前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇管道结构设计规范范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:剪力棒 高墩长悬挑盖梁 支架 检算
中图分类号:U445 文献标识码:A 文章编号:1674-098X(2014)10(b)-0098-06
1 工程概况
乌鲁木齐市外环快速路道路扩容改建工程(二期)A1标段主线Pn2001~Pn2037共37片盖梁因处于山坡地带、两侧为既有道路,且墩柱高度较高、下部地基承载力差等原因,无法采用满堂支架法施工盖梁,根据现场场地受限的实际情况在墩柱顶部预留孔洞采用剪力棒法施工盖梁。
2 盖梁支架结构
由于墩高较高,盖梁的施工采用三角斜腿托架支撑的形式。墩身上预留孔洞按图穿插剪力棒,将三角托架通过剪力棒销接于哑铃型墩身上。剪力棒直径为100 mm,剪力棒上下间距1.6 m,横向中心间距2.7 m。然后在三角托架上部放置工字钢垫梁,垫梁上放置贝雷梁组合架,贝雷梁组合架上放置I16工字钢分配梁,分配梁上支立间距为60×60 cm的碗扣支架,碗扣支架上放置I14的工字钢横梁,横梁上放置定型钢模底模板,这样就搭设好了整个盖梁的施工平台。如图1所示(未示碗扣支架)。
3 设计荷载
盖梁为变截面盖梁,最高处为2.549 m,最矮处为1.669 m,长度为17.5 m,混凝土一次浇筑完成。
钢筋混凝土容重取为26.5 kN/m3。
4 设计控制因素
(1)挠度控制:最大挠度控制在L/400以内。(2)受力控制:Q235B型钢按150 MPa控制,碗扣支架立杆在步距60c m的情况下容许值按[N]=40 kN计算。
5 碗扣支架受力计算
由于该梁为变高截面,按最大梁高处计算碗扣钢管承载力。梁高为2.549m,钢管间距0.6×0.6m,单根钢管承担的混凝土重量;NG=1.3×2.549×0.6×0.6×26.5=31.6kN
6 分配梁计算
6.1 分配梁受力情况
分配梁采用I16工字钢,垂直分布在贝雷梁组合结构顶面,图2所示。
根据盖梁的截面积可以计算出,单根立杆承载情况如下:中间两根立杆承受的盖梁混凝土面积是2.8 m2,分配梁间距是60 cm,那么该部分混凝土荷载就是:
2.8m×0.6m×26.5kN/m3×1.2≈54kN
则每根立杆承受的荷载就是27kN。对于外侧两根立杆,主要承受模板荷载及部分混凝土荷载,最外边立杆受力按5kN考虑,次外边的立杆按15 kN考虑,那么可以根据该受力情况进行分配梁的计算。
6.2 分配梁结构计算
6.2.1 分配梁计算模型
见图3。
6.2.2 分配梁反力
见图4。
从分配梁的反力可知,单侧的两片贝雷梁受力完全不同,因此在施工时,两片贝雷梁需要并列放置,并单独加工横向连接支撑架,并与桥墩另外一侧的两片贝雷梁一同连接起来,形成共同受力体系。如果两片贝雷梁并列放置,那么可以看作是共同受力,从上面的计算可知,两片贝雷梁承受的竖向力之和是5.6t-0.9t=4.7 t,那么每片贝雷梁承受的荷载就是2.35 t(每60cm间距),均布荷载大小就是:2.35 t÷0.6m=3.92 t/m。
6.2.3 分配梁位移
见图5。
可见,分配梁的位移很小,即碗扣支架立杆的竖向位移很小,能够满足要求。
6.2.4 分配梁应力
见图6。
分配梁的应力最大是58 MPa,小于容许值150 MPa,能够满足要求。
6.3 贝雷梁结构计算
6.3.1 贝雷梁计算模型
为简化计算,将贝雷梁看做单根梁进行计算,而不是看做桁架进行计算,贝雷梁的刚度I=250497.2cm4,采用工字钢模拟刚度进行检算。贝雷梁承受的均布荷载最大处是3.92 t/m(按4 t/m计算),端部则是3 t/m,如图7所示:
6.3.2 贝雷梁反力
见图8。
单片贝雷梁的支撑反力是28.1t,那么三角架承受的荷载就是2×28.1t=56.2t。
6.3.3 贝雷梁位移
见图9。
6.3.4 贝雷梁弯矩
见图10。
贝雷梁最大弯矩是55 tm,小于容许值78 tm,能够满足要求。
6.3.5 贝雷梁剪力
见图11。
贝雷梁最大剪力是20 t,小于容许值24 t,能够满足要求。
7 三角托架计算
7.1 三角托架受力情况
三角托架焊接为一个整体结构,在桥墩的单侧采用双25 b槽钢焊接而成,采用剪力棒与墩身预留孔洞相连,三角托架上放置横向的工字钢垫梁,垫梁上则放置的是贝雷梁,图12所示。
7.2 三角托架上垫梁受力计算(图13)
工字钢垫梁采用双25 b槽钢,承受贝雷梁传递的集中荷载28.1 t,应力计算双25 b槽钢垫梁的组大应力是127.3 MPa,小于150 MPa,满足要求。
7.3 三角托架受力计算
7.3.1 计算模型
见图14。
7.3.2 位移
见图15。
最大位移2 mm。
7.3.3 应力
见图16。
最大应力110 MPa,小于容许应力150 MPa,满足要求。
7.3.4 反力
见图17。
上端剪力棒承受的力是58 t,下端则承受的是水平及竖向力的合力82 t。用此力来进行剪力棒的检算。
8 剪力棒计算
从上面的三角架计算可知,剪力棒承受的最大荷载是82 t,由于三角架杆件是双25 槽钢口对口焊接而成,剪力棒承受的荷载图18所示。
剪力棒的直径是100 mm,承受82 t的剪切力荷载,那么剪力棒的剪应力是:
τ=1.5×820kN×(3.14×100mm×100mm
÷4)=157MPa
采用Q345B材质,其抗剪容许应力是160 MPa,满足要求。
9 墩柱偏心受压检算
9.1 计算荷载
由于三角托架安装好后,承受贝雷梁传递的荷载,而三角托架传递给墩柱的则是偏心受压荷载,偏心距是2.055 m,偏心力是56.2 t×2=112.4 t。下面根据墩柱的配筋进行其偏心受压计算:
偏心弯矩M=231 tm;竖向力N=112.4 t。
9.2 设计资料(图19)
混凝土:C30fc=14.30 N/mm2
主筋:HRB335(20MnSi)fy=300N/mm2Es=2.000×105N/mm2
箍筋:HRB335(20MnSi)fyv= 300N/mm2
受拉钢筋合力中心到近边距离as=35 mm
尺寸:b×h×l0=2000×1500×20000 mm
h0=h-as=1465mm
弯矩Mx:2310.00kN・m
压力设计值:N=1124.00kN
配筋方式:对称配筋
9.3 计算结果
9.3.1 主筋,
(1)计算偏心距ei
附加偏心距,按混凝土结构设计规范7.3.3,取20 mm和偏心方向截面最大尺寸的1/30两者中的大值。
ea=max(20,h/30)=50.00mm
ei=e0+ea=2055+50.00= 2105.00mm
按混凝土结构设计规范7.3.10-2
=19.08>1,取ζ1=1.0
按混凝土结构设计规范7.3.10-3
ζ2=
1.02
因为l0/h=13.33
按混凝土结构设计规范7.3.10-1
η=
=×
1.09
按混凝土结构设计规范7.3.4-3,轴向压力作用点至纵向受拉钢筋的合力点的距离:
e=ηei+h/2-as=1.09×2105.00+ 1500/2-35=3006.03mm
轴向压力作用点至纵向受压钢筋的合力点的距离:
e's=ηei-h/2+as'=1.09×2105.00 -1500/2+35=1576.03mm
(2)相对界限受压区高度ξb。
按混凝土结构设计规范7.1.2-5
εcu=0.0033-(fcu,k-50)×10-5=0.0033
-(30-50)×10-5=0.0035>0.0033
取εcu=0.0033
按混凝土结构设计规范公式(7.1.4-1)
ξb=
=0.55
(3)配筋率范围。
抗震等级为非抗震结构,按混凝土结构设计规范10.3.1ρmax=0.050
按混凝土结构设计规范9.5.1,取ρmin=0.0060
(4)计算ξ。
按混凝土结构设计规范7.1.3 α1= 1.00
按混凝土结构设计规范式7.3.4-1
N≤α1fcbx+f'yA's-σsA
当采用对称配筋时,可令
f'yA's=σsA
因此
ξ=
=0.0268
(5)计算As。
按照混凝土结构设计规范7.2.5,有
As=
=4129.28mm2
取As=9000.00mm2
实际配筋:
15B32+15B32,As=24127.43mm2
可见满足要求。
9.3.2 计算箍筋
按混凝土结构设计规范10.3.2,实际配置箍筋
B16@100
其中s为箍筋间距,Asv为箍筋总面积
9.3.3 轴心受压构件验算
(1)计算钢筋混凝土轴心受压构件的稳定系数。
l0/b=20000/1500=13.33
其中b为截面的短边尺寸
查混凝土结构设计规范表7.3.1并插值得=0.930
(2)验算垂直于弯矩作用平面的受压承载力。
按混凝土结构设计规范7.3.1
Nu=0.9(fcA+2f'yA's)
=0.9×0.930×(14.30×3000000.00+2×300.00×24127.43)
=48024096.14N>N=1124000N
可见满足要求。
经过设计检算,拟采用穿剪力棒法满足盖梁受力要求,可以组织施工。
10 剪力棒法盖梁施工工艺
10.1 预留孔设置
当墩柱浇注至预留孔设计高度时,在相应位置预埋,管径为110mmPVC管,预留管安装位置为盖梁底部以下380 cm、540 cm,预留孔距墩柱外侧为34.5 cm。需注意的是预留管安装前管口封口,避免混凝土充填。
10.2 拖架的预压
托架预压的目的是:(1)通过预压的手段检验支架整个系统的结构受力的情况,确保支架在施工过程中绝对安全;(2)通过预压掌握支架的弹性变形和非弹性变形的大小,更加准确地掌握支架的刚度等力学性能,控制立模标高,确保盖梁施工质量、标高满足设计和规范要求。
10.3 底模调校
根据预压结果调整底模高程,底模高程调整通过调整钢管顶托来实现:先用水准仪从水准点把标高引到任意一个柱顶上,然后把仪器架在另一个柱顶上调校底板标高,调校时按照从一端到另一端的顺序依次调校(测量时应测每两块模板接缝处),调校时考虑弹性变形影响预留超高值,底板调校完毕后应再复测一次,确保高程准确。使用全站仪在墩柱上放出盖梁中心线,调整盖梁底模板使盖梁底模板中线与放样线重合。底模调校完毕后应对柱顶混凝土进行凿毛清洗处理,凿毛后的柱顶标高应高于底板1~2 cm,以便柱头嵌入盖梁内,最后对底模涂刷脱模剂。
10.4 盖梁钢筋骨架及预应力筋的制作与安装
盖梁钢筋骨架在钢筋加工场焊接绑扎完成,首先是钢筋主骨架的绑扎,钢筋主骨架采用在已硬化好的地面上用墨线按设计骨架尺寸在地面上画出主骨架尺寸,按样图进行骨架焊接,以保证骨架钢筋偏差控制在允许偏差范围内。在绑扎主骨架时,可用碗扣支架及I16工字钢搭设安装平台。待安装好主骨架钢筋后,需按设计要求安装预应力波纹管道,波纹管的安装严格按预应力钢束坐标布置,偏差在规范允许范围内,以确保孔道直顺、位置准确。在孔道布置中要做到:不死弯,不压、挤、踩、踏,防损伤;发现波纹管损伤,及时以胶带或接头管封堵,严防漏浆。坐标定位后,按设计要求间距焊接定位网片,使钢束成为一圆顺的曲线。孔道安装固定完成后,进行钢绞线穿束。穿束时需多人配合进行穿束对编好束的钢绞线进行,穿束的过程中要随时注意平衡使劲,避免盲目的用劲,导致波纹管位置发生偏移。穿束时还应注意,两端外露的钢绞线长度保持一致。根据实际情况,考虑孔道长度、千斤顶、锚具和端头预留长度等因素,一般下料长度按孔道长度加2×85 cm计算。完成上述工作后,用炮车将加工好的成型的盖梁钢筋骨架运至工地现场,采用合适的吊车进行起吊。起吊时应布置合理的吊点,采用工字钢作为扁担起吊,以免骨架变形。
10.5 盖梁模板制作安装
为了使成品混凝土外光内实,盖梁模板采用定型钢模。盖梁钢筋定位后,支立侧模,盖梁侧模为大块定型钢模,前后对拉杆定位,模板外纵横设槽钢背肋。底模与侧模连接,不得有错台。连接处夹双面海绵胶条,以防漏浆,外模加固通过底模下设置钢筋拉杆和梁顶设置拉杆来实现。安装端模时将波纹管逐根入内,锚垫板安装完成后,应检查波纹管是否处于正确位置。盖梁中的各种预埋件应在模板安装时一并埋设,并采取可靠的稳固措施,确保安装位置准确。
10.6 混凝土浇筑
盖梁混凝土按照“由中间向两侧” 对称浇筑的顺序进行。盖梁混凝土浇筑前,应复核墩顶标高、平面尺寸、预拱度设置是否符合设计要求,检查波纹管、预埋件的位置是否正确,波纹管表面是否有孔洞,发现孔洞用胶带密封,以防浇筑砼时砂浆漏进波纹管内。锚垫板位置确保垂直于管道轴线,与模板间紧密,堵塞严密不漏浆。混凝土商品砼,采用自转式砼罐车运送至现场,泵送入模。盖梁混凝土应在砼初凝前一次浇筑完成,并注意加强,保证砼密实。振捣时要注意不触及波纹管和锚具,砼浇筑过程中要派专人检查模板、固定螺栓和支撑是否有松动和脱落,发现异常情况,及时处理。在混凝土浇筑完成后,及时养护。采用洒水养护,盖梁顶覆盖塑料薄膜,其上加无纺布保湿、保温,洒水次数应能保持砼表面充分湿润,养生时间一般为7天,每天洒水次数视环境湿度与温度控制,洒水以能保证混凝土表面保持湿润状态为好,养生期内不得使砼受外力作用。
10.7 预应力施工
盖梁混凝土强度达到设计强度的100%,且龄期不小于7 d时,可按设计要求进行张拉。张拉前对千斤顶和油泵、油表(一泵两块)进行配套标定,并计算出张拉力、油压关系曲线公式,选取具有国家专业资格认证的试验检测单位进行标定。张拉前清理干净锚具、垫板接触处板面的混凝土残渣。在张拉位置搭设简易支架或吊架,配以导链等将千斤顶就位。张拉钢绞线束要对称张拉,采用双控,以张拉力为主,伸长量作为校核,伸长量误差容许在±6%以内。张拉前进行管道摩阻、喇叭口摩阻等预应力瞬时损失测试,根据试验测得结果调整张拉力。当张拉完毕油表回零后,钢绞线回缩量允许回缩6 mm,当超过此值,则认为滑丝,必须进行处理并补足吨位锚固。
10.8 管道真空压浆
张拉完毕后在24 h内进行压浆,压浆采用PE真空辅助压浆技术,压浆设备选用UB-3型水环真空泵4台及其配套灌浆泵、阀门等设备。压浆前管道内应清除杂物及积水,压入管道的水泥浆应饱满密实,强度等级不小于设计。
10.9 锚穴式封端
将露出锚具外部多余的预应力钢绞线采用砂轮机切割,严禁使用电焊机切割。对锚具进行防水、防锈处理,然后设置锚穴内钢筋网,微膨胀砼进行封端。封端时把梁端上面横隔墙以及下面横隔墙上边缘处钢筋凿露出来,把梁体纵向钢筋顺桥中线调直,或者用φ12的钢筋弯成L型与梁体钢筋焊接接长,焊接长度为6cm。端部砼接口砼凿毛,清扫凿除的砼表面浮碴,绑扎封端钢筋网片。伸缩缝预埋板安装,立模灌筑砼。
10.10 模板与支架拆除
当盖梁混凝土抗压强度达到2.5 Mpa时,并保证不致因拆模而受损坏时,可拆除盖梁侧模板。拆模时,可用锤轻轻敲击板体,使之与混凝土脱离,再用吊车拆卸,不允许用猛烈地敲打和强扭等方法进行,并吊运至指定位置堆放。模板拆除后,及时清理模板内杂物,并进行维修整理,以方便下次使用。一般在张拉压浆完成两天后即可拆除支架,遵循从“跨中向支座依次循环卸落支架”的原则,具体拆除的顺序:先拆除跨中部分,然后由中间向两边对称拆除,使盖梁逐渐受力,防止因突然受力引起裂纹等。
11 结语
剪力棒法在市政高墩盖梁上的应用,为项目节约了大量的周转材料,缩短了施工周期,加快了施工进度。实践证明市政高架桥梁在场地受限的地理条件下,高墩长悬挑盖梁施工中是完全适用的。
参考文献
[1] 混凝土结构设计规范.GB50010-2010[S].
关键词:铁路设计 铁路桥梁 建筑设计 基理计算
在本设计中高速列车活载采用ZK标准活载,计算中参照规范《京沪高速铁路设计暂行规定》将其换算成均布荷载。其中,预应力钢筋采用ASTM A416―97a标准的低松弛钢绞线(1×7标准型),抗拉强度标准值,抗拉强度设计值,公称直径15.24mm,公称面积139mm2,弹性模量;锚具采用夹片式群锚,预埋金属波纹管后张法施工。非预应力钢筋:HRB335级钢筋,抗拉强度标准值,抗拉强度设计值,弹性模量。混凝土:主梁采用C50混凝土,抗压强度标准值,抗压强度设计值,抗拉强度标准值,抗拉强度设计值,弹性模量。
一、预应力钢筋面积的估算
估算公式:(11)
(12)
式中:Ms――按作用(荷载)短期效应组合计算的弯矩值;
w――构件全截面对抗裂验算边缘弹性抵抗矩;
ep――预应力钢筋合力作用点至截面形心轴的距离;
A――构件全截面面积;
――预应力筋张拉控制应力;
作用(荷载)短期效应组合计算的弯矩值Ms计算如下:
其中:――列车竖向静活载(不计动力系数);
构件全截面对抗裂验算边缘弹性抵抗矩W计算结果如下:
预应力钢筋合力作用点至截面形心轴的距离计算结果如下:
预压力钢筋合力作用点至下缘距离
则预应力筋合力作用点至截面形心轴的距离 为
将、、及的值代入公式(4-1)求出
按照规范预应力钢筋张拉控制应力MPa;则
所以,预应力钢筋选用和两种规格,5根钢束布置在底板中间位置,其余布置在底板两侧及腹板内。预应力钢束面积
二、预应力损失计算
(一)预应力钢筋与管道间之间的摩擦引起的预应力损失
计算公式:(2-1)
式中:―张拉控制应力,(按照规范);
―钢筋与管道间的摩擦系数,按照《结构设计原理》附表2-5取值为0.25;
―预应力钢筋弯起角度;
―管道每米长度的局部偏差对摩擦的影响系数,按《结构设计原理》附表2-5取为0.0045;
―从张拉端至计算截面的管道长度在构件纵轴上的投影长度,以m计;
(二)管道摩阻在跨中截面引起的预应力损失
跨中截面预应力损失计算:k=0.0015 L/2=15.75m
(三)预应力损失组合及汇总
传力锚固阶段的预应力损失:
使用阶段的预应力损失:
各截面预应力钢筋预应力损失平均值及有效预应力汇总如下表4-8所示:
三、非预应力钢筋的估算
参照《铁路桥涵钢筋混凝土及预应力混凝土结构设计规范》,换算T形截面翼板有效宽度 取下列三项中的最小值:
(1)对于简支梁为计算跨径的1/3;
(2)相邻两梁轴线间的距离;
(3)(b为换算腹板厚度,c为梗腋宽度,为换算翼板厚度);
故取=5764 mm
参考文献:
[1]叶见曙.结构设计原理-2版[M].北京:人民交通出版社,2005
关键词:后张法;摩擦损失;简化公式;泰勒展开式;规范公式
Simplified Calculated Formula of Duct Friction Loss for Post-tensioned Pre-stressed Reinforced Concrete Members
LI Zhe1*, YAO Fei2, LIN Mei-jun1, WANG Yu1
(1.School of Civil Engineering and Environment, Hunan University of Science and Engineering, Yongzhou 425100, China; 2.Dongcheng Investment and development Co., Liuzhou545616, China; Corresponding author: LI Zhe, Email: )
Abstract: The code formula of duct friction loss for post-tensioned pre-stressed reinforced concrete members was expanded with Taylor series. The exponential function in code was instead of polynomial function as well as the simplified calculated results, code results and tested results by WU had been compared. It can be seen that the simplified formulation proposed by this paper has the higher accuracy, is closer to the experimental results reported in reference and leaves predictions on the safe side. Moreover, the simplified formula is still valid when the value of kx+μθ is more than 0.3.
Key words: post-tensioned method; friction loss; simplified calculated formula; Taylor expansion; code formula
1 引言
预应力混凝土构件的设计原理是利用预先施加在混凝土上的压应力来抵消外荷载所产生的拉应力,进而提高构件的受力性能及变形性能。构件上的有效预加力大小等于张拉控制控制应力与总摩擦损失值之差。有效预加力大小的准确估算是构件设计乃至结构设计的关键环节,故准确估算预应力损失值至关重要。
预应力混凝土构件按照其施工工艺不同,可分为先张法预应力混凝土构件和后张法预应力混凝土构件。两种构件在预加应力阶段和使用阶段均会产生预应力损失,但预应力损失项目却并不完全相同。对于后张法预应力混凝土构件在预加应力阶段会产生由预应力钢筋和孔道壁之间摩擦引起的预应力损失σl1,此项损失在该阶段的预应力损失比重最大,故有必要对该项损失能够较精确的估算,以便在设计和施工进行参考。
本文从摩擦理论入手,对规范[1-4]中所给出的预应力损失计算公式进行简化,并与吴转琴[5]给出的实测的摩擦损失值进行比较,进而验证本文所给出的简化计算公式具有较高精度,且较规范[1-4]更为安全、适用。
2 规范公式
后张法预应力混凝土构件的预应力损失计算应该考虑如下项目:
表1:后张构件预应力损失组合[6]
阶段 预应力工艺 后张法
第Ⅰ阶段(传力锚固时) σⅠ=σl1+σl2+σl4
第Ⅱ阶段(传力锚固后) σⅡ=σl5+σl6
后张法预应力混凝土构件的预应力损失因素可归纳为两类:一是锚下张拉控制应力不足,包括预应力钢筋回缩与构件拼接缝压密损失σl2、混凝土的弹性收缩损失σl4、预应力钢筋应力松弛及锚具变形损失σl5和混凝土的徐变损失σl6等;二是预应力沿程损失也称摩擦损失。
锚下张拉控制应力不足引起的预应力损失计算公式可查阅规范[1]。
摩擦损失,是指预应力钢筋与周围接触的混凝土孔道或套管之间发生的应力损失。摩擦损失可分为长度效应和曲率效应两部分:
(1)长度效应,长度效应是由于直线预应力筋在施工过程中由于技术原因造成的孔道偏差所引起的。长度效应的大小取决于预应力筋的长度x、张拉控制应力σcon、预应力筋及管道间的摩擦系数k、管道的顺直度(施工质量)及预应力的施加方式(单向张拉/双向张拉)等。
(2)曲率效应,曲率效应是由曲线筋的曲率摩擦损失和孔道偏差两部分组成的。其影响因素取决于预应力筋的曲率θ、张拉控制应力σcon、预应力筋及周围管道的摩擦系数μ等。
2.1 摩阻的产生
预应力孔道的摩擦理论认为:预应力筋与孔道壁之间的摩擦由两部分组成:一是由孔道偏差引起的,其值大小与孔道长度x有关;二是由曲线孔道弯曲使预应力筋与孔道产生附加的径向应力产生的,其值大小与孔道弯曲角θ有关。
2.2 预应力体系摩擦损失理论
如图1所示,在转角为θ处取微段ds,其中心位于一半径为R的圆弧上,则预应力筋长度ds范围对应的角度变化为dθ=ds/R,则由预加力P产生的径向应力分量N=Pdθ。
摩擦损失值dp可以用压力N乘以摩擦系数μ来表示:
dp=-μN=-μPdθ (1)
分离变量,并在0θ间积分,得到:
P2=P1e-μθ (2)
长度效应是指在沿预应力钢筋长度上有不均匀的转角波动引起的摩擦,由长度效应系数引起的kx来代替μθ,则公式可改写成:
P2=P1e-kx (3)
两部分叠加结果为:
P2=P1e-μθ-kx (4)
其中:k为考虑孔道每米长度局部偏差的摩擦系数;μ为预应力筋与孔道壁之间的摩擦系数。
图1 预应力筋的摩擦损失
3 简化公式
直线型孔道的接触效应很弱,主要取决于孔道的偏差程度,由孔道的施工制作的顺直度及以梁段自身作为台座对预应力筋张拉造成的孔道变形决定的。曲线形孔道的接触效应取决于孔道设计的弯曲程度及施工中张拉预应力筋造成的孔道偏差共同决定。
《混凝土结构设计规范》(GB 50010-2010)[1]、《预应力混凝土结构设计规程》(DGJ 08-69―2007)[2]和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62―2004)[3]中给出的预应力钢筋和孔道摩擦引起的预应损失σl1的计算公式:
σl1=ΔP/Ap=(P1-P2)/Ap=σcon[1-e-μθ-kx](5)
规范给出的计算公式过于复杂,在实际设计和施工过程中,需计算指数函数,易出错且不适用。其计算结果亦与施工中预应力张拉所测得的实际预应力损失相差较大,故本文将规范计算公式[1-4]进行简化,思路如下:
将规范公式中的指数函数利用泰勒公式进行展开,分别取展开式的前两项和和前四项和,并与规范公式[1-4]和参考文献[5]的实测值进行比较,结果如表2所示。
从表中可以看出:
(1)泰勒公式展开式,前两项和和前四项和相差不大;
(2)预应力钢筋与孔道之间摩擦引起的预应损失实测值kx+μθ不管是否大于0.3,均可用泰勒展开式前两项替代,较规范公式(5)简单、偏于安全且更接近实测值。
4 结论
本文对规范[1-4]中提出的后张预应力混凝土构件由预应力筋与孔道摩擦引起的预应力损失σl1的计算进行简化,得出如下结论:
(1)在设计及施工中,该项预应力损失计算公式简化为:σl1=kx+μθ。简化公式的即简便且偏于安全,与实测值更为接近;
(2)简化计算公式对kx+μθ大于0.3的情况仍适用。
参考文献
[1]吴转琴,曾昭波等.缓粘结预应力钢绞线摩擦系数试验研究[J].工业建筑,2008, 38(11):20-23.
[2]李国平,预应力混凝土结构设计原理[M].北京:人民交通出版社, 2009(08):78.
作者简介
李 矗1986-),男,黑龙江哈尔滨人,博士生,助教,工程师,一级建造师,从事钢-混凝土组合结构、预应力混凝土结构、高层建筑结构设计及研究(E-mail:)。
姚 飞(1989-),男,河南南阳人,硕士,从事钢-混凝土组合结构研究。
请排满2个整版面下面还有个表格别删减
表2:规范公式、泰勒级数展开式计算结果与实测结果的比较
试验值[5] 计算值
序号 线型 转角θ/rad 长度x/m 张拉力损失
ΔF=F1-F2 预应力筋面积Ap/mm2 实测损失值σl1 摩擦系数 μθ kx 规范值[1-4]
σl1=σcon[1-
e-kx-μθ] 规范值/
实测值 泰勒级数前两项和Σ=-kx-μθ 展开式/实测值
μ k
1 直线 0 6 6.1 199 0.0307 ― 0.004 ― 0.024 0.0236 0.7818 0.024 0.7724
2 4.8 189 0.0254 0.9449 0.9335
3 2.8 201 0.0139 1.7266 1.7059
4 3.9 212 0.0184 1.3043 1.2887
5 4.2 194 0.0217 1.1060 1.0927
6 4.0 211 0.0190 1.2632 1.2480
7 6.0 201 0.0299 0.8027 0.7930
8 4.2 203 0.0207 1.1594 1.1455
9 4.0 199 0.0201 1.1940 1.1797
10 5.2 197 0.0264 0.9091 0.8982
11 3.0 200 0.0150 1.6000 1.5808
12 5.5 196 0.0281 0.8541 0.8438
1 曲线 π/6 3.666 10.2 210 0.0485 0.09 0.0471 0.0147 0.0595 1.2735 0.0618 1.2342
2 π/3 4.264 20.6 207 0.0995 0.0942 0.0171 0.1046 1.1182 0.1113 1.0560
3 π/2 4.712 27.8 208 0.1336 0.1413 0.0188 0.1471 1.1987 0.1601 1.1027
关键词:钢结构;厂房;结构设计
Abstract: combining with a production workshop chongqing steel plant design simple introduction to this kind of plant the structural design features, from the main load, the main structure layout analyzed the heavy steel structure plant structure design, puts forward the heavy steel structure plant structure design problems should be paid attention to.
Keywords: steel structure; Workshop; Structure design
中图分类号:S611文献标识码:A 文章编号:
引言
在工业建筑中,钢结构以其独特的性能被广泛采用,为满足生产需要,跨度大、高度大以及大吨位行车重型钢结构厂房不断涌现。随着钢结构的发展,重型钢结构厂房在工业建筑中的比重越来越大,主要领域用于冶金、机械、船舶等工业建筑。本文结合浙江宁波地区某生产车间的结构设计,重点介绍重型钢结构厂房结构特点及结构设计中一些注意事项和要点,供类似设计中参考。
1重型钢结构厂房结构特点
重型钢结构厂房结构相对于轻型门式剐架结构具有以下特点:
1.1结构用钢量大。该类厂房柱距、跨度、高度一般较大。且吊车工作级别、荷载较大,因此导致构件超长、超宽、超重现象,用钢量一般超过60kg/m2。由于该类厂房结构构件重量较重,且上部荷载较大,相应基础费用也较高,同时地震反应也较为敏感。
1.2轴网布置不规则。受工艺条件限制,厂房柱距一般为9~12m,局部柱距由于抽柱,柱距达到24m甚至更大。
1.3结构整体刚度要求高。因吊车冲击荷载对结构的影响,在结构的纵向及横向应提高结构整体刚度,以减小整体结构的震动。
1.4节点构造复杂。节点设计应考虑超大、超宽、超重构件的制造、运输、安装的工艺要求,并满足抗震构造措施及刚性假定的规定。
2结构设计
结构设计按《钢结构设计规范》、《建筑抗震设计规范》和《建筑结构荷载规范》等相关规范设计。
2.1主要荷载
厂房结构所受到的荷载主要有竖向荷载:包括结构自重、吊车竖向荷载、屋面活荷载及走道板活荷载;水平荷载:包括风荷载、厂房积灰荷载,吊车水平荷载、地震荷载等。上述荷载中除一般轻型屋面自重按0.50kN/m2输入外,其它结构自重由程序自动计算。风荷载按《建筑结构荷载规范》选用风荷载体形系数后,由程序自动布置。屋面活荷载取0.3kN/m2,屋面积灰荷载在水平投影面,距高炉中心50m内取1.0kN/m2,距高炉中心50~100m时取0.5 kN/m2,走道板活荷载取2.0kN/m2。基本风压0.4 kN/m2。吊车荷载按照厂家提供的数据进行输入。
2.2主要结构布置
排架柱为单阶柱,上阶柱采用工字型实腹焊接截面柱。下阶柱除承受上柱荷载外,还需承受吨位较大的吊车荷载,如果采用实腹工字型截面柱.则柱截面会很大,不经济,下柱采用格构式钢管混凝土柱设计方案。充分利用了钢管和混凝土两种材料的力学性能,减少了柱子截面尺寸,且外形美观。肩梁采用单腹壁肩梁。
2.3屋面斜梁设计
(1)挠度控制:屋面斜梁挠度限值按《钢结构设计规范》(GB50017-2003)附录A规定,[Vt]
(2)腹板高厚比控制:当屋面梁轴力相对较小时。可按《钢结构设计规范》(GB50017-2003)4.3.1款规定,承受静力荷载和间接承受动力荷载的组合粱宜考虑腹板屈曲后强度,并满足第4.4节相关要求。考虑腹板屈曲后强度的屋面斜梁腹板可以设计的较薄,且无需设置中间横向加劲板,但考虑到腹板的焊接变形往往难以得到保证,因此重型钢结构厂房的屋面斜梁腹板厚度不宣设计过薄,一般最小取6.0mm,且h/t不大于150。
2.4柱子系统设计
排架柱以边柱为例。如图1所示。
钢柱为单阶柱。上柱采用实腹式柱,下柱采用格构式钢管混凝土柱。钢管材料选用Q345B钢,管内用C45混凝土填充,缀条采用空心钢管。浇灌混凝土的孔开在肩梁以下,孔径约200mm,可在工厂开孔,但不宜将孔板割掉,以免杂物掉进管内.待管内混凝土被振捣密实并达设计强度的50%以后,方可焊接孔板。钢管中混凝土应采用压力灌浆法浇筑,为使管内混凝土密实,在肩梁上翼缘板各开有直径为30mm的泄气孔:,灌浆时应振捣密实,直到泄气孔冒浆为止。钢管中的混凝土必须在吊车及墙架系统安装前浇灌,待混凝土强度达到70%以上,方能安装吊车及墙架系统。下柱长15.18m,在柱脚处和下柱的中部分别设置了一道横隔(横隔间距不宜大于柱长边的9倍和8m)。
柱脚采用插入式柱脚。
肩梁采用单壁式肩梁,腹板高度为1800mm。与钢管相交的加劲做成一块整板,下柱的钢管切口,将加劲板插入钢管的切口内,这样的构造做法使吊车梁传来的竖向荷载有效的传递至下部钢管混凝土柱内,提高了节点的整体受力性能。
图1:排架柱
2.5柱间支撑设计
为保证厂房的纵向刚度和空间刚度,承受山墙风力、吊车纵向刹车荷载、温度应力和地震作用,沿厂房纵向设置上、下柱间支撑。下柱柱间支撑设两道,原则上应该布置在温度区段中间三分之一处,但是工艺要求,有些位置不能布置柱间支撑,将其位置做适当的调整以满足工艺要求。上柱支撑设四道,上柱支撑除在设有下柱支撑的柱间布置外,在温度区段的两端另设两道。
2.6吊车梁与柱的连接
吊车梁下翼缘与柱的连接,一般采用普通螺栓固定。吊车梁上翼缘与柱的连接通常采用板铰连接,因为板铰连接的纵向约束效应小,适用于重级工作制吊车梁,板铰及其连接应能保证传递梁端最大水力.铰板孔径较栓径大1mm,其加工应按照精制螺栓要求进行,铰板栓孔的受力方向端距不得小于1.5d。由于吊车的起重量较大,在吊车梁的高度中部增设与排架柱相连的垂直隔板,此隔板为构造加强,无需计算。
3厂房各系统设计中应特别注意的问题
3.1铰接屋架上承及下承做法对柱的影响
上承式屋架优点:屋架支座处传力好。屋架在安装时的稳定性好,而且基本上可不必考虑屋架受力后弦杆弹性伸长的影响。上弦在竖向荷载作用下的压缩变形可补偿屋架下挠时(坡度变直时)支座向外的位移。其总位移量的消长情况与屋面坡度有关,当屋面坡度i≥1/6,柱顶仍将向外推移。当i≤1/10柱顶非但不会向外推移,甚至有向里移动的可能,这个优点在多跨厂房中更为重要。
上承式屋架缺点:上承屋架端支座底部至端节点中心的距离较大,约为下承式屋架的2~3倍。因此,在柱顶水平剪力作用下对支座节点的偏心弯矩较大,设计时应引起注意。一般可采取以下两种方式解决:①采用侧接法与柱顶相连,以减少甚至消除偏心弯矩;②在与支座节点相连的屋架杆件设计中,考虑此偏心弯矩的影响,下承式屋架做法优缺点正好与上承式相反。
3.2柱
柱截面选用时,为了经济,宜优先选用钢管混凝土柱或型钢格构柱。为了经济,在工艺允许的情况下可增加纵向系杆,以减小厂房柱的平面外计算长度。
3.3柱间支撑
支撑杆件采用单拉杆设计或一拉一压杆件设计,应根据受力大小及杆件长度确定。目前流行采用单杆既在前后片杆件之间不打缀条设计,便于中间穿行管道、钢梯及参观走道。
3.4吊车梁系统
国标图集与钢结构设计规范对吊车梁中间加劲肋板与上翼缘的焊缝处的要求不同(钢结构设计规范要求刨平顶紧后焊接,国标图集仅采用焊缝),建议采用刨平顶紧后焊接。平板支座处加劲肋国标图集中是上下刨平顶紧,为了便于施工,建议改为上端坡口焊,下端刨平顶紧后焊接。
结语
随着我国工业建设的发展,尤其是沿海、沿江地区冶金、机械、船舶及海洋工程类建设项目,由于生产工艺的需要以及建设用地的允许 ,建造大跨度和大面积的钢结构厂房越来越多 ,而随着我国钢产量的增加和建筑设计、 施工技术的不断进步 ,这种需求得到满足也变得越来越容易。设计人员要熟悉规范,灵活把握,使得工程结构设计更加经济合理。
参考文献
[1]钢结构设计手册编委会.钢结构设计手册[M].北京:中国建筑工业出版社,2004.
[2]GB 50017--2003钢结构设计规范[S].
关键词:超高层; 智能大楼; 节点域; MST组合梁
Abstract: the high building can be called "tall building"? In our building codes and no clear rules. In our (high civil buildings of the code for fire protection design (GB50045-2001 version), only the: 10 layer and provisions of the residential building more than 10 layer, or highly in the public building more than 24 m, called "high civil buildings". As for "tall building", no clear definition. This paper briefly introduces the structure of the high-rise, tall building system, and combined with "science and technology research and development center" the tall steel structure of the production and installation and steel structure of main components turn kind, filling, production, and other important links in the quality control and provide some points of material selection opinion. For the support system, can shock absorbing device is not in this article away in the introduction.
Keywords:super-tall; Intelligent building; Node domains; MST composite beams
中图分类号:TU97 文献标识码:A文章编号:
引言
超高层建筑是随着社会生产的发展和人们生活的需要而发展起来的,是商业化、工业化和城市化的结果。在土地资源十分宝贵的城市,尤其是我国人口众多、居住面积少的情况下,修建适量的超高层建筑是发展的必然方向
1.高层及超高层结构体系
对于高层及超高层建筑的划分,建筑设计规范、建筑抗震设计规范、建筑防火设计规范没有一个统一规定,一般认为建筑总高度超过24m为高层建筑,建筑总高度超过60m为超高层建筑。
对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架—剪力墙结构体系、框—筒结构体系、筒中筒结构体系、束筒结构体系。
高层和超高层建筑在结构设计中除采用钢筋混凝土结构(代号RC)外,还采用型钢混凝土结构(代号SRC),钢管混凝土结构(代号CFS)和全钢结构(代号S或SS)。
> 东南科技研发中心,建筑高度100m,柱网为8.4m,抗震设防烈度为6度,采用框架—剪力墙或框—筒结构体系较为经济合理,这种结构体系的剪力墙或筒体是很好的抗侧力构件,常常承担了大部分的风载和地震荷载产生的水平侧力,总体刚度大,侧移小,且满足玻璃幕墙的外装饰要求。
2.高层建筑结构设计的特点
高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:
2.1水平力是设计主要因素
在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
2.2侧移成为控指标
与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:
2.2.1因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
2.2.2使居住人员感到不适或惊慌。
2.2.3使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。
2.2.4使主体结构构件出现大裂缝,甚至损坏。
3.材料的选用
钢结构有很多优点,但其缺点是导热系数大,耐火性差。随着冶金技术的提高,耐火钢的研究成功并投入生产,为钢结构的进一步发展创造了条件。