前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇欧姆定律的规律范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:物理定律;教学方法;多种多样
关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。
(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。
(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。
(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。
(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。
【关键词】物理;欧姆定律;问题;解题思路
欧姆定律是高中物理电学部分的核心内容,也是高考的重难点内容,同时欧姆定律掌握的好坏会直接影响我们的考试成绩,因此要多用时间将这块知识进行巩固,以取得更高的分数。
1在欧姆定律的学习中常遇到的问题
1.1欧姆定律的使用范围问题
在电路的实验过程中,我会出现忽略导线,电子元件与电源自身的电阻,将整个电路视为纯电阻电路的问题。而欧姆定律通常只适用于导电金属和导电液体,对于气体、半导体、超导体等特殊电路元器件不适用,但我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,本人为了弄清这里的问题,向老师进行了请教并查阅了相关资料,许多资料上说欧姆定律的应用有“同时性”与“欧姆定律不适用于非线性元件,但对于各状态下是适合的”。但我自身总觉得这样的解释难以接受,有牵强之意,即个人理解为既然各个状态下都是适合的,那就是适合整个过程。
1.2线性元件的存在问题
通过物理学习我们会发现材料的电阻率ρ会随其它因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。而在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。
1.3电流,电压与电阻使用的问题
电流、电压、电阻的概念及单位,电流表、电压表、滑动变阻器的使用,是最基础的概念,也是我最容易混淆的内容。电流表测量电流、电压表测量电压、变阻器调节电路中的电流,而电流、电压、电阻的概念是基本的电学测量仪器,另外,欧姆定律只是用来研究电路内部系统,不包括电源内部的电阻、电流等,在学习欧姆定律的过程中,电流表、电压表、导线等电子元器件的影响常常是不考虑在内的,而对于欧姆定律的公式I=UR,I、U、R这三个物理量,则要求必须是在同一电路系统中,且是同一时刻的数值。
2欧姆定律学习中需要掌握的内容
本人在基于电学的基础之上,通过对欧姆定律的解题方式进行分析,个人认为我们需掌握以下内容:了解产生电流的条件;理解电流的概念和定义式I=q/t,并能进行相关的计算;熟练掌握欧姆定律的表达式I=U/R,明确欧姆定律的适用条件范围,并能用欧姆定律解决相关的电路问题;知道什么是导体的伏安特性,什么是线性元件与非线性元件;知道电阻的定义和定义式R=U/I;能综合运用欧姆定律分析、计算实际问题;需要进行实验、设计实验,能根据实验分析、计算、统计物理规律,并能运用公式法和图像法相结合的方法解决问题。
3欧姆定律的解题思路及技巧
3.1加深对欧姆定律内容的理解
在欧姆定律例题分析中,我们比较常见的问题是多个变量的问题,以我自身为例,由于物理理解水平有限,且电压、电流、电阻的概念比较抽象,所以学习难度较大,但我通过相关教学短片的学习,将电阻比喻成“阻碍电流通行的路障,电阻越大路越不好走,电阻越小通过速度则快”的方式,明白了电阻是导体自身的特有属性,其大小是受温度、导体的材料、长度等各方面因素影响的,与其两端的电压跟电流的大小无关,并且明白了电阻不会随着电流或者电压的大小改变而改变。同时我们每一个人都知道对于不同的习题,解决步骤都是不相同的,虽同一问题会有不同的解题方法,但总是离不开欧姆定律这个框架。因此对于一些与电学有关的知识,我一般会利用欧姆定律解决电生磁现象与电功率计算问题。例如:某人做验时把两盏电灯串联起来,灯丝电阻分别为R1=30Ω,R2=24Ω,电流表的读数为0.2A,那么加在R1和R2两端的电压各是多少?我可以根据两灯串联这一关建条件,与U=IR得出:U1=IR1=0.2A×30Ω=6V,U2=IR2=0.2A×24Ω=4.8V,故R1和R2两端电压分别为6V、4.8V的结论。
3.2利用电路图进行进行计算
在解有关欧姆定律的题时,以前直接把不同导体上的电流、电压和电阻代入表达式I=U/R及导出式U=IR和R=U/I进行计算,并把同一导体不同时刻、不同情况下的电流、电压和电阻都代入欧姆定律的表达式及导出式进行计算,因此经常混淆,不便于分析问题。通过后期老师给予我的建议,在解题前我都会先根据题意画出电路图,并在图上标明已知量、数值和未知量的符号,明确需分析的是哪一部分电路,这部分电路的连接方式是串联还是并联,以抓住电流、电压、电阻在串联、并联电路中的特征进行解题。同时,我还会注意开关通断引起电路结构的变化情况,并且回给“同一段电路”同一时刻的I、U、R加上同一种脚标,其中需注意单位的统一与电流表、电压表在电路中的连接情况,以及滑动变阻器滑片移动时电流、电压、电阻的变化情况。
3.3利用电阻进行知识拓展
本着从易到难的原则,我们可从一个电阻的问题进行计算,再扩展到两个电阻、三个电阻,逐渐拓宽我们的思路,让自己找到学习的目标以及方法。比如遇到当定值电阻接在电源两端后电压由U1变为U2,电路中的电流由I1增大到I2,这个定值电阻是多少的问题时,我们可利用欧姆定律的概念ΔU=ΔI・R得到电阻的值,而当难度增加由一个电阻变为两个电阻时,定值电阻与滑动变阻器串联在电压恒定的电源两端,电压表V1的变化量为ΔU1,电压表V2的变化量为ΔU2,电流表的示数为ΔI,在这样的问题上可将变化的问题转化为固定的关系之间的数值,就可简化许多变量问题的计算。当变量变为三个电阻时难度会进一步的增大,我起初认为这是一项不可能完成的任务,所以放弃了这类题,而在经过询问成绩优秀的同学时,才知道可将三个电阻尽量化为两个电阻,通过电压表与电流表的位置将电阻进行合并,以此简化题目。
4总结
简言之,欧姆定律是物理教材中最为重要的电学定律之一,是电学内容的重要知识,也是我们学习电磁学最基础的知识。当然,对于欧姆定律的学习与解题方法,自然不止以上所述方法,因而在具体的学习中,我们要立足于自身实际学习情况来进行方法的选取,突破重难点知识,以找到更好的解题思路。
参考文献:
[1]高飞.欧姆定律在串并联电路中的应用技巧[J].才智,2009(27)
《欧姆定律》一课,学生在初中阶段已经学过,高中必修本(下册)安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法——列表对比法和图象法;再次领会定义物理量的一种常用方法——比值法.这就决定了本节课的教学目的和教学要求.这节课不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法.
本节课在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定基础.本节课分析实验数据的两种基本方法,也将在后续课程中多次应用.因此也可以说,本节课是后续课程的知识准备阶段.
通过本节课的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用.
本节课的重点是成功进行演示实验和对实验数据进行分析.这是本节课的核心,是本节课成败的关键,是实现教学目标的基础.
本节课的难点是电阻的定义及其物理意义.尽管用比值法定义物理量在高一物理和高二电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏.从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度.对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义.有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正.
根据本节课有演示实验的特点,本节课采用以演示实验为主的启发式综合教学法.教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动.在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见.这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃.
通过本节课的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和总结出物理规律.同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯.
为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起承上启下作用.2.对演示实验所需器材及电路的设计可先启发学生思考回答.这样使他们既巩固了实验知识,也调动他们尽早投入积极参与.3.在进行演示实验时可请两位同学上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考.4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法教育,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识.到此应该达到本节课的第一次,通过提问和画图象使学生的学习情绪转向高涨.5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义.此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨.此处节奏应放慢,可提请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次,也使学生对电阻的概念是如何建立的有深刻的印象.6.在得出实验结论的基础上,进一步总结出欧姆定律,这实际上是认识上的又一次升华.要注意阐述实验结论的普遍性,在此基础上可让学生先行总结,以锻炼学生的语言表达能力.教师重申时语气要加重,不能轻描淡写.要随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推.7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的.然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题.
1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍.
2.注意正确规范地进行演示操作,数据不能虚假拼凑.
3.注意演示实验的可视度.可预先制作电路板,演示时注意位置要加高.有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见.
4.定义电阻及总结欧姆定律时,要注意层次清楚,避免节奏混乱.可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后总结.这样学生就不易将二者混淆.
模块一
电路安全计算分析
例题精讲
【例1】
如图所示,电源电压保持不变,R0为定值电阻.闭合开关,当滑动变阻器的滑片在某两点间移动时,电流表的示数变化范围为0.5A~1.5A之间,电压表的示数变化范围为3V~6V之间.则定值电阻R0的阻值及电源电压分别为(
)
A.
3Ω,3V
B.
3Ω,7.5V
C.
6Ω,6V
D.
6Ω,9V
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律;电路的动态分析.
解析:
由电路图可知,电阻R0与滑动变阻器串联,电压表测滑动变阻器两端的电压,电流表测电路中的电流;
当电路中的电流为0.5A时,电压表的示数为6V,
串联电路中各处的电流相等,且总电压等于各分电压之和,
电源的电压U=I1R0+U滑=0.5A×R0+6V,
当电路中的电流为1.5A时,电压表的示数为3V,
电源的电压:
U=I2R0+U滑′=1.5A×R0+3V,
电源的电压不变,
0.5A×R0+6V=1.5A×R0+3V,
解得:R0=3Ω,
电源的电压U=1.5A×R0+3V=1.5A×3Ω+3V=7.5V.
答案:
B
【测试题】
如图所示,滑动变阻器的滑片在某两点间移动时,电流表的示数范围在1A至2A之间,电压表的示数范围在6V至9V之间.则定值电阻R的阻值及电源电压分别是(
)
A.
3Ω
15
V
B.
6Ω
15
V
C.
3Ω
12
V
D.
6Ω
12
V
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律.
解析:
由电路图可知,电阻R与滑动变阻器R′串联,电压表测滑动变阻器两端的电压,电流表测电路中的电流;
当电路中的电流为1A时,电压表的示数为9V,
串联电路中各处的电流相等,且总电压等于各分电压之和,
电源的电压U=I1R+U滑=1A×R+9V,
当电路中的电流为2A时,电压表的示数为6V,
电源的电压:
U=I2R+U滑′=2A×R+6V,
电源的电压不变,
1A×R+9V=2A×R+6V,
解得:R=3Ω,
电源的电压U=1A×R+9V=1A×3Ω+9V=12V.
答案:
C
【例2】
如图所示电路中,电源电压U=4.5V,且保持不变,定值电阻R1=5Ω,变阻器R2最大阻值为20Ω,电流表量程为0~0.6A,电压表量程为0~3V.为保护电表,变阻器接入电路的阻值范围是(
)
A.
0Ω~10Ω
B.
0Ω~20Ω
C.
5Ω~20Ω
D.
2.5Ω~10Ω
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律;电阻的串联.
解析:
由电路图可知,滑动变阻器R2与电阻R1串联,电压表测量滑动变阻器两端的电压,电流表测量电路总电流,
当电流表示数为I1=0.6A时,滑动变阻器接入电路的电阻最小,
根据欧姆定律可得,电阻R1两端电压:
U1=I1R1=0.6A×5Ω=3V,
因串联电路中总电压等于各分电压之和,
所以,滑动变阻器两端的电压:
U2=U-U1=4.5V-3V=1.5V,
因串联电路中各处的电流相等,
所以,滑动变阻器连入电路的电阻最小:
Rmin==2.5Ω;
当电压表示数最大为U大=3V时,滑动变阻器接入电路的电阻最大,
此时R1两端电压:
U1′=U-U2max=4.5V-3V=1.5V,
电路电流为:
I2==0.3A,
滑动变阻器接入电路的最大电阻:
Rmax==10Ω,
变阻器接入电路的阻值范围为2.5Ω~10Ω.
答案:
D
【测试题】
如图所示电路中,电源电压U=4.5V,且保持不变,电阻R1=4Ω,变阻器R2的最大阻值为20Ω,电流表的量程为0~0.6A,电压表的量程为0~3V,为了保护电表不被损坏,变阻器接入电路的阻值范围是(
)
A.
3.5Ω~8Ω
B.
0~8Ω
C.
2Ω~3.5Ω
D.
0Ω~3.5Ω
考点:
欧姆定律的应用;滑动变阻器的使用.
解析:
⑴当电流表示数为I1=0.6A时,
电阻R1两端电压为U1=I1R1=0.6A×4Ω=2.4V,
滑动变阻器两端的电压U2=U-U1=4.5V-2.4V=2.1V,
所以滑动变阻器连入电路的电阻最小为R小=.
⑵当电压表示数最大为U大=3V时,
R1两端电压为U3=U-U大=4.5V-3V=1.5V,
电路电流为I==0.375A,
滑动变阻器接入电路的电阻最大为R大==8Ω.
所以变阻器接入电路中的阻值范围是3.5Ω~8Ω.
答案:
A
【例3】
如图所示电路,已知电流表的量程为0~0.6A,电压表的量程为0~3V,定值电阻R1阻值为6Ω,滑动变阻器R2的最大阻值为24Ω,电源电压为6V,开关S闭合后,在滑动变阻器滑片滑动过程中,保证电流表、电压表不被烧坏的情况下(
)
A.
滑动变阻器的阻值变化范围为5Ω~24Ω
B.
电压表的示数变化范围是1.2V~3V
C.
电路中允许通过的最大电流是0.6A
D.
电流表的示数变化范围是0.2A~0.5A
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律;电阻的串联;电路的动态分析.
解析:
由电路图可知,R1与R2串联,电压表测R1两端的电压,电流表测电路中的电流.
⑴根据欧姆定律可得,电压表的示数为3V时,电路中的电流:
I==0.5A,
电流表的量程为0~0.6A,
电路中的最大电流为0.5A,故C不正确;
此时滑动变阻器接入电路中的电阻最小,
电路中的总电阻:
R==12Ω,
串联电路中总电阻等于各分电阻之和,
变阻器接入电路中的最小阻值:
R2=R-R1=12Ω-6Ω=6Ω,即滑动变阻器的阻值变化范围为6Ω~24Ω,故A不正确;
⑵当滑动变阻器的最大阻值和定值电阻串联时,电路中的电流最小,电压表的示数最小,此时电路中的最小电流:
I′==0.2A,
则电流表的示数变化范围是0.2A~0.5A,故D正确;
电压表的最小示数:
U1′=I′R1=0.2A×6Ω=1.2V,
则电压表的示数变化范围是1.2V~3V,故B正确.
答案:
BD
【测试题】
如图所示电路,已知电流表的量程为0~0.6A,电压表的量程为0~3V,定值电阻R1阻值为10Ω,滑动变阻器R2的最大阻值为50Ω,电源电压为6V.开关S闭合后,在滑动变阻器滑片滑动过程中,保证电流表、电压表不被烧坏的情况下,下列说法中错误的是(
)
A.
电路中通过的最大电流是0.6A
B.
电压表最小示数是1V
C.
滑动变阻器滑片不允许滑到最左端
D.
滑动变阻器滑片移动过程中,电压表先达到最大量程
考点:
欧姆定律的应用;串联电路的电流规律;电阻的串联.
解析:
⑴由电路图可知,当滑动变阻器的滑片位于最左端时,电路为R1的简单电路,电压表测电源的电压,
电源的电压6V大于电压表的最大量程3V,
滑动变阻器的滑片不能移到最左端;
根据欧姆定律可得,此时电路中的电流:
I==0.6A,故电路中的最大电流不能为0.6A,且两电表中电压表先达到最大量程;
⑵根据串联电路的分压特点可知,滑动变阻器接入电路中的阻值最大时电压表的示数最小,
串联电路中的总电阻等于各分电阻之和,
电路中的最小电流Imin==0.1A,
电压表的最小示数Umin=IminR1=0.1A×10Ω=1V.
答案:
A
【例4】
如图,电源电压U=30V且保持不变,电阻R1=40Ω,滑动变阻器R2的最大阻值为60Ω,电流表的量程为0~0.6A,电压表的量程为0~15V,为了电表的安全,R2接入电路的电阻值范围为_____Ω到_____Ω.
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律.
解析:
⑴当电流表示数为I1=0.6A时,
电阻R1两端电压为U1=I1R1=0.6A×40Ω=24V,
滑动变阻器两端的电压U2=U-U1=30V-24V=6V,
所以滑动变阻器连入电路的电阻最小为R小==10Ω.
⑵当电压表示数最大为U大=15V时,
R1两端电压为U3=U-U大=30V-15V=15V,
电路电流为I==0.375A,
滑动变阻器接入电路的电阻最大为R大==40Ω.
所以变阻器接入电路中的阻值范围是10Ω~40Ω.
答案:
10;40.
【测试题】
如图电路中,电源电压为6V不变,滑动变阻器R2的阻值变化范围是0~20Ω,两只电流表的量程均为0.6A.当开关S闭合,滑动变阻器的滑片P置于最左端时,电流表A1的示数是0.4A.此时电流表A2的示数为______A;R1的阻值______Ω;在保证电流表安全的条件下,滑动变阻器连入电路的电阻不得小于_______.
考点:
电流表的使用;并联电路的电流规律;滑动变阻器的使用;欧姆定律;电路的动态分析.
解析:
当开关S闭合,滑动变阻器的滑片P置于最左端时,R2中电流I2==0.3A,
则R1中的电流I1=I-I2=0.4A-0.3A=0.1A,R1==60Ω;
当滑片向左移动时,总电阻变大,总电流变小,由于电流表最大可为0.6A,且R1中的电流不变,
则R2中的最大电流I2′=I′-I1=0.6A-0.1A=0.5A,此时滑动变阻器的电阻R2′=
=12Ω.
答案:
0.3;60;12Ω.
模块二
电路动态分析之范围计算
例题精讲
【例5】
在如图所示的电路中,设电源电压不变,灯L电阻不变.闭合开关S,在变阻器滑片P移动过程中,电流表的最小示数为0.2A,电压表V的最大示数为4V,电压表V1的最大示数ULmax与最小示数ULmin之比为3:2.则根据以上条件能求出的物理量有(
)
A.
只有电源电压和L的阻值
B.
只有L的阻值和滑动变阻器的最大阻值
C.
只有滑动变阻器的最大阻值
D.
电源电压、L的阻值和滑动变阻器的最大阻值
考点:
欧姆定律的应用;滑动变阻器的使用.
解析:
由电路图可知,电灯L与滑动变阻器串联,电流表测电路电流,电压表V测滑动变阻器两端的电压,电压表V1测小灯泡L两端的电压.
⑴当滑动变阻器接入电路的阻值最大时,电路中的电流最小I=0.2A;
此时电压表V的最大U2=4V,电压表V1的示数最小为ULmin;
滑动变阻器最大阻值:R==20Ω,
灯泡L两端电压:ULmin=IRL,
电源电压:U=I(R2+RL)=0.2A×(20Ω+RL)=4+0.2RL.
⑵当滑动变阻器接入电路的阻值为零时,电路中的电流最大为I′,
此时灯泡L两端的电压ULmax最大,等于电源电压,
则ULmax=I′RL.
①电压表V1的最大示数与最小示数之比为3:2;
,
I′=I=×0.2A=0.3A,
电源电压U=I′RL=0.3RL,
②电源两端电压不变,灯L的电阻不随温度变化,
4+0.2RL=0.3RL,
解得:灯泡电阻RL=40Ω,电源电压U=12V,
因此可以求出电源电压、灯泡电阻、滑动变阻器的最大阻值.
答案:
D
【测试题】
在如图所示电路中,已知电源电压6V且不变,R1=10Ω,R2最大阻值为20Ω,那么闭合开关,移动滑动变阻器,电压表的示数变化范围是(
)
A.
0~6V
B.
2V~6V
C.
0~2V
D.
3V~6V
考点:
电路的动态分析.
解析:
当滑片滑到左端时,滑动变阻器短路,此时电压表测量电源电压,示数为6V;
当滑片滑到右端时,滑动变阻器全部接入,此时电路中电流最小,
最小电流为:I最小==0.2A;
此时电压表示数最小,U最小=I最小R1=0.2A×10Ω=2V;
因此电压表示数范围为2V~6V.
答案:
B
【例6】
如图所示的电路中,R为滑动变阻器,R1、R2为定值电阻,且R1>R2,E为电压恒定的电源,当滑动变阻器的滑片滑动时,通过R、R1、R2的电流将发生变化,电流变化值分别为I、I1、I2表示,则(
)
A.
当滑动片向右滑动时,有I1<I<I2
B.
当滑动片向左滑动时,有I<I1<I2
C.
无论滑动片向左还是向右滑动,总有I=I1=I2
D.
无论滑动片向左还是向右滑动,总有I>I2>I1
考点:
欧姆定律的应用;滑动变阻器的使用.
解析:
由电路图可知,R与R2并联后与R1串联,且R1>R2,
设R1=2Ω,R2=1Ω,U=1V,
电路中的总电阻R总=R1+,
电路中的电流I1=,
并联部分得的电压U并=I1×R并=,
因R与R2并联,
所以I=,
I2=;
当滑动变阻器接入电路的电阻变为R′时
I1=|I1-I1′|=,
I=|I-I′|=,
I2=|I2-I2′|=;
所以无论滑动片向左还是向右滑动,总有I>I2>I1.
答案:
D
【测试题】
如图所示的电路图,R1大于R2,闭合开关后,在滑动变阻器的滑片P从b向a滑动的过程中,滑动变阻器电流的变化量______R2电流的变化量;通过R1电流的变化量______R2电流的变化量.(填“<”“>”“=”)
考点:
欧姆定律的应用;串联电路的电压规律;并联电路的电压规律.
解析:
由电路图可知,滑动变阻器与R2并联后与R1串联,
串联电路中总电压等于各分电压之和,且并联电路中各支路两端的电压相等,
R1两端电压变化与并联部分电压的变化量相等,
I=,且R1大于R2,
通过R1的电流变化量小于通过R2的电流变化量;
由欧姆定律可知,通过R1的电流减小,通过滑动变阻器的电流变小,通过R2的电流变大,
总电流减小时,R2支路的电流变大,则滑动变阻器支路的减小量大于总电流减小量,
即滑动变阻器电流的变化量大于R2电流的变化量.
答案:
>;<.
【例7】
在图甲所示电路中,电源电压保持不变,R0、R2为定值电阻,电流表、电压表都是理想电表.闭合开关,调节滑动变阻器,电压表V1、V2和电流表A的示数均要发生变化.两电压表示数随电路中电流的变化的图线如图乙所示.根据图象的信息可知:_____(填“a”或“b”)是电压表V1示数变化的图线,电源电压为_______V,电阻R0的阻值为______Ω.
考点:
欧姆定律的应用.
解析:
由电路图可知,滑动变阻器R1、电阻R2、电阻R0串联在电路中,电压表V1测量R1和R2两端的总电压,电压表V2测量R2两端的电压,电流表测量电路中的电流.
⑴当滑片P向左移动时,滑动变阻器R1连入的电阻变小,从而使电路中的总电阻变小,根据欧姆定律可知,电路中的电流变大,R0两端的电压变大,R2两端的电压变大,由串联电路电压的特点可知,R1和R2两端的总电压变小,据此判断:图象中上半部分b为电压表V1示数变化图线,下半部分a为电压表V2示数变化图线;
⑵由图象可知:当R1和R2两端的电压为10V时,R2两端的电压为1V,电路中的电流为1A,
串联电路的总电压等于各分电压之和,
电源的电压U=U1+U0=10V+IR0=10V+1A×R0
---------①
当滑片P移至最左端,滑动变阻器连入电阻为0,两电压表都测量电阻R1两端的电压,示数都为4V,电路中的电流最大为4A,
电源的电压U=U2′+U0′=4V+4A×R0
---------------②
由①②得:10V+1A×R0=4V+4A×R0
解得:R0=2Ω;
电源电压为:U=U1+U0=10V+IR0=10V+1A×2Ω=12V.
答案:
b;12;2.
【测试题】
如图所示的电路,电源电压保持不变.闭合开关S,调节滑动变阻器,两电压表的示数随电路中电流变化的图线如图所示.根据图线的信息可知:________(甲/乙)是电压表V2示数变化的图象,电源电压为_______V,电阻R1的阻值为_______Ω.
考点:
欧姆定律的应用;电压表的使用;滑动变阻器的使用.
解析:
图示电路为串联电路,电压表V1测量R1两端的电压,电压表V2测量滑动变阻器两端的电压;
当滑动变阻器的阻值为0时,电压表V2示数为0,此时电压表V1的示数等于电源电压,因此与横坐标相交的图象是电压表V2示数变化的图象,即乙图;此时电压表V1的示数等于6V,通过电路中的电流为0.6A,故电源电压为6V,.
答案:
乙,6,10.
模块三
滑动变阻器的部分串联、部分并联问题
【例8】
如图所示的电路中,AB间电压为10伏,R0=100欧,滑动变阻器R的最大阻值也为100欧,当E、F两点间断开时,C、D间的电压变化范围是________;当E、F两点间接通时,C、D间的电压变化范围是________.
考点:
欧姆定律的应用;电阻的串联.
解析:
⑴当E、F两点间断开,滑片位于最上端时为R0的简单电路,此时CD间的电压最大,
并联电路中各支路两端的电压相等,
电压表的最大示数为10V,
滑片位于下端时,R与R0串联,CD间的电压最小,
串联电路中总电阻等于各分电阻之和,
根据欧姆定律可得,电路中的电流:
I==0.05A,
CD间的最小电压:
UCD=IR0=0.05A×100Ω=5V,
则C、D间的电压变化范围是5V~10V;
⑵当E、F两点间接通时,滑片位于最上端时R0与R并联,此时CD间的电压最大为10V,
滑片位于下端时,R0被短路,示数最小为0,
则CD间电压的变化范围为0V~10V.
答案:
5V~10V;0V~10V.
【测试题】
如图中,AB间的电压为30V,改变滑动变阻器触头的位置,可以改变CD间的电压,则UCD的变化范围是(
)
A.
0~10V
B.
0~20V
C.
10~20V
D.
20~30V
考点:
串联电路和并联电路.
解析:
当滑动变阻器触头置于变阻器的最上端时,UCD最大,最大值为Umax=
=20V;当滑动变阻器触头置于变阻器的最下端时,UCD最小,最小值为Umin
=,所以UCD的变化范围是10~20V.
答案:
C
【例9】
如图所示,电路中R0为定值电阻,R为滑动变阻器,总阻值为R,当在电路两端加上恒定电压U,移动R的滑片,可以改变电流表的读数范围为多少?
考点:
伏安法测电阻.
解析:
设滑动变阻器滑动触头左边部分的电阻为Rx.电路连接为R0与Rx并联,再与滑动变阻器右边部分的电阻R-Rx串联,
干路中的电流:I=
,
电流表示数:I′==
,
由上式可知:当Rx=时,I最小为:Imin=;当Rx=R或Rx=0时,I有最大值,Imax=;
即电流表示数变化范围为:~;
答案:
~
【测试题】
如图所示的电路通常称为分压电路,当ab间的电压为U时,R0两端可以获得的电压范围是___-___;滑动变阻器滑动头P处于如图所示位置时,ab间的电阻值将______该滑动变阻器的最大阻值.(填“大于”“小于”“等于”)
考点:
弹性碰撞和非弹性碰撞.
解析:
根据串联电路分压特点可知,当变阻器滑片滑到最下端时,R0被短路,获得的电压最小,为0;当变阻器滑片滑到最上端时,获得的电压最大,为U,所以R0两端可以获得的电压范围是0~U.
由于并联电路的总电阻小于任何一个支路的电阻.所以滑动变阻器滑动头P处于如图所示位置时,ab间的电阻值将小于该滑动变阻器的最大阻值.
在“闭合电路欧姆定律”一节教学的导课中,我凭借上节课学习的电源及其特性等知识,运用演示实验,并在演示实验的前后以及过程中揭示矛盾、提出疑问,以激发学生思维的积极性,诱发学生的创造性思维。
1.如何方便地测定电源的电动势?
演示:用伏特表按图(1)电路直接测电源的电动势,测得伏特表示数为2.9伏。
2.若电路中加接电阻R,闭合开关S,观察此时伏特表的读数。
演示:按图(2)电路,测得伏特表的示数为2.1伏。
此时教师及时把握实验造成的认识冲突进行设问:此时电源电动势变化了吗?为何第二次伏特表示数变小了呢?你能知道此时电源的内电压是多大吗?
通过上述的问题情境,使学生的思维进入专注的学习状态,随之,通过学生的思维,有利于理解E=U外+U内的关系式以及伏特表测量的物理意义,为闭合电路欧姆定律的教学埋下了伏笔。
3.若上述电路中再串联一个安培表(图3),当电阻R发生变化时,伏特表和安培表的示数将如何变化?
先让学生进行猜想,后演示,并运用欧姆定律I=U/R进行分析。猜想与实验结论形成了矛盾,使学生的认知再次发生了冲突。接着,在教师的引导下,让学生在矛盾的思索中,以直观的形象进入理性的顿悟,从而得出某部分电路R的变化对电路的影响,只用某部分电路的欧姆定律来分析已不适用,因而必须对整个电路进行认识把握。教师由此把握契机,导出本堂课的研究课题。
接着,我通过设计以下教学程序,让学生主动参与探索规律的活动,使之身临其境,再现了当年科学家研究的思维方法和发现的过程。
1.鼓励学生进行大胆猜想。
设问:闭合电路中的电流强度可能与哪些因素有关?
教师可启发学生在欧姆定律中决定电流强度I的有关要素,从而通过思维方法的迁移、猜想得到:I与R、与E、与r、等因素有关。
2.引导学生设计实验验证上述猜想。
设问:你能用什么方法验证上述猜想呢?(教师提示:物理学中最有说服力的武器――科学实验。)
设问:那么多变量之间的关系又如何处理?(教师启发学生:探索牛顿第二定律时对那么多变量问题的处理――控制变量的方法。)
3.实验的具体设计及演示验证。
通过逐个控制变量的方法,讨论、设计并演示如下实验:
(1)用手摇直流发电机M作电源(图4)。通过改变转速来改变电动势的大小。(当R、r一定时,I与E关系?)
(2)选用可调电源(图5),改变外电阻R,观察安培表示数变化。(当E、r一定时,I与R的关系?)
(3)选用可调电源(图6),改变电源内阻,观察安培表示数变化。(当E、R一定时,I与r的关系?)
通过上述教学程序,学生的思维实现了从猜想到实验性验证的探索过程。
4.引导学生根据已有知识进行科学推理,使之由定性升华到定量。
设问:由E=U外+U内能得出I与上述各量的定量关系吗?
对于外电路U外=IR,那么内电路U内=Ir亦成立吗?
再次引导学生运用实验手段验证。如图(6)所示,用探针接伏特表,可测得内电压,安培表可测得内电路的电流。通过改变R,测得伏特表和安培表的示数如下:
分析上表所得的数据,观察得到U内/I=定值,得出欧姆定律也同样适用于内电路,即U内=Ir。由此,学生可推导出:E=IR+Ir。讨论I的决定因素,将公式变换得I=E/(R+r),即闭合电路欧姆定律的数学表达式。
对闭合电路欧姆定律进行剖析、运用时,好让学生思考、观察、分析、讨论,增强课堂思维量,加深对规律的进一步理解,我通过设计以下问题的思维阶梯来拓展思维层次:
设问:1.请大家运用此规律解释前面导课中、的示数如何变化?
2.当外电路处于断路状态时,=E,为什么?
3.若电源两端连接一根导线(即电路处于短路状态),I=?短路状态有何危害?(学生思考后,教师演示短路状态时保险丝熔断实验。)
4.请大家根据U=E-I r关系式,画出U-I函数图线,并说明物理意义。
5.先通过实验演示,然后提出问题。
如图(7)电路,已知电阻R1=5Ω,当S闭合时,读出的读数(I1=0.35A),据此数据能否求电源的E和r?
(2)如何想法求得?(提示:若再给一只R2 =10Ω的电阻,行吗?)演示实验并测得的示数(I2 =0.22A),请学生列式求得(E=3V,r=3.5Ω)。
然后小结,此题告诉了我们一种测量E、r的重要方法,即课本中例题解决的问题,并进一步设问(留给学生课外思考):
①若把改成一只,如何设计实验测量E、r?
②若只给一只和一只及一只可变电阻,又如何设计实验测量E、r?
6.先给实物电路,让学生运用规律计算求解,后让学生观察实验,在发生认知冲突中,使学生自悟自解,深化思维层次。
(1)图(8)电路中,若把电阻R换成一只内阻为1.5Ω的电动机,当闭合开关S,的示数多大?(请学生求解。)
(2)演示实验:闭合S,让学生观察电动机转动以及电动机不转动,两种情况下的示数。