首页 > 文章中心 > 建筑结构的优化设计

建筑结构的优化设计

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇建筑结构的优化设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

建筑结构的优化设计

建筑结构的优化设计范文第1篇

关键词:建筑结构;优化设计;细部;地基;抗震

中图分类号:TU3文献标识码: A

一、建筑结构设计优化的内容及其意义

当前,我国经济快速发展,人们对居住条件及生活环境要求越来越高,而对建筑房屋进行优化设计,使其结构与美观相互协调、同时适用、安全、经济以及便利是改善人们居住环境方面的重要手段。建筑结构设计优化理念注重以实际为准则,根据工程建设的基本状况,以计划成本控制为中心来进行的结构优化设计,其内容就是利用对建筑基础的结构、屋盖系统的结构方案以及围护系统结构方案等环节,建立起一种关于结构优化设计的模型,通过对各种不同的影响变量参数中的若干关键参数的科学计算,确立最终的建筑工程结构设计的优化结果方案。

建筑结构优化设计意义重大,一是大大提高建筑结构经济性,建筑进行结构设计优化可节省材料,有利于抗震,减少内外表面装修,提高了其受力性能,增强了建筑的经济性能。二是结构优化设计大大降低了建筑工程的总成本造价。节约用地,大量资料表明,建筑进行结构设计优化能够有效降低工程成本造价25%左右,同时结构优化设计技术能够对施工材料的性能利用更加合理化,能够让建筑工程结构内部各个不同单元之间更加充分协调,提升了建筑工程结构设计的经济性。

二、建筑结构优化设计中的问题

现代的建筑结构设计优化工作是一个复杂的过程,关系着建筑的安全与否,是否经济和适用,在结构优化设计中也会遇到一些问题。

(一) 缺少详细的勘察地质资料

从现在的建筑结构设计工作来看,普遍缺少详细的勘察地质资料,只是简单的依据相临建筑的情况进行图纸设计。勘察施工场地的作用是保证科学的进行地基基础工作,并且达到最基本的安全保障。往往房屋设计工作人员只是把耐力数值控制到最小,就简单认为房屋建筑结构没有问题了,这种技术问题为房屋埋下了安全隐患。在对较软地基进行处理时,忽略了垫层换土设计,只是根据经验判断处理。房屋结构设计过程中,对于较软地基存在的安全隐患没有足够认识,单纯依据个人经验使用砂垫层强化承载力,对于其宽厚度缺乏精确计算,也造成了费用的浪费。

(二) 构造柱设计存在的问题

建筑结构设计中的构造柱可以设计为单一的受力柱,其横截面与配筋必须达到规范砼的规格,如果房屋结构包含抗震功能,必须要满足以上要求。当构造柱体被当做承重的柱体应用时,这就会使构造柱体的受力提前了,从而限制了构造柱体对建筑结构的拉束功能的完全发挥,使整体房屋结构设计暗藏了安全危机。地圈梁通常会植入构造柱体,这种情况下是不需要另外设置地基的,可是当构造柱体充当了承重柱体时,柱底部基础抗压能力必然会出现超负荷现象,裂缝也就产生了。在实际施工当中,处于承重梁下的柱体应当达到承重柱体的标准,假如承重梁的负载与跨度呈现最小状态时,梁下也可以使用构造柱体。这时候就要对构造柱体的功能忽略不计,重新检测墙体下半部分的抗压强度,达到要求才能设计施工。

(三) 抗震设计中存在的问题

在抗震建筑结构设计中,施工设计人员普遍认为六度设防可以看成是没有设防。为了方便受力分析,施工设计人员往往把柱体横截面较小设计,增加梁线的刚度,将梁设计成为铰支梁,柱体的抗压能力设计成轴心抗压。这种操作方法能够方便分析房屋结构的受力,但是针对整体的房屋结构安全带来了危险。忽视了梁与柱之间的弯矩约束,还有柱体的截面积较小,整个建筑结构一旦受力,抗弯能力明显不足,造成了梁底显现裂缝。

(四) 承重墙设计中存在的问题

建筑结构设计承重能力时主要是通过楼板设计完成的,在房屋建筑时经常将一些隔墙放置在楼板上,之后还会将这部分算在同等效果的荷载力范围内,楼板的配筋也会依据这个数据进行计算。除此之外,隔墙顶部采用立砖斜砌,造成楼板顶部出现裂缝。两个方向同时产生弯矩的双向板中的钢筋是要叠放并且要保持纵横方向,计算时应该依据双方向的高度。

三、建筑结构设计优化的基本步骤

通常在对设计变量进行选择时,我们把对建筑结构影响的主要参数作为设计变量。如目标控制的相关参数( 损失的期望 C2 和结构的造价 C1) 和约束控制相关参数( 结构的可靠度 PS) 等; 然而还有一些影响不是太大,其变化范围也不是很大或者由局部性以及结构的相关要求就能够满足相应的设计要求的一些参数,我们可以用预定参数来表示,这样能够使得我们的设计量、计算量以及编制程序的工作量均大大减小。在进行结构设计优化的时候,我们还必须寻找一组能够满足相关的预定条件的截面相应的几何尺寸、钢筋的截面积以及相应的失效的概率的函数,使得工程造价最少。

对于房屋的结构的设计优化来说,必须确保结构的可靠度,来对优化设计相关的约束条件进行相应的确定,设计优化的约束条件主要包括裂缝宽度约束、结构强度约束、尺寸约束、构件单元约束、应力约束、结构体系约束、从可靠指标约束到确定性约束条件以及从正常使用极限状态下的弹性约束到最终极限状态的弹塑性约束等约束条件。在进行结构设计的时候,确保每个约束条件都必须满足相关要求,以实现最佳的设计。在设计过程中必须对细部的结构进行相应的设计优化,例如,在现浇的混凝土异形的板料,其拐弯处容易开裂,我们可以简化成矩形板,然后再合理的选择钢筋,在满足其结构的基本要求条件下,达到既安全又经济的目的。

四、建筑结构优化设计的要点

(一)结构优化设计的规范

在对房屋建筑结构进行结构优化设计时,设计工作者应遵循相关的结构设计规范。房屋结构优化设计的追求决定了房屋结构优化设计对设计工作者提出了较高的要求,要求工作者不仅详细了解房屋结构设计规范的条文,同时也要能够根据房屋结构设计的实际情况,把房屋结构设计的结构优化设计方案科学合理的运用到实际的房屋工程中。

对于一些结构较为简单的房屋工程,某些结构设计规范可能过于保守,而对于一些结构复杂的,或者有特殊用途的房屋工程,某些结构设计规范又可能过于宽松,安全性不足,这就要求房屋结构设计结构设计优化工作者能够根据具体的工程情况,对结构设计条文进行适当的取舍,争取使设计成果达到最优化。

(二)前期方案设计期间将结构设计优化参与其中

建筑方案设计前期如有一个优秀的、合理的设计方案,并参与结构设计优化,就会争取到非常优秀的开端。但目前在前期设计方案中结构设计优化参与其中的并不多,如果能对建筑类别有所针对,并进行合理选择结构设计优化方案,将降低建筑的总投资成本,因此在建筑方案设计初期应注意建筑方案的结构优化设计,考虑结构的合理及可行性。

(三)细部结构设计优化

概念设计应用于没有具体数值量化的情况,设计过程中需要设计人员灵活的运用结构设计优化的方法,达到最佳的效果。与宏观把握相对应的,设计的过程同时要注意对于细部的结构设计优化,比如现浇板中的异形板拐角处易出现裂缝,可划分为矩形板。注意钢筋的选择,I级钢和冷轧带肋钢市场价格差不多,但是他们的极限抗拉力却相差很大,所以在塑性满足要求的情况下,现浇板的受力钢筋就可选择冷轧带肋钢筋。在做立面设计的时候,外立面上的悬挑板及配筋,满足基本的规范要求即可,达到既安全又经济的目的。

(四)地基基础结构设计

地基基础的结构设计优化首先要选择合适的方案,如果为桩基础,那么要根据现场地质条件选择桩基类型,尽量节省造价。桩端持力层对灌注桩桩长的选择影响很大,应多进行比较以确定最合适的方案。

(五)概念设计处理的实际建筑设计问题

在建筑结构设计中,很多外在因素是难以控制的,尤其是地震这种破坏力极强的自然灾害,对于建筑结构来说,破坏性是不可估计的。故此,在进行实际建筑设计时,必须充分考虑其建筑结构的地质特征,采用概念处理的原则进行合理的规划设计,将其存在的危险因素降至最低。在进行建筑结构设计时,要充分考虑抗震性能的重要性,分析其建筑阶段所受到的各种危险因素,采取合理的技术

手段,在建筑施工中注意刚度均匀、对称的重要性,同时还可以采取延性的设计原则,它可以有效的防止建筑结构在地震发生时所产生的突发性破坏,消耗一定的能量,减少破坏。

参考文献

建筑结构的优化设计范文第2篇

关键词:房屋结构;优化设计;措施

Abstract: With the development of society, the people’s demand for the material and the change of market price makes the building cost rises stage by stage, using structural optimization design method to optimize the design of building structure is the important measure to maximize resources. This paper mainly explores the building structure optimization design related content and structure design optimization technology and its application in structure design.

Key words: building structure; optimization design; measures

中图分类号:TU3 文献标识码:A 文章编号:

在房屋建造的过程中,建筑结构成本的花费占了一个比较大的比例,通过结构设计的优化技术可以很有效的解决建筑成本造价方面的压力。因此,从事结构设计的工作人员应当充分考虑房屋建造过程中的合理性、经济性和适用性,从而在满足建造要求的前提下降低房屋建筑工程的总体造价。

一、房屋结构设计优化技术的现实价值及应用1、房屋结构设计优化技术的现实价值在进行房屋结构设计时,首先要做的便是要满足房屋结构效益的长远性。在这样的基础上尽量使房屋在投资上降低成本,结构上科学合理。和传统的房屋结构设计理念相比,现代房屋结构设计优化技术在房屋结构建造中的运用可以有效的降低建筑工程的成本,大概可以保持在10%—30%之间。结构设计优化技术的应用可以将建材的利用率及性能发挥到最大限度,使房屋内部的各个空间构成一个协调的整体,并符合我国相关安全质量的规定。此外,房屋结构设计优化技术的运用还可以对房屋的最初设计提供一定的帮助。因此,优化技术对房屋整体设计的安全性、舒适性、合理性起着相当重要的作用。2、房屋结构设计技术方案及其理论的应用房屋结构设计方案及理论在现实中的应用主要表现在两个方面:房屋整体工程结构的优化设计和房屋各个组成部分的优化设计。在这其中,房屋各个组成部分的优化设计包括很多方面,比如:相关基础结构方面的优化设计、相关细节结构方面的优化设计和房屋屋顶方面的优化设计等,对于这些方面的优化设计还包括很多更加细化的设计,如选型、布置、造价等方面。相关的设计工作者应当在满足房屋建造相关规定的前提下,充分考虑造价方面的因素来进行相关结构设计的优化。

二、房屋建筑结构优化设计的内容

一般,结构设计工作主要依据建筑设计的要求,运用合理的设计理念及方法来确定合适的结构形式、布置和具体的构件设计尺寸。对常见的钢筋混凝土房屋建筑结构体系进行优化时,可以从结构整体的布局和具体构件两方面的因素来考虑。影响整体结构布局的因素包括了建筑物的柱网尺寸、体型特征以及抗侧力构件的位置等,具体构件的因素主要包括构件的截面、布置、钢筋强度及配筋构造等。综合考虑这两方面因素的影响是必须的,为了达到这一目标,对工程师们提出了更高的要求:即需要结构工程师对结构及构件受力特征有充分的把握,可以根据构件设计规范的深刻理解及合理经验,采用合理的优化方法来进行有效设计。三、房屋建筑结构优化设计的措施3.1 加强剪力墙的设计

剪力墙设计中的关键是连梁的设计。连梁刚度的增大定会使得结构的地震作用也相应增大,这样连梁和墙肢分配内力也会增大。此时必须要增大构件的配筋量,显然这一设计结果必将会造成材料的浪费。所以,在住宅结构设计时,优秀的设计师都不会运用大刚度的窗下墙作为连梁,而是将连梁设计成刚度、截面较小的弱连梁。同时,在满足结构刚度及变形要求的前提下,要从经济角度与变形、抗力等方面综合考虑,合理的布置抗侧力构件。显然,剪力墙的数量越多,结构抗侧力的刚度越大,相应的结构位移将会减小。但结构地震力也会随抗侧力刚度的增大而加大,对结构的造价控制产生不利影响。所以剪力墙要以周边均匀、分散、对称等原则进行合理布置,以规定的水平位移限值为准尽可能的减少剪力墙的数量。

3.2 注重细部优化

(1)在重视整体设计的同时,也应当加强结构局部构件的精细设计。如在现浇板的设计中尽可能的把异形板划分为矩形板,这样既可以达到合理受力的目的也避免了拐角裂缝的出现。

(2)随着计算机技术及结构优化设计理论的结合,基于计算仿真的优化设计思路已经在工程结构的设计中得到了广泛的应用。通过计算机分析软件建立优化设计的分析模型,运用高效的计算机优化计算方法,设立结构设计需要达到的目标要求来最终实现结构设计优化的目的。在具体的设计优化过程中,优化设计实际上已由一个工程问题转变成为了一个数学问题,在大型复杂的结构优化设计中,基于这一思想的结构优化设计方案拥有其他算法无可比拟的优势。因此,工程设计人员加强基于计算机技术的优化设计分析是非常有必要。3.3 加强设计中建筑结构形式的选用

(1) 加强砌体结构设计

作为承重构件及抗侧移构件的砖砌体,它的平面布置比较灵活,但不适合做跃层结构。避免受力较大的突兀结构形式,门窗开洞的宽度最好不要超过 2.1m,纵向墙体数量不应少于三道,这一措施可适当减少构造柱的配筋。

(2) 加强底部框架剪力墙的设计

底部框架剪力墙的结构由于竖向抗侧力构件是不连续的,使得设计中受力平衡易出现问题,因此对建筑平面的要求是比较严格的。承重墙要尽量放在框架梁上,如果出现了放在次梁上的墙体时要加大该主梁、次梁及框架梁的配筋,加大此处的楼板厚度。户型设计中尽量让大房间布置在临街面,厨房、卫生间等小房间布置在背面,这样可以方便临街面柱网的布置等。四、房屋结构设计优化技术在结构设计中的应用1、概念设计优化技术及建筑结构设计在当代建筑的设计中,概念设计是设计思想展示中的关键因素。作为设计人员,最重要的事就是在特定的空间内,利用整体的概念进行总体设计方案的确定。把建筑中构件与结构、结构与结构之间的关系进行一定的处理,想要将概念设计较好的完成,设计人员定要建立在丰富建筑经验的基础上。随着其经验的增长,作品也将变得越来越完美、新颖。在相同的设计方案中,建筑中的结构组成设计同样存在很多变化,即便是内部结构设计已经确定的建筑,它的分析方法也存在着很多不同,比如材料、设计参数、负荷等参数的取值就不尽相同。而上述这些问题并不完全可以通过计算机完成,需相关工作人员自己对其进行判断及处理。这些判断和处理都需要在按照一般规律的前提下,依据已有的工程经验得到最终的结果,这一过程就是上面所说的概念设计。2、概念设计处理的实际建筑设计问题勘察设计在工程中有着相当重要的作用,优秀的设计是创建优质工程的前提。优秀的结构工程师都会在每一项工程设计的开始阶段,依据经验及专业设计理论,在脑海中进行一个“优化”的过程。运用概念设计的方法,可以有效、迅速地对结构体系进行构思、选择,同时,这也是判断计算机内力分析输出的数据是否可靠的主要依据。概念设计是结构设计的核心及灵魂,它将会统领结构设计的整个过程,同时也贯穿着设计工程师的知识水平与设计水平。运用结构概念设计从整体上来把握结构的各项性能,这样才可以对计算分析结果进行科学的判断及合理的采用,保证工程师在设计中处于主导地位。

【结语】:总之,结构设计在当今房屋的建筑工程中是一项责任比较繁重的项目,其设计水平将直接影响着建筑物的适用性、经济性和安全性。房屋建筑结构的成本在工程项目中占有很大的比例,优质的结构设计不仅能够确保房屋使用的安全性,而且还可以减少建设的成本,进而获取最大的经济效益。这也就要求结构工程师需在每一个工程项目的设计中均可以做到不懈地追求最优最佳,不断地探求自然法则,要通过反思和比较,在经验的累积中不断提高自己的判断力及创新力。

参考文献:

[1]潘亮.房屋结构设计中机构设计优化技术的应用.科技风.2011(12)

建筑结构的优化设计范文第3篇

关键词:建筑混凝土结构;优化设计思路;研究

中图分类号:TV331文献标识码:A文章编号:

引言

国内外学者在构件优化方面已经进行过很多的研究工作,但到目前为止仍没有一个满足各种结构设计规范条件,符合设计人员习惯,尽可能接近最优解,能够适用于高层建筑结构设计的成熟的数学模型。尽管如此,但有一个观点还是比较明确的,也是大多数学者所赞同的,那就是:当结构的各个构件的内力都达到最大承载力时,即可认为结构是最优的。当然,要想各个构件都能如愿的在同一时间发挥出所有潜能是很困难的,往往现实设计中是不可能办到的。但是,设计者可以以此为目标来优化设计,让设计尽可能的接近最优解,从而达到降低造价的最终目的。

1.工程实例

1.1工程概况

某商住楼,剪力墙结构,6度设防,修正后的基本风压为0.4kN/m2;地下1层,地上32层,嵌固端可取地下室顶板处;地下室层高为3.9m,首层层高为7.1m,2层层高为3.6m,其余各层层高均为2.9m,优化前的住宅标准层平面布置图。

1.2问题的提出和优化方法

1.2.1一般地,l/Bmax=7100/18900=0.376>0.35,规则性判断为平面不规则类型中的凹凸不规则,同时经初步计算,在尽可能加长墙肢的情况下,即使首层墙厚取400mm,亦无法满足侧向刚度比的要求,竖向不规则类型判断为侧向刚度不规则。显然,本工程已有两项超出规则性的要求,需按《建筑抗震设计规范》GB50011-2010中第3.4.4条的要求进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施。根据以往的经验,若不优化平面形状,盲目采取加强措施,必然要付出沉重的经济代价,甚至会对“控制成本,降低造价”造成致命的打击。由于在建筑平面的中部增加部分楼板对建筑功能的使用和立面的影响较小,经多方协商,发展商同意修改,修改后的平面布置。但对首层商业区降低层高的建议因牵连过多,最后决定维持不变。

1.2.2分析建筑图的剪力墙布置,核心筒位置的墙体布置似乎偏多,刚度偏大。经建模初算,其部分计算数据如表1所示。由表中数据分析可知,结构平面布置中的核心筒处,其剪力墙数量有消减的余地。适当消弱结构中部的刚度,除了对控制结构扭转效应有利外,更直接的效果就是降低造价。假设所有墙厚均为200mm,仅削去核心筒处的部分墙体,就可减少混凝土用量:0.96× (3.9+7.1+3.6+30× 2.9)≈ 124.2m3以及扣除原有墙体内的大量钢筋,其经济性是十分可观的。另外,本工程为高层建筑,核心筒以外的其它墙肢,其长度可每隔5~7层缩短一次,但应检查控制值(如位移比、轴压比等)是否满足规范要求和确保墙肢长度大于墙厚的8倍,避免墙体演变为短肢剪力墙。

1.23板中受力钢筋不同强度等级的使用比较。本工程大部分板块的板跨都不大,计算后发现基本为构造配筋,即由最小配筋率控制,而最小配筋率与钢筋强度等级直接相关。本工程标准层的梁板砼强度等级采用C25,对比如下:

一级钢:ρmin=max{0.2%,0.45ft/fy}

=0.27%

三级钢:ρmin=max{0.2%,0.45ft/fy}

=0.20%

2.总结优化方法和途径

2.1形状优化比尺寸优化更有意义在高层建筑的一个独立结构单元内,宜使结构平面形状简单、规则,刚度和承载力分布均匀,平面长度不宜过长,突出部分长度不宜过大;L、l等值宜满足要求;高层建筑的竖向体型宜规则、均匀,避免有过大的外挑和内收,结构的侧向刚度宜下大上小,逐渐均匀变化,不应采用竖向布置严重不规则的结构。相信大部分的结构工程师都曾遇过类似情况:当一幢高层建筑的结构平面布置和竖向布置简单、规则、均匀,那么其各项指标的校核验算会很容易满足规范的要求,反之,则需花一番苦功才能令各项指标勉强满足规范要求。结果可能是墙柱截面尺寸大得惊人,单位面积重量严重超标,不仅造价上去了,而且还影响部分建筑功能的使用。笔者认为,结构设计人员一定要注重概念设计,在建筑方案阶段就应

积极介入,运用自己的专业知识提出建议,在满足美观、适用的前提下,尽可能使建筑结构的平面布置和竖向布置简单、规则和均匀。这样一来,结构体系就会具有合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中。只有这样,到扩初设计和施工图设计阶段的截面尺寸优化才会有实质性的意义。

2.2剪力墙的平面布置主要应注意以下几点:

(1)在结构平面布置中,在满足建筑功能的基础上,剪力墙宜沿周边均匀、相对集中布置。在建筑物的楼梯间、电梯间、平面形状变化及恒载较大的部位宜布置剪力墙,其间距不宜过大。(2)剪力墙结构中,剪力墙宜沿主轴方向或其他方向双向布置,抗震设计的剪力墙结构,应避免仅单向有墙的结构布置形式。(3)剪力墙墙肢截面宜简单、规则,剪力墙结构的侧向刚度不宜过大。(4)设计中应注意尽量减少短肢剪力墙的数量,不应采用全部为短肢剪力墙的剪力墙结构。

3.建筑结构优化设计的对策分析

3.1建筑结构概念设计的优化设计目标分析

每项建筑结构的设计都受到了多项客观目标的影响,而且这些目标往往以降低其他目标的要求为代价。而建筑结构概念设计的优化,首当其冲就要考虑一种最为合理的方案,使这些相互矛盾的客观目标之间达到一定的平衡。

3.2建筑结构选型分析

第一建筑结构体系选型与建筑施工的关系

高层建筑施工工艺的不同,不仅会影响到材料消耗、劳动力、工期及造价等技术经济指标,而且也会影响到建筑结构的受力状态,抗震性能等。所以在高层建筑结构体系选型时就要对施工工艺连同其它因素加以权衡,综合考虑。现浇钢筋混凝土高层建筑结构的造价主要包括材料、模板及施工三部分。

第二建筑结构抗震体系选定的原则

(1)具有明确的计算简图和合理的地震力传递路线;(2)具备多道抗震防线,不会因部分结构或构件失效,而导致整个体系丧失抗侧力或承受重力荷载的能力;(3)具有必要的承载力、良好的延性和较多的耗能潜力,从而使结构体系遭遇地震时具有足够的防倒塌能力;(4)沿水平和竖向结构的刚度和强度分布均匀,或按需要合理分布,避免出现局部削弱或突变,形成薄弱环节,从而防止地震时出现过大的应力集中或塑性变形集中的危险。

3.3 建筑中混凝土结构优化分析

确保建筑结构设计优化在高层建筑的一个独立结构单元内,宜使结构平面形状简单、规则,刚度和承载力分布均匀,平面长度不宜过长,突出部分长度不宜过大;高层建筑的竖向体型宜规则、均匀,避免有过大的外挑和内收,结构的侧向刚度宜下大上小,逐渐均匀变化,不应采用竖向布置严重不规则的结构。

3.4 高层建筑结构经济性分析

建筑结构经济性包含非常广泛的内容。例如传统中只强调改进建筑材料保温性、改善建筑体形系数、提高建筑材料的气密性等一系列节能降耗措施,现在建筑随着形势的发展,人们对居住环境不仅从结构性出发,更要在建筑结构的经济性角度考虑,如空间组织、技术组织、结构设置、能源与资源利用,以及建筑循环再利用等方面全面地确立经济性的原则、方法。

3.5 高层建筑结构设计优化方法的理论分析

在从事工程项目和结构的设计时,除了要考虑设计对象的基本使用功能及安全可靠性外。还应该考虑到把它设计对象设计得尽可能完美。这就是工程和结构的最优化问题。用科学的语言来描述就是:利用确定的数学方法,在所有可能的设计方案的集合中,搜索到能够满足预定目标的、最令人满意的方案。

4.结语

根据自己多年的设计经验并结合工程实例对高层建筑混凝土结构的优化设计提出的见解。优化设计,关键是要有整体和局部的概念,要从整体入手,落实到局部,整体和局部“两手抓”

参考文献:

1.苏赐钦.高层建筑混凝土结构的优化设计探析[J].黑龙江科技信息,2010,(20).

建筑结构的优化设计范文第4篇

[关键词]软质岩;混凝土面板堆石坝;抗滑稳定;水库

1工程概况

某水库是以发电、农业灌溉和城镇供水为主,兼有农村人畜饮水等功能的一项综合性水利工程,坝址以上集雨面积101.65km2,水库正常蓄水位1416.00m,死水位1376.50,设计洪水位1416.36,校核洪水位1418.32m,总库容1995×104m3,兴利库容1345×104m3,死库容425×104m3,最大坝高95m,坝顶高程1419.80m。工程等别Ⅲ等,工程规模为中等,其永久性建筑物大坝按2级设计,坝型为砼面板堆石坝,建设工期29个月。

2坝址地形地质条件

河流总体为向左岸(NW)凸出,流向为N60°E转E,下游侧转至N45°E;坝址段河谷为不对称或基本对称“V”字型谷,河床高程1322―1330m,坝址坝段长约480m。设计正常蓄水位1416.0m时,谷口宽约210m,宽高比约3;左、右岸山脊高程大于1515.00m。左岸坡地形零乱,为一约凸出的山脊地形,冲沟较发育;右岸地形相对单一,总体为一凸出的山脊地形。坝址区主要出露(P3l+d)砂岩、粉砂质页岩、砂质粘土岩及煤层;(T1f1)粉砂质、钙质泥岩、泥质粉砂岩及粘土岩;(T1f2-1)粉砂质泥岩、紫红色泥质粉砂岩、粉砂岩及砂岩、紫红色泥岩等;第四系残坡积层(Qel+dl);冲洪积层(Qal+pl);崩塌堆积(Qcol)。坝址区岩体较完整,岩层产状为N75°―85°W/SW∠60°―70°,坝址区未见较大的褶皱及断层等通过,区内主要发育4组裂隙。坝址区物理地质现象主要为崩塌堆积、采空塌陷及岩体风化:①崩塌体:主要分布于坝轴线上游侧两岸坡,左岸(3#崩塌体)估计方量约3万m3;右岸(4#崩塌体)估计方量约4.5万m3,成份主要为粘土夹块石,未见架空现象,堆积较密实;②采空塌陷:主要分布于下坝址下游左岸,地表已形成多个塌坑,房屋大部分已经开裂,局部已塌陷。③岩体风化:左岸强风化深9.00―20.00m;河床强风化深3.00―9.00m;右岸强风化深13.00―18.00m。坝址区为碎屑岩地层,地下水主要为基岩溶隙水,岩体透水性弱,属相对隔水层。两岸地下水补给河水。坝址区为三叠系下统飞仙关组第二段第一亚段(T1f2-1)粉砂质泥岩、泥岩、泥质粉砂岩、砂岩等,岩体呈互层状结构,岩层倾右岸略偏上游。根据试验物理力学指标:砂岩强度较高,岩块饱和抗压强度大于40MPa;泥质粉砂岩强度一般,岩块饱和抗压强度小于20―30MPa;粉砂质泥岩、泥岩强度较低,岩块饱和抗压强度小于20MPa,经过综合分析及工程类比法,坝基岩体承载力建议值:砂岩为2500―3500kPa;泥质粉砂岩为2000―2500kPa;粉砂质泥岩、泥岩为1000―1500kPa。由于坝基以软质岩及较软岩为主,刚性坝建基面应置于弱风化中下部岩体,但岩体物理力学指标较低,需重视坝基岩体压缩变形问题;柔性坝建基面可置于强风化岩体上,但上游侧趾板处在崩塌体上,开挖难度及开挖量较大[1,2]。根据地形地质条件分析,由于坝基以软质岩及较软岩为主,不宜于修建刚性坝,所以以面板堆石坝为代表坝型进行枢纽布置。

3混凝土面板堆石坝方案优化设计

面板堆石坝方案枢纽布置为:面板堆石坝+右岸溢洪道+右岸取水兼放空隧洞等。首部枢纽布置如图1所示。3.1面板堆石坝(1)坝体结构参数坝轴线方位NW51.290,坝顶长272.7m,宽6.5m,坝顶高程1419.8m,防浪墙高程1421.0m,建基面高程1321.00m,最大坝高98.6m。上游坝坡1:1.4,下游坝坡1:1.3,下游坝坡分别在1357m、1387m高程设置2m宽的马道。大坝坝体结构为:上游防渗面板+垫层区+过度区+主堆石区+下游堆石区+下游块石护坡+大块石护脚。砼面板堆石坝标准断面剖面,如图2所示。(2)坝顶设计根据《混凝土面板堆石坝设计规范》(SL228-2013),综合考虑坝高、交通及坝顶布置等要求[3],并参照一般工程经验取坝顶宽度9.00m。坝顶上游设防浪墙,下游设栏杆,坝顶面做成单侧排水坡,坡度为1%。防浪墙采用L型钢筋混凝土结构,墙底高程1417.0m,高出正常蓄水位1.0m,墙高4.0m,与面板相接处设伸缩缝及相应止水。(3)混凝土面板面板厚度:按控制水力梯度小于200,便于钢筋及止水布置时的较小厚度设计,采用由顶部向底部逐渐增厚的形式,顶部厚度0.30m。垂直缝间距为12m面板混凝土强度等级采用C25、二级配;抗渗等级W12;抗冻等级F100;水泥为525#普通硅酸盐水泥;掺用符合标准的粉煤灰[4]。根据规范要求,面板为单层双向配筋,纵向配筋率0.4%,横向配筋率0.4%,周边缝及受压伸缩缝附近面板内,布置加强筋。(4)趾板趾板建基面宜置于坚硬的基岩上,厚度0.8m。趾板建基面为弱风化上部或强风化下部,弱风化岩体允许水力梯度为10―20,强风化岩体允许水力梯度为5―10。(5)坝体分区坝体自上游至下游依次分为石碴盖重区(1B)、粘土铺盖区(1A),混凝土面板(F)、垫层区(2A)、周边缝下特殊垫层区(2B)、过渡层区(3A)、主堆石区(3B)、次堆石区(3C)、大块石护脚(3F)及下游块石护坡区(3D)。垫层区采用上、下等宽布置,其水平宽度取3.00m。过渡区上、下等宽布置,其水平宽度采用3.00m。主、次堆石区在上、下游方向以坝轴线下游3.00m处高程1407.00m的点为起点、1:0.4倾向下游坡线为分界线,上游为主堆石区3B,下游为次堆石区3C;下游最高水位为1331.17m,留有余地,以1332.00m高程作为湿润和干燥区的分界线。在竖直方向1332.00m高程以上为次堆石区3C,以下为堆石排水区3F。下游坡面设水平宽度为0.6m的大块石护坡。在1355.00m高程以下的面板上游,设顶部宽度为2.00m,坡度为1:1.6的铺盖区;铺盖区上游设顶宽4.00m、坡度为1:2的土石盖重区。(5)分缝及止水周边缝为面板与趾板间的分缝,采用三道止水。顶部止水由缝口Φ70mm橡胶棒、柔性填料和橡胶波形止水带覆盖组成;中部止水为“Ω”型紫铜片,布置在周边缝中央偏表部;底部止水采用“F”型紫铜片。由于面板垂直缝的张、压特性事先不能准确预计,从保证止水系统完整性出发,止水结构设计均按张性缝处理[5]。面板垂直缝采用两道止水,底部设“W”型紫铜片止水;顶部止水由Φ40mm橡胶棒、柔性填料和橡胶波形止水带覆盖组成。防浪墙与面板间水平缝,设顶、底两道止水,底部采用“W”型紫铜片止水,顶部与面板顶部止水相同。每12.0m设一条沉降缝。缝内设一道紫铜片止水,止水带与防浪墙底部的止水铜片相接。3.2溢洪道溢洪道采用岸坡式开敞式溢洪道,紧邻右坝肩布置,由引渠段、控制段、泄槽段和消力池段组成。引渠段主要是将库水平顺地引入控制闸,引渠底板高程1407.00m,轴线长98.848m,引渠底板厚200mm。闸室控制段基础置于新鲜的砂质泥岩上,闸室采用3孔布置,溢流净宽16.00m,中墩厚2m,边墩厚度2.0m,总宽24.00m;闸室沿水流向长18.249m(桩号溢0+000.000―溢0+018.249),闸室顶高程与大坝坝顶齐平,上部设启闭机室及交通桥;闸室底部及两侧灌浆帷幕与坝肩及右岸山体连接。泄槽底坡根据泄槽内水流平稳、水面线平顺的原则,并结合地形尽可能减少开挖和回填工程量等要求研究形成缓坡、陡坡结合的型式。桩号溢0+018.249―溢0+032.520段为侧收缩段,坡降i=0.0167,收缩段首端宽22m,尾端宽16m,侧墙采用C20钢筋砼厚2m,底板采用C30钢筋砼厚0.5m;收缩段后接缓坡段(桩号溢0+032.520―溢0+046.792),底坡i=0.0167,长14.274m;缓坡后接一北盘江段抛物线(桩号溢0+046.792―溢0+075.843),抛物线方程为:y=0.017x+0.012x?,长31.414m;抛物线后接陡坡段(桩号溢0+075.843―溢0+124.450),底坡i=0.714,长约59.733m;陡坡段后接圆弧段(桩号溢0+124.450―溢0+136.380),圆弧半径R=10m,长14m,圆弧段后再接陡槽段(桩号溢0+136.380―溢0+199.610),底坡i=0.714,长约71.310m。泄槽段为矩形横断面,宽度16米,混凝土底板衬砌厚0.5m,侧墙高3.34m,厚1m。泄槽段总长度约205m。泄槽后设置消力池,消力池长34.983m,宽16m,底板高程1319.60m,泄槽与消力池采用反弧段连接,反弧半径R1=6m。3.3取水兼放空工程根据大坝枢纽布置情况,结合地形地质条件及面板堆石坝相关特性,从方便施工,节约工程投资等多方面考虑,取水方式采用取水放空工程与施工导流工程三洞合一,进口段采用龙抬头方式。取水兼放空隧洞进口底板高程为1360.25m,高于淤沙高程1359.00m。进口塔架段长8.85m,宽6.5m,顶部高程与大坝坝顶高程相同,为1419.8m。进口塔架上布置启闭机室及交通桥。根据进口段的地形条件,在1419.8m高程布置交通道路,与右岸坡公路相连接。取水口进口为三面收缩的喇叭型,并设置固定式拦污栅,孔口尺寸为2.0×1.5m(宽×高);拦污栅后设置1扇检修闸门,孔口尺寸为1.5×1.5m;闸门后为渐变段,长3.0m,后接φ1500厚度为14mm的压力钢管,引水至大坝下游。取水兼放空管龙抬头段(管0+000.000―0+051.773)采用埋管型式,管外回填C20砼厚0.6m,龙抬头段与导流洞交接段采用C15砼回填,回填段长20m;钢管与防渗帷幕线交接段采用31m长的C20砼堵头封堵。取水兼放空隧洞出口依次设置闸阀和六声道超声波流量计,闸阀内径1.5m,用于控制流量。钢管在导流洞出口分岔,支管管径均为1.0m,分别用于输水和放空。

4基础处理优化设计

4.1坝基开挖坝址河段河谷狭窄,河谷两岸及河床出露地层为T1yn1-3,上部岩性以灰色薄至厚层灰岩为主,夹灰至灰绿色薄至中厚层泥质灰岩、薄层泥灰岩,下部为极薄层泥灰岩夹薄至中厚层灰岩条带,岩石强度较高,属中硬岩-硬质岩类。岩体呈层状结构,弱风化至新鲜岩体结构面中等发育(多闭合),无贯穿性结构面,岩体较完整,强度较高,抗滑、抗变形性能力较强;强风化岩体卸荷带较发育,岩体完整性相对较差,抗滑、抗变形性能力受结构面和岩块间嵌合能力控制。坝址岩层产状为N70°―85°W/SW∠55°―∠60°,总体倾向上游偏右岸,坝址区未见大的地质构造形迹,主要以小规模层间错动带、挤压破碎带为主,局部有小规模绕曲现象。根据坝址地质情况,河床段大坝建基面置于弱风化下部,接近坝顶高程的拱圈建基面置于弱风化中、上部,接近河床的拱圈建基面至于弱风化底部或微风化上部。由于左坝肩下游有崩塌堆积体(已清除),因此,适当加深了左拱圈的嵌深。大坝开挖深度除考虑地质因素外,还需满足坝基(肩)抗滑稳定要求,平均法向嵌深16.0―24.0m。开挖边坡基岩按1:0.3边坡开挖,河床沙砾石按1:1边坡开挖。由于两岸坡地形较陡,为防止沿基础接触面渗漏,并增强表层固结灌浆效果,大坝左右两岸建基面作接触灌浆处理[6]。坝基(肩)开挖后,由于左岸岸坡较陡,在大坝左、右坝肩形成10.0―15.0m高的开挖边坡,为保证施工期及运行期边坡稳定,对该边坡采取的主要措施是“Φ25系统锚杆+C20喷混凝土+Φ8钢筋网(双层)”支护,锚杆间距3.0m,深入岩层长度3―5.0m,呈梅花型布置。4.2固结灌浆大坝基础开挖过程中,爆破震动可能使岩体松动,并存在部分裂隙向坝基岩体内延伸发展的可能性,从而降低其承载力。因此,为保证坝基岩体的完整性,提高基础承载能力,需对大坝基础作固结灌浆处理。固结灌浆孔布置于整个坝基面,沿坝底宽度方向按7排呈梅花形布置,排距3.0m,沿坝基面纵向孔距3.0m,除上游面三排孔深15m外,其余孔深8m,灌浆压力0.3―0.5MPa。4.3防渗帷幕坝址区为T1yn1-3地层,岩层总体倾向上游偏右岸,两岸坡岩体为弱岩溶含水层,主要为基岩裂隙水。岸坡及河床强至弱风化岩体裂隙较发育,渗漏型式主要为库首绕坝裂隙性渗漏和岸坡层间渗漏,拟采用帷幕灌浆解决渗漏问题,降低坝基渗透压力,保证坝肩稳定。由于坝址区为弱岩溶发育区,可能存在岩溶管道水,防渗边界考虑接上游T1yn2及下游T1f2碎屑岩地层,根据最短布置原则,左岸边界接T1f2,右岸边界接T1yn2,同时下限满足帷幕端点进入地下水位以下10―15m为宜;河床坝段防渗帷幕下限深入建基面以下0.3―0.7倍坝高,同时保证透水率小于3Lu。防渗帷幕采用单排孔,孔距为3m,左、右岸帷幕端点为地下水位与正常蓄水位的交点,防渗下限深入地下水水位线以下15m。坝基帷幕灌浆施工按1347.0m高程以下在灌浆廊道中进行,1347.0m高程以上从坝顶钻孔进行,分层实施,帷幕灌浆最大孔深81m。两岸的防渗帷幕主要为露天灌浆,灌浆压力按孔口段1.5倍水头,孔底段2倍水头控制。

5结论

建筑结构的优化设计范文第5篇

【关键词】:房屋建筑 结构设计优化设计方法

中图分类号: TU318 文献标识码: A 文章编号:

房屋工程建设中房屋结构优化设计对于整个工程的作用是不容忽视的。因为房屋建筑的目标就是用最少的资金达到提高整个工程结构的坚固性和可靠性,从而产生最大化的经济效益。优化设计方案是控制造价和节省工程开支最有效的方法之一,通过合理的建筑结构方案优化设计方法更佳合理进行工程资源配置,以期达到房屋建筑结构设计的安全性、适用性和经济性目标。在房屋建筑工程结构设计工作中,特别是常见的钢筋混凝土住宅结构体系进行优化时,要综合考虑从结构整体的布局以及具体构件两方面的因素,也是建筑结构优化设计的主要内容所在,因此,要达到结构优化设计的目标,对当前房屋建筑工程师就提出了更高的要求,要求工程师不仅能够对建筑结构和构件受力的特征有充分的把握,还要能够根据构件设计的经验提出对房屋结构设计更加合理有效的优化设计方法。

一、房屋建筑结构优化设计的措施

1、加强剪力墙的设计

影响压弯构件的延性或屈服后变形能力的因素有:截面尺寸、混凝土强度等级、纵向配筋、轴压比、箍筋量等,其主要因素是轴压比和配箍特征值。剪力墙墙肢的试验研究也表明,轴压比超过一定值,很难成为延性剪力墙。剪力墙构造边缘构件的配筋区分底部加强部位和其他部位,除应满足受弯承载力要求外。底部加强部位的构造边缘构件采用箍筋,其他部位采用拉筋,其拉筋水平间距不应大于纵向间距的2倍,转角处宜采用箍筋。当抗震墙的构造边缘构件的端柱承受集中荷载时,其端柱的纵向钢筋、箍筋直径和间距应满足柱的相应要求。

连梁是对剪力墙结构抗震性能影响比较大的构件,采用斜交叉配筋方式,可以大大改善连梁的延性。剪力墙是平面构件,在其自身平面内有较大的承载力和刚度,平面外的承载力和刚度小,结构设计时一般不考虑剪力墙平面外承载力和刚度。抗震设计的剪力墙结构,应力求使两个方向的刚度接近。

框架一剪力墙结构设计的关键是剪力墙的数量和布置。在一榀很长的框架中(为纵向),剪力墙不宜集中布置在该榀框架的两尽端,以避免在温度变化、结构涨缩时由于两端的约束作用而造成楼盖梁板开裂。剪力墙的间距不宜过大。

2、加强设计中建筑结构形式的选用

不同的建筑类别和功能要求决定了户型的选择,当前越来越多的房屋建筑为高层建筑结构,除了要合理选择结构抗侧力体系外,要特别重视建筑体形和结构总体布置。建筑体形是指建筑的平面和立面;结构总体布置是指结构构件的平面布置和竖向布置。建筑体形和结构总体布置对结构的抗震性能具有决定性的作用。

(1)加强结构抗震设计。结构抗震设计有许多不确定因素(地震特性、结构扭转等),进行精确的抗震计算是非常困难的。结构的抗震设计除了进行细致的计算外,要特别注重结构概念设计。概念设计是指在结构设计中,结构工程师运用“概念”进行分析,做出判断,并采取相应措施。根据概念设计,抗震房屋的建筑体形和结构总体布置应符合如下原则:采用规则结构,不采用严重不规则结构;确的计算简图和合理的传力路径;具有必要的刚度和承载力,具备良好的弹塑性变形能力和消耗地震能量的能力;部分结构或构件破坏不应导致结构倒塌,增加超静定结构的次数。满足抗震设计原则:即:“强节弱杆”、“强竖弱平”、“强剪弱弯”;置多道抗震防线,形成两道或多道的抗震防线,增强结构抗倒塌能力。第一道防线是地震时先屈服的结构单元和构件,应是延性大、耗能力好的结构单元或构件,如剪立墙结构的连梁等。第二道防线的结构单元也有足够的抗震能力,如框架-剪力墙结构的框架。

(2)加强底部框架剪力墙的设计。高层钢筋混凝土框架—剪力墙结构中的剪力墙为第一道防线的主要抗侧力构件。为了提高其变形和耗能能力,对框架—剪力墙结构中的剪力墙墙厚、墙体最小配筋率和端柱设计等做出了较严格的规定:剪力墙的厚度不应小于160 mm且不应小于层高的1/20,底部加强部位的剪力墙厚度不应小于200 mm且不应小于层高的1/16。剪力墙的周边应设置梁(或暗梁)和端柱组成的边框。端柱截面宜与同层框架柱相同,并应符合有关框架构造配筋规定;剪力墙底部加强部位的端柱和紧靠抗震墙洞口的端柱宜按柱箍筋加密区的要求沿全高加密箍筋。剪力墙的横向和竖向分布钢筋,配筋率均不应小于0.25%,并应双排布置,拉筋间距不应大于600mm,直径不应小于6mm。框架—剪力墙结构的其他抗震构造措施,应符合对框架及剪力墙的有关要求。

二、结构设计优化技术在房屋建筑结构设计中的应用

1、房屋建筑结构设计中的概念设计方法

在房屋建筑工程中,对于同一个建筑方案可以有不同的实现途径和结构设计;这是由于房屋建筑结构的参数、荷载、所用的建筑材料的不同和差异都会导致各项的取值不尽相同的,因此,对于房屋建筑结构设计的细节处理方法也不是唯一的,而是需要工程师们根据多年设计经验和实际操作理论和工程进展情况自行判断,计算机无法解决诸多不确定问题。工程师们的判断根据房屋结构设计规律的指导下进行主观的概念设计,而这种概念设计是工程师在多种备选方案中的必要的选择过程。

2、概念设计处理的实际建筑设计问题

概念设计帮助工程师使房屋建筑工程结构不受来自自然和人为不确定因素影响和破坏,即使产生破坏概念设计也可将这种破坏程度降至到最低点。因此,概念设计为了达到这一目的。就要首先考虑如何使房屋建筑不受这些不确定的外力因素的影响作为设计的主要内容。而综合所有不确定的因素中,地震是最为常见的,因为一旦发生地震其由于没有活动规律其破坏力是极大的,所以在房屋建筑结构设计过程中应该充分的考虑到地震的破坏作用,要尽可能采取有效的抗震措施,通常房屋高层建筑的外形分为板式和塔式两大类:板式建筑平面两个方向的尺寸相差较大,塔式建筑平面两个方向的尺寸接近。对抗震有利的建筑平面形状是简单、规则、对称、长宽比不大的平面。

三、总结

近年来,随着我国高层建筑的发展,在其房屋建筑结构设计中会经常遇到一些问题,这就需要我们建筑结构设计人员通过自身经验进行自主创新,要不断通过正确的概念方法进行房屋建筑结构的优化设计。

【参考文献】:

[1]史曼柏.住宅建筑结构优化设计的探讨[J].科技创新导报,2009,(21):36-36.