首页 > 文章中心 > 高层建筑抗震设计规范

高层建筑抗震设计规范

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高层建筑抗震设计规范范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

高层建筑抗震设计规范

高层建筑抗震设计规范范文第1篇

【关键词】建筑设计,抗震工程,问题,应用

对于建筑抗震设计,至今仍然存在着一种误解,似乎建筑抗震只是结构工程师的事,与建筑师关系不大。因而,长期来只有对结构设计的抗震设计规范和规定,却没有一本专门谈建筑设计的抗震设计规范或规定。建筑抗震的实践表明,一个地震区的工业建设项目(建筑物),如果没有良好的建筑总体布置方案,单靠结构抗震计算和抗震构造措施,在较强烈地震作用下,仍是难以取得建筑抗震的较好效果,甚至减轻不了建筑物的震害程度。《建筑抗震设计规范》的新修订内容中,在抗震设计的基本要求一章里,增加了针对建筑师建筑设计应遵守的有关规定。有了这方面的规定,就可以使建筑设计与建筑抗震要求有机地结合起来,使建筑抗震设计水平达到一个新的比较完善的高度。

建筑设计中需重视的几个抗震问题

1.建筑构件(非结构构件)设计及建筑连接节点构造设计问题随着建筑立面和室内空间装饰标准的提高和发展,在建筑设计上采用的建筑构件品种、材料和形式越来越多。例如,立面上大量采用的外贴瓷砖,外贴、外挂大理石,花岗岩板材,还有外挂的玻璃幕墙等;室内装饰普遍采用的空中吊灯、吊顶,较高装饰标准采用的人工艺术造景,壁雕,悬挑的装饰画,竖立的雕塑制品等。所有这些立面和室内的装饰,都有一个其本身材料和构造是否能抗御住地震的震动而不坏的问题,同时还有与建筑物主体结构相牢固连接的问题。多次地震的震害表明,国外有不少高层建筑的外立面装饰玻璃幕墙在地震时出现了“玻璃雨”的破坏。其原因就是所采用的玻璃幕墙(包括材料性能及其与主体结构的连接构造)不能适应建筑物在地震中产生大变形的要求。所以,在采用玻璃幕墙时,在建筑设计要求上,必须使玻璃幕墙具有足够的强度和变形能力,在其与主体结构的连接构造上,要将连接节点设计成能沿水平向有相应变位能力的节点构造,使其与建筑物的地震变形脱开,不给外挂的玻璃幕墙造成变形破坏。

对于外挂的大型石材面板与主体结构的连接构造也应按上述要求考虑处理。对直接外贴的板材和瓷砖,则必须使其与主体结构能牢固锚拉和粘结,使其在地震时不脱开不坠落。我国则有的直贴得很高。需要重视其抗震的构造连接问题。对室内的各种装饰工程,尤其是悬吊的大型灯具,浮挂的雕塑,各种悬桃的人工艺术造景等,在建筑设计上,一定要重视其在地震发生时的抗震稳定性,在其与主体结构的连接构造上也宜考虑它有一定的相对于建筑物的变形能力和必要的节点连接强度,防止其在地震中发生坠落或倒塌伤人。在建筑设计中,还有相当多的属于建筑布置的非结构构件,保障其抗震稳定性,不发生倒塌破坏,或采用与主体结构脱开的保障自身稳定的抗震措施。

2.建筑上应满足的设计限值控制问题

根据大量震害的经验总结,现行《建筑抗震设计规范》(GBJ11-89)对房屋建筑在建筑设计中应考虑的一些抗震要求的限值控制提出了规定。这些规定,建筑设计应予遵守。一是房屋的建筑总高度和层数。例如,在设防烈度为8度时,粘土砖多层房屋的总高度不宜超过18m,层数不宜超过六层;底层框架多层砖房的总高度不超过16m,层数不超过五层;钢筋混凝土框架房屋总高度不超过45m,框架抗震墙的高层建筑的总高度不宜超过100m等的规定。而在目前实际设计中,有的总高度超过,有的层数超过;还有的在建筑设计中总高度虽未超过,但房屋的高宽比超过规定,如在8度地区有的超过2.2。所有这些超规,都可能对建筑物的抗震安全带来不利,特别是对于高宽比过大的多、高层建筑更是不利。因为在这种情况下,存在房屋的整体抗震稳定问题。应该说,这些限值的控制在建筑设计上只要重视抗震是完全可以做到的。而在某市的抗震设计审查中发现,建筑超高和高宽比过大的设计达14%之多。这说明在建筑设计中未能严格按照《规范》规定进行设计的问题不是个别的,应引起建筑设计的重视。二是对房屋抗震横墙间距和局部墙体尺寸的限值控制。这是根据多层砌体房屋和底层为框架的多层砌体房屋在历次地震中所出现的破坏特征所提出来的规定。对抗震横墙间距的最大限值控制,是因为当横墙间距过大时,使纵墙的侧向变形加大,抗震承载力降低,甚至导致纵墙的侧向失稳破坏倒塌。对房屋局部墙体尺寸最小限值的控制,是因为这些部位的墙体(包括承重和非承重外墙的尽端墙,内墙的阴角,高出屋面的女儿墙)在小于规定的最小限值时,墙体截面的抗震强度(抗弯、抗剪)就不能满足要求,就会导致墙体的开裂和倒塌破坏。所以,在建筑进行平立面布置设计时,要考虑这些来自实际震害经险的设计控制规定,使建筑设计为建筑抗震提供良好的基础。

3.屋顶建筑的抗震设计问题

高层建筑抗震设计规范范文第2篇

一、建筑设计与建筑抗震设计的关系

建筑的抗震设计以及抗震性能的高低与人民群众的生命财产安全有着直接联系,而建筑抗震设计又是以建筑设计为基础的。这是由于建筑结构是基于建筑设计的,当建筑设计完成后建筑结构就难以改变。因此建筑设计师在建筑设计前期就应该充分考虑到建筑抗震设计的需求。

二、基于建筑抗震设计的建筑设计措施

(一)建筑结构设计的对称原则

我国出台的建筑抗震设计规范中指出,我国建筑抗震的设计目标是小震不坏,中震可修,大震不倒。对于建筑师和结构工程设计师来说,在进行建筑工程设计师应该秉持着简单、规则的建筑结构原则。一般方形、圆形、为主。建筑的竖向形态的变化要规则,一般可以选择矩形、梯形等变化均匀的形状。对称结构建筑在地震地面平动作用下一般只会出现平移震动,建筑内部构件出现测位移量,内部构件受力均衡;而非对称结构的建筑则会由于刚心和质心不重合,在地面平动的过程中也会出现扭转振动。如建筑内部的构建离刚心较远就会由于超出变形极限而出现损坏,进而导致结构一侧失效而倒塌。

(二)注重建筑构件与连接点处质量

在建筑工程设计和施工过程中建筑构件的合理配置以及连接点处的质量与建筑施工安全质量存在直接的联系。并且在新型建筑材料问世的同时建筑物的外部设计大都汇采用新型建筑材料,例如大理石、瓷砖等。而建筑室内装饰也会使用到吊顶等技术。这些室内以及立面装饰本身存在抗震性能的问题,并且其与建筑主体的牢固连接也是抗震设计的关键。近几年有部分国外高层建筑在发生地震时下起了“玻璃雨”,建筑的玻璃幕墙由于地震导致破损。这是由于当前所使用的玻璃幕墙还无法适应地震中产生变形和扭转。因此建筑如要采用玻璃幕墙则必须保证玻璃幕墙的强度与变形能力。在其与建筑主体连接处要设计为能够在水平向实现变位能力的构造,从而在地震时玻璃幕墙能够与建筑物地震变形脱离,减少玻璃幕墙的损坏。另外,在建筑设计中内隔墙、玻璃隔断等结构件的设计中也要充分考虑其与建筑主体连接点的牢固性,保证其抗震性能。

(三)关注建筑顶部抗震

在高层或超高层的建筑设计过程中,建筑的顶部抗震设计是十分关键的。当前高层或超高层建筑的屋顶普遍存在过高和过重的问题。屋顶过高或过重会导致建筑变形加重,进而强化了地震的破坏作用。对于屋顶建筑以及下层建筑物的安全性能有着极大的负面影响。如建筑的屋顶与下层建筑的重心没有位于同一条直线上,那么建筑屋顶的抗侧力墙也会与下层建筑的抗侧力墙出现分离,当地震出现时则会加剧损坏。因此在高层或超高层建筑设计中应该使用新型高强度轻质的建筑材料,尽可能保证屋顶的重心与下层建筑的重心位于通一条直线。当建筑屋顶的较高时要保证其抗震定性,缓解地震带来的变形作用。

(四)建筑竖向布置

建筑竖向布置主要体现在建筑物的高度结构质量以及刚度的设计中,特别是在高层或超高层建筑中建筑的竖向布置对于建筑抗震设计来说更加重要。建筑楼层的使用功能差异导致建筑物楼层分布的质量和刚度均不一致,例如楼层包括游泳池、会议室、健身房等。楼层的功能需求导致楼层上下之间的刚度差异过大。高层建筑中刚度最差的楼层的抗震性能最为薄弱,在出现地震时即为变形严重的薄弱层。在建筑设计中由于楼层功能不同导致的墙体不连续,柱子不对称等极大的限制了抗震性能。因此在建筑抗震设计中应该尽量保证竖向的刚度分布靠近,尤其是在结构上刚度转换层更加要着重注意。

三、结束语

高层建筑抗震设计规范范文第3篇

关键词:超限高层建筑、抗震设计、分析

中图分类号:TU97文献标识码: A

一、前言

改革开放以来,我国经济快速增长,城市化进程明显加快,大量农村人口迅速向城市集中,由此造成城市人口数量的不断膨胀,对房屋的需求也急剧增加。为了缓解城市人口对房屋需求的压力,越来越多的高层、超高层建筑如雨后春笋般出现在各大、中城市。超高层建筑,除了具有充分利用有限的土地面积,最大限度利用地上建筑使用空间外,还具有强烈的标志性及展示性作用,从而往往能成为区域性、地标性建筑或成为城市“名片”。

然而,尽管城市中的超高建筑越来越多,但目前却没有统一的方法和明确的依据来对超限工程进行抗震设计,多数情况下还是要依靠工程师和专家们的结构概念和经验来把握,而其可靠程度,限于现今的技术水平一般只能作出定性结论,还很难作出定量的描述。以下本文就超限高层建筑工程抗震设计方面内容作出简要分析,供广大同行参考。

二、超限高层建筑工程抗震设计研究的作用和意义

随着我国经济的快速发展,在全球经济一体化的趋势下,我国基础设施的建设发展有了突破性进展,出现了各个行业的流动资金开始往基础设施建设汇集的现象。超高层建筑工程是在人们对空间的成分充分利用的前提下应运而生的,这反映了人们对充满现代感和时代感的城市生活的追求。但是,问题也随之而来,因为超限高层建筑工程自身的结构特点已经超出了我国对建筑工程的规定,抗震也是摆在超高建筑工程面前的重大难题。尤其是这几年以来我国地震灾害频发,汶川和玉树地震的发生造成对建筑物的破坏,更是让我们触目惊心。建筑物的抗震安全性和人民的生命财产安全密不可分。所以,我们要正确认识到在发展过程中存在的问题,认识到超限高层建筑工程抗震设计的重要性。完善超限高层建筑的抗震设计是人民生命财产安全的重要保证,也是社会发展的需要所在。

三、超限高层建筑工程抗震设计的原则和基本内容

1、超限高层建筑工程抗震设计的原则

在建筑物抗震设计上,我国遵循这样三条原则“:小震不坏、中震可修、大震不倒”。 第一,小震不坏。当建筑物遇到多遇地震时,其结构没有遭受到损坏,无需修理就可以继续使用。在这个原则下,一般是对建筑结构的承载力进行验算,是建筑工程抗震设计第一阶段的弹性设计。第二,中震可修。当建筑物遇到设防地震时,建筑物可能发生一定程度的损坏,经过修补之后就可以继续投入使用。这要求建筑设计时考虑到建筑结构的非线性弹塑性变形和承载力,是第二阶段的弹塑性变形验算。第三,大震不倒。当遭受到罕遇地震影响时,建筑物不会发生倒坍等威胁人民生命财产安全的重大事故。这一阶段的设计是前面两个阶段验算和设计的分析过程,并采取相应的抗震措施和技术来提高建筑物的抗震性能。

2、基本内容

第一,当超限高层建筑物采用钢筋混凝土框架结构和抗震墙结构时,其高度不得超过《建筑抗震设计规范》规定的最大适用高度。当采用的是抗震墙结构和筒体结构时,建筑工程为 9 度设防时,其高度不得超过《建筑抗震设计规范》规定的最大适用高度;建筑工程为 8 度设防时,其最大高度应是《建筑抗震设计规范》规定最大适用高度的120%;建筑工程为 7 度和 6 度设防时,其最大高度应是《建筑抗震设计规范》规定最大适用高度的 130%。第二,超限高层建筑物设计时,其高度、高宽比和体型规则性这三者中至少有一项需要满足《建筑

抗震设计规范》的要求。第三,在进行抗震设计时,至少要采用两种力学模型来计算分析建筑物的受力情况,其计算程序需要经过有关行政部门的鉴定许可。第四,为保证超限高层建筑的安全性,应采取比《建筑抗震设计规范》更严格的抗震措施。第五,当超限高层建筑物有明显薄弱层时,还应进行结构的弹塑性时程分析。

四、超限结构抗震设计要点

1、高度和高宽比超限建筑

a. 尽可能采用适用高度较高的结构类型, 如钢筋混凝土框架结构房屋高度超限时, 可改用框架-剪力墙结构。

b. 验算结构整体抗倾覆稳定性, 验算在侧向力最不利组合情况下桩身是否会出现拉力或过大的压力, 并进行风荷载或地震作用下的舒适度验算, 控制顶点位移及层间侧移, 当侧移无法满足要求时, 可考虑利用建筑设备层和避难层空间, 沿竖向设置若干层伸臂桁架或腰桁架。

c. 适当降低底部竖向构件在最不利荷载组合下的轴压比并加强配筋, 当轴压比不满足要求且构件截面再增大有困难时, 可采用钢或其它组合构件与混凝同组成的结构。

d. 要有足够的埋置深度, 考虑重力二阶效应, 并进行风荷载作用下的舒适度验算。

2、平面规则性超限建筑

a. 采用弹性楼盖模型, 或按分块刚性楼板+局部弹性板进行计算, 并考虑扭转耦联效应。

b. 对于凹凸不规则和楼板局部不连续的情况,采取符合楼板平面内实际刚度变化的弹性楼板计算模型。

c. 对于楼板应力集中部位( 凹凸部位及洞口四角) 和弱连接的楼板, 应采用加大楼板厚度、增加板内配筋、配置集中配筋的边梁、配置 45°斜向钢筋等方法予以加强。凹口部位可增设部分拉梁或拉板, 以改善这些薄弱部位的刚度和延性, 提高其抗震性能。

d. 当平面过于不规则、楼板连系过弱或建筑物超长时, 可通过设置变形缝将结构分成若干个子结构。对结构扭转效应明显的超限高层建筑, 应尽量使抗侧力构件在平面布置中对称、均匀, 避免过大偏心,并尽量加大竖向构件的抗侧刚度和强度。

3、竖向规则性超限建筑

a. 立面收进引起超限, 如有可能则宜采用台阶形多次内收的立面, 确保结构位移沿竖向没有突变,并使结构扭转效应控制在合理范围内; 宜加强收进部位的竖向构件及楼板; 立面收进若造成偏心, 则底部结构会因扭转而产生较大内力, 故应加强底部周边构件的配筋, 并补充进行静力非线性分析和时程分析, 验证结构的抗震性能, 确定结构的薄弱部位。

b. 连体建筑的连体部位及其周边应采用弹性楼板计算, 并控制连接部位的层数, 且两塔楼层刚度差异不宜过大, 连接体与主体宜用弱连接,如铰接等;连接体结构自身重量应尽量减小, 故应优先采用钢结构或型钢混凝土结构等。

c. 对于立面开大洞的建筑, 应加强洞口四角及洞边, 避免在小震时洞角开裂。

d. 对于悬挑建筑, 应考虑竖向地震作用; 当悬挑质量较大时, 应避免偏心造成的扭转。

e. 对于带转换层的高层建筑, 尽量避免多级复杂转换, 优先采用梁式转换, 慎用厚板转换。尽量强化和提高转换层下部结构侧向刚度、抗震承载能力和延性, 并控制转换层的设置高度; 结构分析时除检查结构位移和刚度有无突变外, 还应重点检查框支柱所承受的地震剪力和轴压比; 采取有效措施减少转换层上、下结构等效剪切刚度和承载能力的突变;加强转换层楼板、转换构件、框支梁、框支柱、框支层上部剪力墙(包含筒体)及落地剪力墙(包含筒体)的抗震构造措施。

五、结束语

随着抗震技术和理念的快速发展,抗震设计的重要性也日益凸显出来,而超限高层建筑工程结构复杂,抗震设计要求高,这也就要求设计者必须不断提高自身知识修养,借鉴他人抗震设计经验,运用最新抗震技术和措施提高建筑物的抗震性能。转变思想观念,多方面借鉴相关知识和概念,从其他地方激发设计灵感,转变刚性为主的抗震模式,努力实现抗震设计理念的创新,开创超限高层建筑工程抗震设计的新局面,为老百姓打造更加安全的建筑物。

参考文献:

[1] 徐培福 戴国莹:《超限高层建筑结构基于性能抗震设计的研究》,《土木工程学报》,2005年01期

[2] 侯伟雄:《提高建筑物抗震性能措施探讨》,《科技风》,2010年11期

高层建筑抗震设计规范范文第4篇

关键词:高层建筑结构;抗震设计;问题分析;优化设计

中图分类号:[TU208.3] 文献标识码:A 文章编号:

1 高层建筑抗震设计的必要性

自上世纪世纪70年代以来,从唐山地震到汶川地震及玉树地震的发生,结构工程师在总结历次地震灾害的经验中逐渐认识到宏观的“概念设计”比以往的“数值设计”对工程结构抗震来说,更为重要,因此,人们对于概念设计愈来愈重视。抗震概念设计就是从结构总体方案设计一开始,就运用人们对建筑结构抗震已有的正确知识去处理好结构设计中遇到的诸如房屋体型、结构体系、刚度分布、构件延性等问题,从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施,从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。概念设计要求下程师运用思维和判断力,根据从大量震害经验得出的结构抗震原则,从宏观上确定结构设计中的基奉问题。因此,工程师必须从主体上了解结构抗震特点,振动中结构的受力特征,抓住要点,突出主要矛盾,用正确的概念来指导概念设计,才会获得成功。

2 我国高层建筑抗震设计中的一些问题

2.1 高度问题

按我国现行高层建筑混凝土结构技术规程(JGJ3―2002)规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。这个高度是我国目前建筑科研水平、经济发展水平和施下技术水平下。较为稳妥的,也是与目前整个土建规范体系相协调的。可实际上,已有许多混凝土结构高层建筑的高度超过了这个限制。对于超高限建筑物,应当采取科学谨慎的态度:一要有专家论证,二要有模型振动台试验。在地震力作用下,超高限建筑物的变形破坏形态会发生很大的变化。因为随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。

2.2 材料的选用和结构体系问题

在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。我国150m以上的建筑,采用的何种主要结构体系(框一筒、筒中筒和框架一支撑体系),都是其他国家高层建筑采用的主要体系。在高层建筑中,应注意结构体系及材料的优选。现在我国钢材生产数量已较大,建筑钢材的类型及品种也在逐步增多,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,弗改善结构的抗震性能。在超过一定高度后,由于钢结构质量较小而且较柔,为减小风振需要采用混凝土材料,钢骨(钢管)混凝土,通常作为首选。

2.3 抗震设防烈度较低

许多专家学者提出,现行的建筑结构设计安全度已不能适应国情的需要,认为我国“取用了可能是世界上最低的结构设计安全度”,并主张“建筑结构设计的安全度水平应该大幅度提高”。此外,对于“小震不坏,中震可修,大震不倒”这个抗震设计原则,在新形势下也有重新审核的必要。我国现行抗震设防标准是比较低的,中震相当于在规定的设计基准期内 (50a)超越概率为10%的地震烈度。我围建筑结构抗震设计除了设防烈度较低外,具体抗震计算方法和构造规定的安全度也不如国外,在配筋率、轴压比、梁柱承载力匹配等一系列保证抗震延性的要求上远不如国外严格。随着社会财富的增长,结构失效带来的损失愈来愈大,加之结构造价在整个投资中的比例下降,因而有人主张结构在设防烈度下应该采用弹性设计。

3我国高层建筑结构抗震的具体设计

3.1 高层建筑结构抗震设计应重视建筑结构的规则性

在高层建筑中,结构的均匀性主要体现在以下几个方面:

(1)高层建筑主体抗侧力结构两个主轴方向的刚度要比较接近、变形特性要比较相近。这是因为实际的高层建筑结构都是三维的,实际的地震作用、风荷载具有任意的方向性,高层建筑主体抗侧力结构两个主轴方向的刚度比较均匀,就能具有比较良好的抗震、抗风性。

(2)高层建筑主体抗侧力结构沿竖向断面、构成变化比较均匀,不要突变。这里主要是指主体结构的层剪切刚度不要突变,这种均匀的高层建筑结构可以避免因薄弱层的破坏而引起的结构整体破坏,尤以强震区的高层建筑结构需特别注意。

(3)高层建筑主体抗侧力结构的平面布置,应注意同一主轴方向各片抗侧力结构刚度尽量均匀,应避免在主体结构的布置中设置一、二片刚度特别大而延性较差的结构,如长窄的实体剪力墙。此时,即使结构仍满足对称性和刚度的要求,但由于个别结构刚度巨大,地震发生时,将首先吸收极大的能量,应力特别集中,容易首先招致破坏,从而引起整体结构的破坏。同一主轴方向的各片抗侧力结构刚度均匀,水平荷载作用下应力分布将比较均匀,有利于结构抗震延性的实现。

3.2合理的建筑结构体系选择

高层建筑结构体系选择是结构设计应考虑的关键问题,结构方案的选取是否合理,对安全性和经济性起决定的作用。

3.2.1结构体系应具有明确的计算简图和合理的地震作用传递途径

①高层建筑楼屋盖梁系的布置,应尽量使垂直重力荷载以最短的路径传递到竖向构件墙、柱上去。②竖向构件的布置,应尽量使竖向构件在垂直重力荷载作用下的压应力水平按近均匀,以避免竖向构件之间压应力的二次转移。而垂直重力荷载下竖向构件压应力水平接近均匀是最合理优化的结构选择。③)转换结构的布置,应尽量做到使卜部结构竖向构件传来的垂直重力荷载通过转换层1次至多2次转换,即能传递到下部结构的竖向构件上去。④整体抗侧力结构必须体系明确,传力直接。抗侧力结构一般由框架、剪力墙、简体、支撑等组成,它们宜尽量贯通连续,若它们沿竖向要有变化,则变化要缓慢均匀。

3.2.2结构体系宜有多道抗震防线

框架一剪力墙结构是具有良好性能的多道防线的抗震结构,其中剪力墙既是主要抗侧力构件,又是第一道抗震防线。因此,剪力墙应有相当数量,其承受的结构底部地震倾覆力矩不应小于底部总地震倾覆力矩的50%。同时,为承受剪力墙开裂后重分配的地震作用,任一层框架部分按框架和墙协同工作分配的地震剪力,不应小于结构底部总地震剪力的20%和框架各层地震剪力最大值的1.5倍两者的较小值。剪力墙结构中剪力墙可以通过合理设置连梁(包括非建筑功能需要的开洞)组成多肢联肢墙,使其具有优良的多道抗震防线性能。连梁的刚度、承载力和变形能力应与墙肢相匹配,避免连梁过强而使墙肢产生较大拉力而过早出现刚度和承载力退化。一般情况下,联肢墙宜采用弱连梁。

3.2.3结构体系宜具有合理的刚度

高层建筑结构设计的重要指标之一是主体抗侧力结构的刚度合理。首先,主体抗侧力结构的刚度要满足规范规定的水平位移、整体稳定、强度延性的要求,保证高层建筑结构能正常工作,这是高层建筑主体抗侧力结构刚度的下限值,必须满足。但是,总结工程设计经验,高层建筑主体抗侧力结构的刚度不宜过大,应该合理,这是因为:①合理的高层建筑主体抗侧力结构刚度以满足和略大于规范限值即可,结构的延性和安全储备主要依靠合理的结构构造和精心的设计。②主体抗侧力结构刚度过大,结构的基本自振周期较短,地震作用加大,结构承受的水平力、倾覆弯矩加大,地基基础的负担加大,此时结构的截面和相应的构造配筋增加较大,不经济。

4抗侧力结构和构件的延性设计

为提高结构和构件的延性水平,避免脆性破坏,应注意以下几点:

(1)钢筋混凝士框架结构应设置为“强柱弱梁”。

(2)剪压比限制。现行的钢筋混凝土构件斜截面受剪承载力的设计表达式,是基于斜截面上箍筋基本能达到抗拉屈服强度,其受剪承载力随配箍特征值的增长呈线性关系。试验表明,配箍特征值过大时箍筋不能充分发挥其强度,构件将呈腹部混凝土斜压破坏;同时剪压比对构件变形性能也有显著影响,因此限制剪压比,实质上也是对构件最小截面的要求。

(3)钢筋混凝土框架的梁、柱应避免剪切破坏,即形成“强剪弱弯”。

(4)轴压比限制。轴压比是控制偏心受拉边钢筋先到抗拉强度,还是受压区混凝土边缘失达到其极限压应变的主要指标。试验研究表明,柱的变形能力随轴压比增大而急剧降低,尤其在高轴压比下,增加箍筋对改善柱变形能力的作用并不共明显。所以,抗震结构应限制偏心受乐构件的轴压比。

(5)注意其他影响构件延性的因素,如剪跨比、纵向钢筋配筋率、配箍率和箍筋型式、混凝土和钢筋材料、钢筋连接和锚同方式等,均应满足抗震设计规范要求。

参考文献:

【l】赵西安.现代高层建筑结构设计【M】.北京:科学出版社,2000.

高层建筑抗震设计规范范文第5篇

关键词:高层建筑;抗震;结构设计;探讨

中图分类号:[TU208.3]文献标识码:A文章编号:

1 高层建筑发展概况与存在问题

80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。

我国高层建筑的结构材料一直以钢筋混凝土为主。随着设计思想的不断更新,结构体系日趋多样化,建筑平面布置与竖向体型也越来越复杂,出现了许多超高超限钢筋混凝土建筑,这就给高层建筑的结构分析与设计提出了更高的要求。尤其是在抗震设防地区,如何准确地对这些复杂结构体系进行抗震分析以及抗震设计,已成为高层建筑研究领域的主要课题之一。

2 建筑抗震的理论分析

2.1 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2高层建筑结构抗震结构设计分析

设计阶段的结构动力特性分析。高层建筑进入初步设计阶段后,首先按方案阶段确定的结构布置进行计算分析。计算模型取自±0. 000至塔顶,假定楼板为平面内刚度无限大,其地震反应分析基本参数列于,以及可以看出,随着楼层高度的增加,结构X方向(纵向)自振周期及地震力基本正常,而结构Y方向(横向)自振周期偏长、结构刚度偏低,对应于水平地震作用的剪力较小,结构的抗震能力偏弱,结构偏于不安全。为增加Y方向(横向)的抗侧移刚度,提高其抗震能力,在现代高层建筑的设计中,可以在建筑核心筒的两侧增设四道剪力墙。根据《高层建筑混凝土结构技术规程》(JGJ3-2002)和《建筑抗震设计规范》(GB50011-2001),抗震设计时,框架-剪力墙结构中剪力墙的数量必须满足一定要求,在地震作用时剪力墙作为第一道抗震防线必须承担大部分的水平力。但这并不意味着框架部分可以设计得很弱,而是框架部分作为第二道防线必须具备一定的抗侧力能力,在大震作用下第一道抗震防线剪力墙遭受破坏时,整个结构仍具备一定的抵抗能力,不至于立即破坏倒塌,这就需要在结构计算时,对框架部分所承担的剪力进行适当调整。

3结构抗震设计方法探讨。

3.1结构抗震设计的基本步骤。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段设计:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段设计:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值,并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.2结构抗震设计方法

3.2.1基础的抗震设计

基础是实现高层建筑安全性的重要条件。我国高层建筑通常采用钢筋混凝土连续地基梁形式,在基础梁的设计中,为充分发挥钢筋的抗拉性和混凝土的抗压性的复合效应,把设计重点放在梁的高度和钢筋的用量上,在钢筋的布置上采用主筋、腹筋、肋筋、基础筋、基础辅筋5种钢筋的结合。为防止基础钢筋的生锈,一方面采用耐酸化的混凝土,另一方面是增加钢筋表面的保护层厚度,以抑止钢筋的腐蚀。高层建筑基础处理的另一个特色是钢制基础结合垫块的应用,它是高层建筑上部结构柱与基础相连的重要结构部件。它的功能之一是使具有吸湿性的混凝土基础和钢制结构柱及上部建筑相分离,有效防止结构体的锈蚀,确保部件的耐久性。

3.2.2钢结构骨架的抗震设计

采用钢框架结合点柱壁局部加厚技术来提高结构抗震性能。一般钢框架结构,梁和柱结合点通常是柱上加焊钢制隅撑与梁端用螺栓紧固连接。在这种方式下,钢柱必须在结合部被切断,加焊隅撑后再结合,这样做技术上的不稳定性和材料品质不齐全的可能性很大,而且遇到大地震,钢柱结合部折断的危险性很大。鉴于此,可以首先该结构的梁柱采用高密度钢材,以发挥其高强抗震、抗拉和耐久性。柱壁增厚法避免断柱形式,对二、三层的独立住宅而言,结构柱可以一贯到底,从而解决易折问题。与梁结合部柱壁达到两倍厚,所采用的是高频加热引导增厚技术。在制造过程中品质易下降的钢管经过加热处理反而使材料本来所具有的拉伸强度得以恢复。对于地震时易产生的应力集中,柱的增厚部位能发挥很大的阻抗能力,从而提高和强化了结构的抗震性。

3.2.3墙体的抗震设计

“三合一”外墙结构体系,首先是由日本专家设计应用的,采用外墙结构柱与两侧外墙板钢框架组合形成的“三合一”整体承重的结构体系。该体系不仅仅用柱和梁来支撑高层建筑,而是利用墙体钢框架与结构柱结合,有效地承受来自垂直方向与水平方向的荷载。由于外墙板钢框架的补强作用,该做法可以较好地发挥结构柱设计值以外的补强承载力。加强了对竖向地震力及雪荷载的抵抗能力,最大限度地发挥其抗震优势;另一方面,由于外墙板钢框架与内部斜拉杆所构成“面”承载与结构柱的结合并用,也提高了整体抗侧推力和抗变形能力。它的抗水平风载和地震力的能力比单纯墙体承重体系提高30%左右。

4增大结构抗震能力的加固与改造技术

建国几十年来,我国的抗震加固与改造技术得到了飞速发展。1976年唐山地震后,砌体结构抗震加固的问题日益突出,砌体结构抗震性能不好:砌体墙体抗震能力、变形性能的不足、房屋整体性不好。因此,增大墙体抗震性能的外包钢筋混凝土面层、钢筋网水泥砂浆面层加固技术及增大结构整体性的压力灌浆加固技术、增设圈梁(构造柱)加固技术、拉结钢筋加固技术;通过增设抗震墙来降低抗震能力薄弱构件所承受地震作用的增设墙体技术等应运而生。目前该技术广泛用于砌筑墙体的加固。

常见的混凝土柱加固技术有加大截面加固技术、外包钢加固技术、预应力加固技术、改变传力途径加固技术、加强整体刚度加固技术、粘钢加固技术以及碳纤维加固技术等。这些绝大部分都是经过长期实践检验可靠性比较高的技术,已收入国家标准《混凝土结构加固技术》(cecs25—90)。此类技术不仅有比较充分的理论依据,规范还提供了详细的计算公式。如混凝土柱的外包钢法加固技术,开始阶段的计算方法是分别计算混凝土柱和外包钢,外包钢按钢结构计算:当外包装的缀板加密并出现湿式的施工方法时,其计算按整体构件考虑;当缀板施加。

5结语

高层建筑已经逐渐成为当前时代建筑发展的主流建筑形态之一,对于高层建筑,其抗震效能的分析一直是国内外建筑抗震设计分析的研究热点,而最直接最有效的抗震措施就是在建筑设计阶段进行结构抗震设计,只有从高层建筑物内部实施结构抗震,才能够从根本上提高高层建筑的抗震效能。本论文从高层建筑结构设计的角度进行了抗震分析,对于具体的高层建筑抗震设计具有一定指导和借鉴意义。

参考文献:

[1]李忠献.高层建筑结构及其设计理论[M].北京:科学出版社,2006.