前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇超高层建筑结构设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
1 超高层建筑与一般高层建筑结构设计的差异
1)从房屋高度上,超高层建筑的房屋高度在100m以上直至有几百米甚至上千米的设想,而一般高层建筑的房屋高度则是在100m以下。
2)超高层建筑由于消防的要求,须设置避难层,以保证遇到火灾时人员疏散的安全。由于机电设备使用的要求,还需要设置设备层。一般超高层建筑是两者兼而使用,而对于更高的多功能使用的超高层建筑,它不只每15层设一个避难层兼设备层即可,还需要设有机电设备层。对于这些安放有设备的楼层设计除考虑实际的荷载之外,更需考虑设备的振动对相邻楼层使用的影响。同时,这些楼层的结构设计,为提高结构的整体刚度,可用来设置结构加强层。这与一般高层建筑设计是不相同的。
3)超高层建筑的结构类型选择上相对要广,除钢筋混凝土结构外,还有全钢结构和混合结构。而一般高层建筑结构除了特殊条件需要者外,多为钢筋混凝土结构。
4)超高层建筑的平面形状多为方形或近似,对于矩形平面其长宽比也是在2以内,尤其抗震设防的高烈度地区更应采用规则对称平面。否则,在地震作用时由于扭转效应大,易受到损坏。而一般高层建筑平面形状选择余地要大。
5)超高层建筑的基础形式除等厚板筏基和箱基外,由于平面为框架-核心筒或筒中筒,基本没有一般高层建筑中所采用的梁板筏基。同时,由于基底压力大要求地基承载力很高,除了基岩埋藏较浅可选择天然地基外,一般均采用桩基。另外,超高层建筑基本不采用复合地基,而一般高层建筑则有采用。
6)房屋高度超过150m的超高层建筑结构应具有良好的使用条件,满足风荷作用下舒适度要求,结构顶点最大加速度的控制满足相关规定要求,而高层建筑设计不需要考虑。
2 超高层建筑结构的基础设计
超高层建筑一般多设二层或更多层的地下室,其基础的埋置深度均能满足稳定要求。而对于基岩埋藏较浅无法建造多层地下室不能满足埋置深度要求的,则可设置嵌岩锚杆来满足稳定要求。其基础形式应据场地的岩土工程地质条件,在满足地基承载力的同时也满足沉降变形设计的要求。一般当基底砌置在第四纪冲、洪积的黏性土层或海相沉积的土层时,其地基承载力不能满足且地基刚度也不能满足变形要求,因此,需采用桩基方案。而房屋高度在150m左右且房屋楼层约40层左右的超高层建筑,当基底砌置在第四纪厚度较大且密实的砂、卵石层时,一般承载力特征值和压缩模量都很高,则可考虑采用天然地基方案。对于基底砌置在中风化或微风化的基岩上的情况,则无论房屋高度多大,均为天然地基方案。
1)天然地基基础。上述两种情况下的天然地基方案,其基础形式是各不相同的。对于基底砌置在砂、卵石层的基础,多是采用等厚板筏形基础。但也有工程采用箱形基础,主要利用作为消防水池,如155m高的北京国贸中心一期写字楼工程。由于该工程有3层地下室只是最下1层是箱基,而其他1层、2层不是,故总称为箱筏联合基础。等厚板筏基的板厚应具有较大的刚度,以使基底压力均匀分布以及减小外框(筒)和内筒的沉降变形差异,通常设计的等厚板筏基的板厚取外框和内筒之间跨度的1/4左右。而对于基底砌置在中风化或微风化的基岩上,由于基岩承载力特征值很高,则外框柱可采用独立基础,内筒可采用条形基础或等厚板筏形基础。如某地区工程基底的中风化泥岩和中风化砂岩的承载力特征值分别为2650kPa和10380kPa,就可按上述的基础形式进行设计。同时,由于中风化或微风化基岩刚度很大,荷载作用下沉降变形甚微,所以地下室底板厚可按构造设置或按岩石裂隙水的水浮力计算考虑。在基岩上的独立柱基础,一般为使施工开挖不破坏基岩的整体性,多采用人工挖孔桩的开挖方式施工。
2)桩基础设计。超高层建筑的桩基础,由于基底压力大,要求的单桩竖向承载力较高,因此,均采用大直径钻孔灌注桩或有条件的工程场地采用大直径人工挖孔扩底灌注桩。桩端持力层的选择应考虑层厚较大和密实的砂、卵石层或中风化、微风化基岩,以减少桩端沉降变形。关于桩的布置总原则应集中布于柱下和墙下,但不同的桩型布桩的结果是各不相同的。如果设计采用的是端承桩或是摩擦端承桩,由于单桩竖向承载力特征值很高,所需桩数要少,则可布于柱下和墙下;如果设计采用的是端承摩擦桩或摩擦桩,由于单桩竖向承载力特征值相对要低,则往往整个基底承台下需要满布桩方能满足设计承载力和变形控制的要求。上述两种不同的布桩方式,其桩承台板的厚度是各不相同的:布桩于柱下或墙下的承台厚度一般由冲切确定,且地下室的底板厚度可小于外框和内筒承台厚度,按构造或水浮力产生的底板内力计算要求确定;而对于满布桩的承台厚度应如同天然地基基础中的等厚板筏基一样,承台板应具有较大的刚度以使基底承台桩均匀受力,因此承台板的厚度一般不是由冲切确定。这种满布桩的等厚板承台的内力计算,可根据桩的单桩竖向承载力的实际平均反力并按刚性方案的倒楼盖计算,这样是符合实际工程受力状态的。
我国在20世纪80年代后期,为了提高钻孔灌注桩的竖向受压承载力,经过科学试验开始在工程上应用后注浆钻孔灌注桩并取得了很好的成果。这种后注浆钻孔灌注桩不仅单桩竖向承载力得到大幅度的提高,而且桩端沉降变形减小,在桩基工程中已被广泛采用。现有桩基设计规范对后注浆钻孔灌注桩单桩相对普通钻孔灌注桩的单桩竖向承载力提高系数已有明确规定,总体来说与各地岩土工程地质条件有关。像某地区桩端持力层为卵石、园砾层,桩侧为黏性土层和砂卵石层,其提高值接近普通钻孔灌注桩的两倍,但必须是由具有后注浆技术资质的专业公司施工。从工程造价上讲,采用后注浆钻孔灌注桩总的工程费用可降低25%左右。因此,该桩型是超高层建筑桩基设计中采用的合理桩型。另外,关于钻孔灌注的成孔方法,以往均采用反循环钻机施工,而现在对于一定的桩长采用旋挖钻机,施工速度快,特别是桩端沉渣厚度很小甚至几乎没有,从而有效的保证了钻孔桩的施工质量。这种钻机是在工程实施中凡有条件应当优先采用的钻机。某项目的1期、2期工程超高层写字楼和公寓楼全部采用后注浆钻孔灌注桩并采用旋挖钻机成孔,后注浆技术为中国建筑科学院地基基础研究所专利技术并由他们实施完成。该工程的主裙楼间虽荷载差异很大,设计中考虑到采用后注浆钻孔灌注桩均不设置沉降后浇带,建成投入使用后,地基差异沉降实测值均在设计允许范围之内并与地基所地基的沉降计算分析结果基本吻合。
关键词:高层;超高层;结构设计;风载荷
0、引言
随着城市化进程的加快,高层和超高层建筑数量不断增加,在满足城市发展需要的同时,也在一定程度上对建筑结构的可靠性、安全性、持久性以及安全性提出了更高的要求。由于建筑结构直接关系到高层建筑的整体性能及使用功能,因此在设计过程中必须对之予以重视。在实际的设计过程中必须通过多种技术手段,从多个途径突出混凝土建筑结构施工的整体效果。
1、复杂高层与超高层建筑结构设计的主要控制因素
建筑载荷的选取是建筑结构设计的首要工作,对于大多数高层建筑而言,可以根据建筑结构设计载荷规范中的相关要求予以确定。其次则需要对其他的建筑结构设计影响因素进行分析,确定对应的结构设计措施。
1.1 风载荷
对于复杂高层与超高层建筑结构的设计,由于其高层容易受到风载荷的影响,尤其是一些超高层建筑,其主要控制的因素就是风载荷。例如,台北的101大楼设计过程中,不但参考了当地的相关设计规范,而且还委托加拿大相关设计公司进行了相关的风洞试验,以提高该建筑的抗风载能力。在试验过程中,设计了一个以1:500为比例的模型在半径为600m的风场环境中进行试验,验证建筑在不同风况下的受力情况。
1.2 地震力
对于地震力的预测,当前的技术条件存在一定的限制,难以对之进行准确预算。即使对地震有深入研究的日本,以无法准确的预算地震的发生时间、地点。所以,高层建筑设计过程中尤其要注意抗地震力的设计。同时,还需要考虑建筑主楼、裙楼在地震力作用下的不同反应。
1.3 地基基础
对于复杂高层建筑与超高层建筑,地基基础发挥了十分重要的作用。在实际的施工过程中药根据不同的地基形态采取稳定性强的地基结构。例如,对于深厚的软地基,高层建筑地基必须选择使用桩筏基础或者桩箱基础。同时,可以根据实际的地质情况采取对应的基础措施:使用深度不大的年轻岩基,通过将现浇混凝土桩基深入岩层中的方式为建筑提供基础支撑;对于深度较大的岩层,例如在地面100m以下,可以利用岩层上层常见的层状冲积土,使用框格式的地下连续墙为建筑提供基础支撑;对于地下基层条件较好的地层,可以采用筏形基础即可。在地基设计过程中,应该根据不同的地质情况选择对应的组合式基础方案,最终确定一个技术经济性最高的方案。
1.4 建筑功能使用需求
所有的建筑都是以满足其使用功能需要而建设的,因此建筑结构设计必须以此条件为基础,这是一个不能忽视的问题。在设计过程中,需要考虑到建筑的艺术性、使用功能需要以及经济性等多个方面的要求。同时,在设计时还必须保证所设计的结构能够在既有施工技术条件下实现,而且保证当前的建筑材料必须达到设计使用需求,这是建筑结构设计需要控制的一个重要因素。
3、复杂高层与超高层建筑结构设计策略
3.1 合理减小框架中的柱距与梁距
(1) 减小柱距
建筑框架是将梁、柱通过刚性连接的方式组合而成的刚性体系,整个结构体系的抗推刚度受梁、柱截面与数量的直接影响,通过减小柱距能够有效的提高整个结构体系的刚度。
(2) 减小粱距
通过增加框架中梁的数量,不但可以减小框架在载荷作用下的总变形,而且还可以增加柱子在轴力作用下形成的力偶,使得其能够更好的抵抗结构体系的总力矩。
3.2 充分发挥梁柱的组合效果
通过简单的减小柱距、梁距,虽然能够在一定程度上达到提高框架体系抗推刚度的目的,但是不能从根本上改善框架的整体效能。这时结合增加梁、柱数量的方式,不但能有效增加框架的整体抗推刚度,而且还能够提高框架的抗风载荷能力。
3.3 采用弯一剪双重结构体系
弯一剪双重抗侧力结构体系,就是指通过采用弯曲型与剪切型两种不同变形性质的构件形成一个完整的结构体系。两种不同类型的构建通过在各个不同楼板中联系起来进行协同工作,明显减小了整个建筑结构的顶点位移与下部各楼层的层间位移。
(1) 框一墙体系
在水平力的作用下,单独的框架整体变形是典型的剪切变形,其上部层间侧移相对较小,而下部的层间侧移则较大。而单独的剪力墙则是弯曲型变形,其层间侧移为上部大、下部小。在采用框一剪双重体系之后,可以将各楼层楼板联系起来,使得框架与剪力墙能够协同承受载荷,从而确保了框架与剪力墙变形的一致性,提高了结构的抗载荷能力了。
(2) 框一撑体系
合理设计的框架一支撑体系同样可以收到与框一墙体系相当的效果,即最终达到减小结构顶点侧移与最大层间位移的目的。
(3) 筒中筒体系
筒中筒体系的构建原理与上述两种结构体系类似,但是其起到的结构增强效果更好。
3.4 合理设置刚臂
对于建筑平面是方形布置的高楼,当采用芯筒一框架体系时,因为大部分的侧向力是由芯筒来承担的,这使得整栋建筑的侧移曲线基本上是由芯筒的变形直接控制的。在水平载荷的作用下,芯筒以弯曲变形为主。同时,由于芯筒的平面尺寸还受到建筑的竖向服务性设施面积影响,直接造成了芯筒的高度与宽度比值较大的问题。为了达到减小建筑结构侧移的目的,可以在高层建筑中每相隔十来层布置一个设备层,在其中添加桁架,形成刚臂。这样将能够使得芯筒与的框架柱连接为一体,使得结构的外柱也可以参与到结构的整体抗弯体系中,有效的一直了芯筒各个水平截面,尤其是顶部截面的倾斜,有效减少了建筑各个岛层建筑结构的侧向位移。
结语
复杂高层与超高层建筑设计过程中,结构设计是影响综合性极强的工作,尤其是在满足建筑使用功能需求的同时,还要满足高层建筑的建设环境需要,通过全盘考虑的方式采取严格的设计措施和设计途径,基于建筑混凝土整体结构设计的多项要求,提高建筑结构的整体稳定性。除此之外,还必须重视施工过程中的材料选择控制,例如钢筋的合理配置等。另外,还必须考虑施工现场的运输条件以及养护作业技术水平等,确保施工条件能够有效的支撑起建筑的结构设计体系,使得建筑结构体系达到对应的要求。
参考文献
关键词:超高层建筑;结构设计;难点分析;新技术
1工程概况
“欧华中心”位于苏州工业园中央区星都街与苏华路交叉口东南角地块,地处金鸡湖与中央公园东西向景观主轴南侧。南临相门塘,西依星都街,北接城市地铁主干道苏华路。项目定位为苏州新城中央区商务中心。该项目建成后将使工业园中心区得到国际化提升,成为苏州国际都市化的标志性建筑之一。
“欧华中心”项目用地面积8491.65m2,总建筑面积约95600㎡,其中地下三层建筑面积19100㎡,地上建筑面积76500㎡。
地上建筑由1栋超高层建筑和4层裙楼组成。(见图1)
图1 总平面图
1.1建筑设计
“欧华中心”地面三十六层,地下三层。
地下一~二层除北侧设置少量商业用房外,主要为设备及机动车、非机动车库。地下三层为机动车库。
地面裙房一~四层为商业用房;商务主楼六~二十层为办公用房;二十二~三十六层为酒店及公寓式酒店。五、二十一层为避难层。
商务主楼平面为长方形。核心于中部,电梯根据楼层的不同分区收分。核心体中部在酒店区域形成通高中庭,提供住店客人明亮及新奇的内部环境。
1.2造型设计
建筑造型现代、简洁。
主楼在进深方向上分解为三部分,通过实、虚、实的组合使楼体形体感增强,同时建筑元素以竖向线条为母题,使楼体感觉更为挺拔。裙房延续了主楼的竖向线条,与主楼在建筑语汇上统一。
2结构设计
2.1上部结构设计
主楼为综合楼,第1层商业为商业部分层高5.7m,第2~4层为商业部分层高为5m,第5层避难(设备)层层高4.8m,第6~20层为办公区层高为3.9m,第21层避难(设备)层层高4.8m,第22~35层为酒店部分层高为3.3m,第36层层高4.5m,顶层高度4.5m。基础埋置深度大于建筑高度的1/18,结构体系为钢管混凝土混合框架——钢骨混凝土核心筒结构。考虑到核心筒中电梯井周围设置剪力墙,核心筒宽度约10米,约为总高度的1/15,满足规范要求,裙房以上高宽比约为3.5,结构的几个重要控制值均在规范允许的范围内,平面不规则及超长处设置后浇带分开,使得结构平面简单、规则,刚度和承载力分布均匀;竖向体型均匀,属A级高度钢筋混凝土超高层结构。
2.2地下室结构设计
地下室体量大,平面刚度又相差悬殊,结合建筑的功能在主楼与裙房间设置施工后浇带,可有效减少结构的不均匀沉降和平面尺寸过大而产生的温度裂缝,又避免了设置沉降(温度)缝后建筑构造复杂使用面积减少等不足。在地下室部分构件混凝土中掺加混凝土微膨胀剂,减少混凝土的收缩和徐变,以减少温度应力及结构裂缝的产生。地下室抗渗强度等级P8,防水等级为二级。
2.3地基基础设计
核心筒下拟采用桩筏基础,其余采用柱下、剪力墙下桩基独立承台,电梯井下局部厚筏承台的结构体系。使上部荷载与桩基形成自平衡体系,在满足竖向承载力的同时也能较好地控制变形。各承台之间用连系梁连接,地下室底板采用刚性防水板,在地下停车位较大的空间处增加梁,减小板的挠度。所有连梁的刚度和板的厚度通过局部承载和地下水浮力计算确定。
2.4结构分析
结构分析程序:整体计算采用中国建筑科学研究院 PKPM系列软件(2008年5月版),对于超高层建筑结构同时用中国建筑科学研究院PMSAP进行复核,钢结构节点设计采用同济大学MTS建筑钢结构设计系统。
2.5主要结构材料
填充墙砌体采用新型轻质墙体材料,其强度不低于Mu3.0,砌筑砂浆不低于M5.0,混凝土强度等级竖向构件C55~C30,楼板C40~C30,钢筋采用HPB235(Ⅰ级)与HRB400(Ⅲ级),钢材采用Q345B、C与Q235B。
3关键技术与侧重点分析
3.1关键技术问题与特殊技术
3.1.1对超高层建筑,对比分析计算、全面衡量,采用了新型的结构形式:钢管混凝土混合框架——钢骨混凝土核心筒的混合结构;
3.1.2三层地下室,共12.8m,基础埋置深度大于总建筑高度的1/18,基底深度大,加强抗浮计算与措施,温度和沉降后浇带的设置。
3.1.3地下室抗浮措施主要为抗浮计算合理确定底板厚度和设置抗拔桩。
3.1.4施工特殊要求以及其它需要说明的问题。
a)三层地下室基坑支护,合理的施工组织设计,基坑地下水排水,地下室跨雨季施工措施,地下室施工后浇带,防水处理等等方面应注意满足规范及设计要求;
b)超高层混合结构的施工,施工难度大,工种及穿插配合较多,核心筒与钢框架变形差的控制;
c)合理设置施工堆载和控制施工荷载。
3.2侧重点分析
该项目有三个侧重点:
3.2.1本工程建筑体量较大,建筑抗震设防类别为重点设防类(乙类),据《建筑工程抗震设防分类标准》,应按高于本地区抗震设防烈度一度的要求加强其抗震措施(即按抗震设防烈度为7度的要求加强其抗震措施),根据规范要求,应采用弹性时程分析法进行多遇地震下的补充计算。
3.2.2筒体尺寸较小,整个建筑结构刚度较小,周期较大,从建筑功能上考虑,可以在21层避难层做一个加强层,可以使结构周期大大减小,但是增加加强层之后,加强层下面一层同加强层的侧向刚度比值略小于0.4,形成一个薄弱层,竖向布置超限,需要做超限分析,最终考虑取消加强层。
3.2.3桩位布置
主楼面积较小,筒体下及主楼其他柱下桩取不同长度,均采取后注浆,减小筒体下筏板面积,减小筏板配筋;有三层地下室,考虑水浮力对桩基的有利影响;裙房抗拔短桩布置在基础梁下,作为基础梁计算模型的有利集中力,并控制基础梁的挠度,同时减小基础梁配筋量。
4新技术的推广和应用
为执行国家建筑技术经济政策,积极推广建设部推广的建筑十大新技术,根据本工程的实际情况,在保证工程总造价不超出投资限额的情况下积极推广使用建筑新技术和新材料,本工程采用以下新技术新材料:
4.1使用高强度钢筋。楼层梁采用HRB400钢和HRB335钢。采用高强度钢筋,充分利用钢筋的抗拉性能,减少钢筋用量,减小构件配筋率,节约工程造价,总体经济效益明显。
4.2竖向钢筋接驳采用埋弧对焊或机械连接,可保证钢筋的连接接头的质量。
4.3采用高强和高性能混凝土。下部楼层柱及剪力墙混凝土强度等级采用C55;地下室底板、外侧墙及后浇带采用微膨胀抗渗混凝土,以增加混凝土的抗裂性能,取得较好的防水效果。
4.4砌体采用新型轻质墙砌体材料,减轻结构自重,减少地震作用,降低基础造价。
5结束语
总而言之,对于超高层建筑物来说,合理安全的结构设计是最基本的要求。为保证复杂高层建筑结构的安全性及经济性,在结构设计时应注重以下几个方面:首先重视概念设计,确定合理的结构方案,采取有针对性的技术措施;第二,应保证结构分析计算准确性和设计指标的合理性;第三,重视中震和大震下的结构安全性能;第四,关注舒适度及施工过程的影响及可实施性。
参考文献:
《建筑结构可靠度设计统一标准》GB50068-2001
《建筑抗震设防分类标准》GB50223-2008
《建筑地基基础设计规范》GB50007-2002
《高层建筑混凝土结构技术规程》JGJ3-2010
《钢结构技术规范》GB50017-2003
《混凝土结构设计规范》GB50010-2002
《建筑抗震设计规范》GB50011-2001(2008年版)
《高层民用建筑钢结构结构技术规程》JGJ99-98
《矩形钢管混凝土结构技术规程》CECS 159:2004
《钢骨混凝土结构技术规程》YB 9082-2006
《高层建筑钢—混凝土混合结构设计规程》CECS 230:2008
《建筑桩基技术规范》JGJ 94-2008
关键词:住宅建筑;结构设计;SATWE软件;抗震性能
中图分类号: TU2 文献标识码: A 文章编号:
随着我国社会经济建设的快速发展,城市化进程不断加快,城镇人口日益增加,致使城市住房建设用地较为紧张,超高层住宅建筑的建设也日益增加。目前,超高层住宅建筑内部结构设计方面的变化愈加明显,许多新兴的结构设计方案逐渐被超高层住宅建筑工程所采用。同时住宅建筑结构类型与使用功能越来越复杂,结构体系日趋多样化,对住宅建筑结构设计工作的要求也不断提高。在超高层建筑建设过程中,部分建筑的结构设计环节并不是十分合理,加上工程设计人员容易出现一些概念性的错误,给建筑的质量安全和使用带来了一定的安全隐患。因此,如何提高超高层住宅建筑结构设计水平,就成为了工程设计人员面临的一项难题。
1 工程概况
某高层住宅建筑面积为29000.4m2,地下1层,地上43层,大屋面高度138.02m。本工程结构体系采用现浇钢筋混凝土剪力墙结构,120m<高度<150m,属于B级高度建筑,楼盖为现浇钢筋砼梁板体系。
建筑抗震设防类别为标准设防类(丙类),结构安全等级为二级,设计使用年限为50年。所在地区的抗震设防烈度为7度,设计基本地震加速度为0.10g,设计地震分组为第二组,场地类别为Ⅲ类,场地特征周期为0.55s,地震影响系数最大值采用0.08,上部结构阻尼比0.05。建筑类别调整后用于抗震验算的烈度为7度,用于确定抗震等级的烈度为7度,剪力墙抗震等级为一级。
2 基础设计
本工程的基础设计等级为甲级,主楼基础采用冲钻孔灌注桩,桩身混凝土强度等级为C35,桩直径为1100mm,单桩竖向承载力特征值为8000kN;桩端持力层中风化凝灰岩(11)层,桩身全断面进入持力层≥1100mm,桩长约50m。桩基全面施工前应进行试打桩及静载试验工作,以确定桩基施工的控制条件和桩竖向抗压承载力特征值。
承台按抗冲切、剪切计算厚度为2700mm,承台面标高为-5.200,基础埋置深度为7.7m(从室外地面起算)。
3 上部结构设计
3.1 超限情况的认定
参照建设部建质[2006]220号《超限高层建筑工程抗震设防专项审查技术要点》附录一“超限高层建筑工程主要范围的参照简表”,结合本工程实际逐条判别,将存在超限的情况汇总如下。
(1)附表一,房屋高度方面
设防烈度为7度,剪力墙结构,总高度138.05m>[120m],超限。
(2)同时具有附表二所列三项及三项以上不规则的高层建筑(因篇幅所限,本文不再详细列出)。
第一项.扭转不规则:考虑偶然偏心的扭转位移比>1.2但<1.3,虽然本条超限,但仅此一项。所以本工程不属于附表二所列的超限高层。
(3)具有附表三某一项不规则的高层建筑工程。根据SATWE计算结果分析、判别,本工程亦不属于表三所列的超限高层。
综上所述,本工程只属于高度超限的超高层建筑。
3.2 上部结构计算分析及结构设计
本工程为剪力墙结构,120m<高度<150m,属于B级高度建筑,按《高层建筑混凝土结构技术规程》(JGJ3-2002)(以下简称高规)5.1.13条规定:
(1)应采用至少两个不同力学模型的三维空间分析软件进行整体内力位移计算。
(2)应采用弹性时程分析法进行整体补充计算。
根据《高规》要求,本工程采用的时程分析计算程序为PKPM系列的SATWE软件,并采用PMSAP软件进行对比分析。
本工程属于纯剪结构,作为抗侧力构件的剪力墙,选用正确的结构分析程序尤为重要。SATWE对剪力墙采用墙元模型来分析其受力状态,这种模型的计算精度比薄壁柱单元高,所以我省大多数工程的结构计算都选用SATWE程序。实际上就有限元理论目前的发展水平来看,用壳元来模拟剪力墙的受力状态是比较切合实际的,因为壳元和剪力墙一样,既有平面内刚度,又有平面外刚度。实际工程中的剪力墙几何尺寸、洞口大小及其空间位置等都有较大的随意性。为了降低剪力墙的几何描述和壳元单元划分的难度,SATWE借鉴了SAP84的墙元概念,在四节点等参平面壳元的基础上,采用静力凝聚原理构造了一种通用墙元,减少了部分剪力墙因墙元细分而增加的内部自由度和数据处理量,虽然提高了分析效率,却影响了剪力墙的分析精度。此外,从理论上讲,如果对楼板采用平面板元或壳元来模拟其真实的受力状态和刚度,对结构整体计算分析比较精确,但是这样处理会增加许多计算工作。在实际工程结构分析中,多采用“楼板平面内无限刚”假定,以达到减少自由度,简化结构分析的目的,这对于某些工程可能导致较大的计算误差。SATWE对于楼板采用了以下几种假定:(1)楼板平面内无限刚;(2)楼板分块平面内无限刚;(3)楼板分块平面内无限刚,并带有弹性连接板;(4)楼板为弹性连接板。对弹性楼板实际上是以PMCAD前处理数据中的一个房间的楼板作为一个超单元,内部自由度被凝聚了,计算结果具有一定的近似性,某种程度上影响了分析精度。根据高规要求,本工程应采用两个不同力学模型的三维空间分析软件进行整体内力位移计算,由于PMSAP对剪力墙和楼板都采用了比较精确的有限元分析,单元模型更接近结构的真实受力状态,虽然数据处理量大大增加,但其分析精度却比SATWE高。用PMSAP软件对SATWE程序的计算结果进行分析、校核,是比较可信的。
SATWE和PMSAP两个程序均采用弹性时程分析法进行多遇地震下的补充计算,弹性时程分析法计算结果作为振型分解反应谱法的补充。
程分析主要结果汇总如下:
表1 结构模态信息
表2 地震荷载(反应谱法)和风荷载下计算得到的结构最大响应
多遇地震时弹性时程分析所取的地面运动加速度时程的最大值为35cm/s2。针对报告中提供的实际强震记录和人工模拟的加速度时程曲线,根据08版抗震规范要求,本工程选择了两条天然波和一条人工波。这三条波的时程曲线计算所得结构底部剪力均大于振型分解反应谱法计算结果的65%,且三条时程曲线计算所得结构底部剪力的平均值亦大于振型分解反应谱法(以下简称CQC)计算结果的80%。由此可见本工程选择的地震波是满足规范及设计要求的。
SATWE和PMSAP时程分析的楼层剪力曲线如(图1、图2)所示。
图1 SATWE时程分析楼层剪力图
图2 PMSAP时程分析楼层剪力图
比较上图振型分解反应谱法(CQC)计算的楼层剪力曲线图,在大部分楼层基本能包络时程分析曲线,仅电算34层以上CQC法计算楼层剪力略小于时程分析的结果。由此可见振型分解反应谱法用于本工程的抗震分析是安全可靠的。设计中仍以振型分解反应谱法计算结果为主,并将34层以上部分指定为薄弱层,该部分楼层地震剪力予以放大。这一方案也得到了本工程超限高层审查与会专家的认可。
比较PMSAP和SATWE计算出的基底剪力非常接近,其余参数如周期、结构的总质量、地震荷载和风荷载下计算得到的结构最大响应位移、地震下的剪重比等都比较接近,说明用这两个程序做计算分析是可以互相校核的。
3 抗震性能设计
本工程综合考虑设防烈度,场地条件,房屋高度,不规则的部位和程度等因素,本工程只属于高度超限的超高层建筑,且高度只超过A级而未超过B级,故将本工程预期抗震性能目标定位在“D”级,即为小震下满足性能水准1的要求,中震满足性能水准4的要求,大震下满足性能水准5的要求。
普通的高层结构抗震设计基于小振弹性设计,对于本超高层结构作为主要承重构件的剪力墙,尤其是底部加强区需要提高其抗震承载能力。根据抗震概念设计“强柱弱梁、强剪弱弯”的要求,剪力墙也需要有更高的抗震安全储备,所以本工程剪力墙底部加强区采用中震设计。具体措施如下:
(1)根据安评报告中震设计的地震影响系数最大值采用0.23,不考虑与抗震等级有关的内力增大系数(即剪力墙抗震等级定为四级),不计入风荷载的组合效应。
(2)抗剪验算按中震弹性设计,考虑重力荷载与地震作用组合的分项系数,材料强度取设计值,考虑抗震承载力调整系数。计算结果作为剪力墙底部加强区水平筋的配筋依据。
(3)抗弯验算按中震不屈服设计,不考虑重力荷载与地震作用组合的分项系数,材料强度取标准值,不考虑抗震承载力调整系数。计算结果作为剪力墙底部加强区约束边缘构件竖向钢筋的配筋依据。
本工程通过对关键构件剪力墙底部加强区进行中震设计,即抗弯承载力按中震不屈服复核,抗剪承载力按中震弹性复核,结构能满足性能水准1、4的要求,预估结构在大震作用下能满足性能水准5的要求。各性能水准目标具体描述如下:
性能水准1:结构在遭受多遇地震后完好,无损伤,一般不需修理即可继续使用,人们不会因结构损伤造成伤害,可安全出入和使用。
性能水准4:遭受设防烈度地震后结构的重要部位构件轻微损坏,出现轻微裂缝,其他部位普通构件及耗能构件发生中等损害。
性能水准5:结构在预估的罕遇地震下发生比较严重的损坏,耗能构件及部分普通构件损坏比较严重,关键构件中等损坏,有明显裂缝,结构需要排险大修。
4 结论
通过工程实例分析超高层住宅建筑结构设计工作,可以得出以下几点结论:①PMSAP和SATWE计算结果的比较表明了SATWE计算结果进行结构设计是基本可靠的;②采用合理的方法对部分楼层剪力进行了调整,能够有效确保工程抗震分析安全、可靠;③对剪力墙底部加强区采用中震设计,能够满足住宅建筑的抗震需要。
参考文献
一工程概况的地基基础
某项目地上建筑面积为13.45万m,地下建筑面积为4.3万m,总建筑面积为17.75万m。根据岩土工程勘察报告,本工程场地地基土层为第四纪冲海积的黏土和淤泥层,基底岩性为侏罗纪熔结凝灰岩,场地内无液化土层。宾馆塔楼柱下荷载最大达3.8×104kn,商务塔楼柱下荷载最大达3.5×104kn,采用大直径灌注桩,平板式桩筏基础。经优化比较,桩径 700~1100较为合理。商务楼和宾馆塔楼下筏板厚度为3m,其他位置底板采用厚板式,板厚为1.2m。针对本工程塔楼和辅楼预期存在的沉降差异问题,在各塔楼与辅房之间设置后浇带,并配合相应的后浇带处理措施和大体积混凝土浇筑措施,解决了超长结构混凝土的收缩裂缝问题和塔楼与辅楼间的沉降差异在基础底板中产生过大内力的问题。
二结构设计与计算
⑴结构体系。塔楼外框架柱采用现浇钢筋混凝土柱,钢筋混凝土柱外框架体系将作为有效的承重支撑,大部分竖向荷载通过轴力方式向下传递,而混凝土核心筒除了承受竖向荷载外,其主要功能是提供强大的抗侧力能力。《建筑抗震设计规范》规定:6度区现浇钢筋混凝土框架一核心筒结构适用的最大高度为150m,本工程两塔楼的房屋高度均为161.1in,仅超过11.1m;本工程属b级高度,而《高层建筑混凝土结构技术规程》规定:6度区框架一核心筒结构b级高度建筑的最大适用高度为210m,还有48.9m才超限;大跨度钢结构连廊的存在使得本工程属于特殊类型的高层建筑(大跨度连体)。但由于本工程塔楼高宽比h/b为4.4并不大,两塔楼的平面及竖向结构特性变化较少,且连廊与塔楼采用弱连接,对塔楼耦合影响小。计算分析结果也表明无异常薄弱层出现,且以风荷载为控制水平作用。综上所述,本工程有两项轻微超限,设计时采取必要的抗震加强措施,在技术上是可行的,顺利通过设计审。
⑵弹性计算。本工程采用中国建筑科学研究院编制的《多层及高层建筑结构空间有限元分析与设计软件sat–we》、《特殊多、高层建筑结构分析与设计软件pm—sap))及美国csi公司的国际通用结构分析与设计软件etabs等三个程序进行整体计算,均采用抗震耦联分析并考虑偶然偏心。用satwe程序进行弹性动力时程分析。两塔楼的自振特性计算结果见表1和表2,三个软件的计算结果较接近,从侧面反映出结构模型和分析的正确性。结构的主要振型以平动为主,扭转为主的第1自振周期与平动为主的第1自振周期之比,宾馆塔楼分别为0.577、0.605、0.538,商务塔楼分别为0.593、0.603、0.529,均小于0.85,满足《高层建筑混凝土结构技术规程(jgj3—2002)》的要求。
风荷载及多遇地震作用下的结构反应计算是结构设计中的重要内容,结构在风荷载及多遇地震作用下结构最大点位移和最大的层间位移角,可见在风荷载和地震作用下的层间位移角度均小于规范限值。两塔楼产生的最大屋面位移及最大层间位移角均是x方向风荷载作用下产生的,其中商务塔楼最屋面位移为93.44mm,最大层间位移角为1/1537;宾馆塔楼最大屋面位移为82.83mm,最大层间位移角为1/1743。最大层间位移角均小乎规范所规定的限值1/800。本工程塔楼属于风荷载为控制水平作用,在考虑偶然偏心影响的水平地震作用下,楼层竖向构件最大水平位移和层间位移与其平均值之比小于规范限值,说明结构具有很好的抗扭刚度。
地震作用下楼层剪重比也是结构整体分析的重要内容,计算结果表明,两塔楼各层x方向和y方向的层间地震剪力均满足规范的最小剪重比要求。宾馆塔基底框架和核心筒的x方向倾覆力矩分别为2.83×105kn•m,6.55x105kn•m;y方向倾覆力矩分别为2.66×105kn•m,8.09×105kn•m。商务塔基底框架和核心筒的x方向倾覆力矩分别为3.21×105kn•m,6.08×105kn•m;y方向倾覆力矩分别为2.37×105kn•m,7.66×105kn•m。核心筒所占倾覆力矩沿结构高度始终大于总地震倾覆力矩的50%,表明对于整体结构安全度是可靠的。
⑶弹性时程分析。按照《岩土工程勘察报告》确定的场地类别,采用《工程场地地震安全性评价报告》提供的地震动参数,选择两组实际地震记录波和一组人工模拟地震波进行弹性动力时程分析。每条时程曲线计算所得的结构底部剪力大于cqc法求得的底部剪力的65%,三条时程曲线计算所得的结构底部剪力的平均值大于cqc法求得的底部剪力的80%。cqc法计算结果基本包络三条时程曲线计算所得的平均值,仅在结构顶部的少数楼层地震剪力偏小,说明设计反应谱在长周期阶段的人为调整以及计算中对高阶振型的影响估计不足,设计时将对顶部楼层的地震剪力进行调整,满足对时程分析法的内力包络要求。除此以外,结构内力和配筋可直接按cqc法计算结果采用。
⑷中震不屈服分析和动力弹塑性分析。如前所述,本工程平面及竖向结构特性变化较少,多遇地震下的计算结果也无超限情况出现,鉴于本工程建筑等级较高为确保结构安全可靠,我们依然对其进行了中震不屈服验算,使剪力墙、柱、连梁和框架梁等重要抗震构件在中震作用下不屈服。
通过中震不屈服计算和判断,两塔楼结构体系中竖向构件在中震作用下保持着良好的弹性性能,而水
转贴于
平构件特别是连梁则有部分进入屈服状态,通过调整连梁和框架梁的配筋和对部分连梁截面进行调整,才使所有主要水平构件不进入屈服状态。这从设计上保证了中震不屈服的落实,体现了地震中各构件的屈服顺序基本上是首先连梁屈服,其次有部分框架梁屈服,而竖向构件则未出现屈服情况。
三主要技术及措施
⑴空中连廊支承结构抗震加强措施。连廊弱连接支座留足连廊两端活动空间确保不出现下坠,采用抗拉铰接万向支座,并用侧面限位器固定,确保水平荷载直接传递到塔楼主结构。支承连廊的框架柱抗震等级提高为一级,以确保安全性。
⑵连廊及顶部塔楼结构抗震加强措施。连廊采用空间钢结构桁架,钢筋混凝土楼板的形式,并进行专门设计。顶部莲花座高度较高且外形复杂,采用将芯筒适度上升,外复钢结构形成莲花座外形的结构设计,能极大地减轻自重保证结构强度,从而有效克服鞭梢效应,且施工方便。
⑶平面扭转不规则抗震加强措施。主要采取调整抗侧力构件的布置,使质心与刚心尽量重合,并加大结构的扭转刚度,以减小结构扭转效应,使结构各楼层的位移比不大于1.4。例如由于塔楼平面存在局部凸出圆弧,部分楼层的x向最大水平位移与平均层间位移比值超b级高度的1.4,最大达到1.47,最终通过适当加宽圆弧内柱子x向柱宽,并加强两柱联系梁刚度得以解决。
⑷侧向刚度不规则抗震加强措施。适当加大立面变化处楼层的板厚及配筋,并采用双层双向配筋,加强与立面变化楼层相交的竖向构件的配筋,如25层局部凸出圆弧结束,竖向构件截面变化则避开25层,并适当加强24~26层竖向构件配筋。