁场代替电场,让粒子以同样的初速度沿垂直于磁场的方向射入磁场, 测出它通过一段不超过 1/4 圆周长的弧解析: 例 13. 如图所示,空间分布着场强为 E 的匀强电场和匀强磁场 B1、B2,且磁感 强度大小 B1=B2=B,磁场 B2 的区域足够大,电场宽度为 L。一带电粒子质量为 m,电量为 q。不计重力,从电场边缘 A 点由静止释放该粒子经电场加速后进入 磁场,穿过磁场 B1 区域(图中虚线为磁场分界线,对粒子运动无影响。)进入 磁场 B2,粒子能沿某一路径再次返回 A 点,然后重复上述运动过程。求:(1)粒子进入磁场时的速度大小 v。

(2)磁场 B1 的宽度 D。

(3)粒子由 A 点出发至返回 A 点需要的最短时间 t。解析: 例 14. 如图所示为示波管的原理图,电子枪中炽热的金属丝可以发射电子,初 速度很小,可视为零。电子枪的加速电压为 U0,紧挨着是偏转电极 YY'和 XX', 设偏转电极的极板长均为求:(1)若只在 YY'偏转电极上加电压 UYY'=U1(U1>0),则电子到达荧光屏 上的速度多大? (2)在第(1)问中,若再在 XX'偏转电板上加上 UXX'=U2(U2>0),试在荧 光屏上标出亮点的大致位置,并求出该点在荧光屏上坐标系中的坐标值。解析:(1) (2)电子在 y 电场中偏移距离:根据相似三角形同理在 xx'方向根据相似三角形(1)试分析说明带电小球被抛出后沿竖直方向和水平方向分别做什么运动。

(2)在图中画出带电小球从抛出点 O 到落与 O 在同一水平线上的 O'点的运动轨 迹示意图。 (3)带电小球落回到 O'点时的动能。