首页 > 文章中心 > 欧姆定律的本质

欧姆定律的本质

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇欧姆定律的本质范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

欧姆定律的本质

欧姆定律的本质范文第1篇

关键词:概念和规律;必然性;创设情境;适用范围

物理知识中最重要最基本的内容是物理概念和规律,它们是整个物理知识的基本组成元素,学好物理概念和规律,并使学生的认识能力在形成概念和掌握规律的过程中得到发展,是物理教学的首要任务。物理概念和规律是人类在探索物理世界过程中,在大量观察实验的基础上,运用逻辑思维的方法,把物理现象,物理过程的本质属性加以抽象、概括形成的。任何概念和规律的形成并非一蹴而就,都需要一个发展的过程,其发展、完善的过程不乏有过程的科学分析,研究方法的确立以及人文价值的体现,这都是新课程标准的基本理念中的内容。

物理概念和规律的教学,一般要经过四个环节:引入概念和规律的必然性,建立概念和规律的过程,讨论概念和规律的适用性, 应用概念和规律解决问题的思路。

一、引入概念和规律的必然性

每一个概念和规律的引入都有它的必然性,当我们研究问题时用以前的概念和规律无法解释时,这就为概念和规律的引入创造了必然性,例如:在引入速度时,根据学生的生活经验,体育课100米赛跑,班里谁最快?汽车与骑自行车同时开始,哪个快?学生用时间或路程比较物体运动快慢,当甲同学跑150米用30秒, 乙同学270米用50秒,甲乙谁快?此时用时间或路程比物体运动快慢就不可行,就需要建立速度的概念来说明问题。

引入概念和规律的核心方法是创设物理情境,提供感性平台,概念和规律的基础是以感性现象为出发点,通过对具体的物理现象及其特性进行概括、提炼、归纳、汇总,才能形成概念,对于物理现象变化规律及概念之间的本质联系进行概括、归纳,就形成了物理规律,因此,教师要给学生提供丰富的感性素材。可以运用实验来展示感性素材的物理现象和过程,利用直观教具,利用学生已有的生活经验,以及学生已经学习过的知识来展示感性素材,让学生从这些不同的运动过程中,找出共性,从而概括定义。为形成概念、规律而选用的事例,必须是包括主要类型的,本质联系明显的。

二、建立概念和规律的过程

物理概念和规律是人脑对物理现象和过程等感性材料进行科学抽象的产物,在获得感性认识的基础上,提出问题,引导学生进行分析、综合、概括,排除次要因素,抓住主要矛盾,找出一系列现象的共性、本质属性,才能使学生正确形成概念。如功的概念的建立,是通过大量的生活情景,引导学生找出这些过程的共性,即不论哪个过程,都要有一个力,且物体都沿着这个力的方向移动一段距离。从而提炼出“功”的定义,在对共性进行概括和提炼时,教师要有意识引导学生突出本质,摒弃非本质,才能建立起正确的概念与规律。

三、讨论物理概念和规律的适用范围

教学实践证明,只有学生真正理解了的东西,才能牢固地掌握。因此,在物理概念和规律建立以后,还必须引导学生对概念和规律进行讨论,以深化认识。一般要从以下三个方面进行讨论:一是讨论其物理意义,二是讨论其适用范围和条件,三是讨论有关概念和规律间的关系。例如对于欧姆定律的讨论,首先应该让学生知道欧姆定律研究的是电流与电压、电阻的关系。而非电压与电流、电阻的关系,或是电阻与电压、电流的关系。其次要强调应用欧姆定律的对应性,这是学生特别容易出错的地方,另外还要从电压、电阻的作用入手说明电流与电压成正比,与电阻成反比的内在联系,只有把这三个方面的问题交代清楚了,学生在理解和掌握欧姆定律时才会少出错误。

四、运用物理概念和规律解决实际问题

学习物理知识的目的在于运用,在这一环节中,一方面要用典型的问题,通过教师的示范和师生共同讨论,深化活化对所学的概念和规律的理解,逐步领会分析、处理和解决物理问题的思路和方法;另一方面,更主要的是组织学生进行运用知识的练习,要帮助和引导学生在练习的基础上,逐步总结出在解决问题时的一些带有规律性的思路和方法。其次,物理知识来源于自然,它又要服务于自然,使科学技术真正成为生产力。

欧姆定律的本质范文第2篇

一、利用心理相容理论,培养师生间的深厚感情,激发和发展学生的课堂学习兴趣

所谓心理相容,是指双方举止言谈,思想观点等方面能互为对方心理所接受、所认可。师生间的心理相容、关系和谐,可消除学生的逆反心理,可引起学生对教师的肯定反应,并在课堂教学中配合默契,使双边活动积极,课堂气氛活跃,课堂上下主动,课堂组织井然有序,从而最大限度地发挥教师的主导功能和学生的主体功能,并从中激发学生课堂学习的兴趣。

二、把握优质课教学诸要素及环节,力求全方位激发学生的学习兴趣

1.复习检查提问,采用“单兵操练”。复习检查提问不吃“大锅饭”,采用多种形式、多种渠道,对不同层次的学生进行“单兵操练”,能调动动全体学生的学习积极性,使之动脑、动耳、动手、动口。教师可根据上节课的重点内容和新援课的需要,提出若干问题,使学生带着问题、带着疑难、带着求知的企盼心情听、看、记、想。

2.课堂引入引人入胜。教师为讲授新课,设计引人人胜的课堂引入,可使学生产生强烈的好奇心,从而激起学生课堂学习的浓厚兴趣。例如我讲《闭合电路的欧姆定律》时,是这样引入新课的:先用提问的方法复习了电动势的物理意义和数值的计算公式;又复习了部分电路欧姆定律的内容,并板书了一道题目让同学们思考。接着我说:部分电路欧姆定律只是研究一段纯电阻电路上的问题。如果研究的对象是包括电源在内的闭合电路,那么电路中的电流强度又跟什么有关呢?关系如何呢?黑板上的这个题目该如何计算(黑板上出现图示)请同学们思考后计算一下电路中的电流强度是多少?同学们静静地思考后,有的互相交流眼神,似有疑难,有的欲翻书。就在此时,我说:解决上述问题,需要闭合电路的欧姆定律。好,这节课我们学习这一定律,并运用它解决一些具体问题。这时同学们把目光投向了我。

欧姆定律的本质范文第3篇

关键词:课程改革;物理规律;规律教学

中图分类号:G633.7 文献标识码:A文章编号:1003-6148(2008)5(S)-0032-3

物理规律教学在中学物理教学中占有重要地位,其教学成效直接影响到物理教学质量和学生科学素养的培养。提高物理规律教学效果的前提是了解物理规律内涵、本质和特征,并在此基础上结合学生的认知特点设计科学的教学策略。

1 物理规律的内涵

“规律就是相互联系着的事物、现象、分子、元素(因素、要素)或方面的本质之间的关系”。相应的,物理规律就是物理现象、物理过程在一定条件下发生、发展和变化的内在、必然的联系。

1.1 物理规律的类型

经过2000多年的建设,物理大厦恢宏庞大,其组成规律自然纷繁复杂。为了认识物理规律本身,我们有必要对物理规律进行必要的分类。从物理规律获得途径的角度来看,物理规律可分为实验规律和理论规律;从物理规律知识形式的角度来看,物理规律可分为定律、定理、原理等类型;从过程中不同质的运动角度来看,物理规律可分为力学规律、热学规律、电磁规律、光学规律等;从“定性―定量”维度来看,物理规律可分为定性规律、定量规律。

1.1.1 实验规律与理论规律

从物理规律建立基础和过程的不同,可以将物理规律划分为实验规律和理论规律两种。实验规律是在观察和实验的基础上,通过分析归纳总结出来的,中学物理中的绝大多数规律都属于实验规律。如电磁感应定律、欧姆定律等即为实验规律。理论规律是由已知的物理规律经过理论推导,得出的新物理规律。动能定理、万有引力定律等即为理论规律。我们以万有引力定律为例来说明一下理论规律的建立过程。牛顿在伽利略的自由落体运动定律、牛顿自己的第三定律、开普勒的行星运动第三定律等前人工作的基础上,应用他超凡的数学才能,通过理论计算建立了万有引力定律。

1.1.2 定律、定理与原理

从物理规律知识形式的角度来看,可以将物理规律划分为物理定律、定理与原理三种类型。通过大量具体事实(包括实验和观察)归纳而成的结论称为物理定律,如牛顿第二定律、电磁感应定律、光的折射和反射定律等。通过一定的论据,经过逻辑推理而证明为真实的结论称为物理定理,如动量定理、动能定理等属于物理定理类。对大家公认的具有普遍性,而且可以作为其它规律基础的物理规律一般称为物理原理,如我们中学阶段比较熟悉的功能原理、叠加原理等即属于物理原理类。

1.1.3 定性规律与定量规律

从“定性―定量”维度来看,可以将物理规律划分为定性与定量两种类型。定性规律揭示的是各物理量间必然联系的存在和发展趋势;定量规律揭示的是必然联系中量的相互制约。例如牛顿第一定律就定性的描述了一切物体在不受外力作用或所受合外力为零的情况下的运动趋势,不反映外力与运动趋势之间的量化关系,属于定性规律。而定量规律则不同,如欧姆定律,除文字描述外,我们还可以用公式I=U/R来揭示各物理量之间的相互制约关系。

不同的物理规律分类之间并不是完全对立的,比如欧姆定律即属于物理定律,又是实验规律,同时也属于定量规律。

1.2 物理规律的特点

1.2.1 物理规律的实践性

物理学是一门以实验为基础的自然学科。中学物理的众多规律都是在实践、实验的基础上建立起来的。新课程标准倡导“从生活走向物理,从物理走向社会”,在教学中应重视引导学生运用物理规律解决生活实际问题,在使用中进一步加深学生对物理规律及其物理意义的理解,这对学生能力的发展、科学素养的提升,显得尤为重要!

1.2.2 物理规律的联系性

物理规律都存在一定的联系,包括物理规律内在的概念、现象之间的联系;规律与规律之间的关系。

以牛顿运动定律为例,牛顿第一定律是说物体不受外力时做什么运动;牛顿第二定律公式F=ma揭示了物体的惯性质量、所受到的合外力与由此而产生的加速度之间的关系,是阐述物体受力时做什么运动,二者是从不同的角度回答了力与运动的关系。第一定律是第二定律的基础,没有第一定律,就不会有第二定律。虽然第一定律可以看成是第二定律的特例,但不能取消第一定律。

1.2.3 物理规律的对应性

物理规律中的各物理量都针对于某一研究对象。如果是状态量则对应于某一时刻、某一位置、某一状态。如果是过程量则对应于某一段时间、某一个过程、某一空间等,这就是物理规律的对应性。如,欧姆定律U=IR中各量均对应于同一导体、同一段电路在同一时刻的量值。

1.2.4 物理规律的因果性

因果性是物理规律的重要特点,任何物理规律都是在规律所表述的具体条件下才具有规律所阐述的结论。例如牛顿运动定律是在研究宏观低速运动物体的“前因”下,才有其结论的“正果”修成。

1.2.5 物理规律的发展性

物理规律是认识的结果,是在一定的事实基础上,归纳、推理得出的结论,具有历史局限性,只能部分地反映客观世界及其内在联系。规律会随着人的认识能力的提高和认识的深入不断发展。发展有时是温和的――是对已有规律的修正、丰富;有时是激进的――是对已有规律的否定、颠覆。换言之,物理规律不是绝对的真理,而是逐渐发展变化的,具有一定的相对性。如从经典力学到相对论、量子力学的发展变化过程。

2 物理规律教学的重要性

物理新课程改革强调改变过去过于注重知识传授的一维目标而向三维课程目标迈进。教学要以人为本,在学生获得知识的过程中,同样注重学生终身学习与发展所需的各种能力的培养。如何实现物理规律教学由传统向新课程理念的转变,应进一步明确物理规律教学在新课程实施过程中所发挥的重要作用。

2.1 物理规律教学,有助于学生对知识的理解

新课程改革倡导从三个维度对学生进行全面的培养,知识的理解历来是一个重要培养目标。依据布鲁纳的认知结构学习理论,我们教学的目的,就是引导学生建构一个理解物理知识的学科结构,从而运用知识解决具体问题。在最终建构的物理知识结构中,分散的各个点表示物理概念,联接各点的线就代表了物理规律,通过点和线及其之间的相互联系的讲解,引导学生在头脑中建构物理知识网络图。

2.2 物理规律教学,有助于学生思维能力的发展

作为智力核心的思维能力的培养对学生的发展是至关重要的。物理规律教学既是物理知识教学的核心内容,同时也是对学生思维能力培养的重要途径。

物理规律教学是在学生的感性认识(已有的对实验和事实认识)基础上,教师指导学生探索物理规律的过程。根据规律建立的思维过程和学生的认知特点,选择适当的途径方法,指导学生对感性材料进行思维加工,认识到物理规律中某些物理概念之间的内在联系,考虑到物理规律的近似性与局限性,从而概括出物理规律。作为近似反映物理对象、物理过程在一定条件下发生、发展和变化的物理规律的建立,离不开观察、实验和数学推理,也离不开物理思维,是诸多因素相结合的产物,学生在理解具有这些特点的物理规律的同时,其思维能力就会得到培养。

2.3 物理规律教学,有助于学生科学方法的掌握

物理规律的教学过程,其实也是科学方法教育的过程。我们知道物理规律的获得,少不了一些科学方法的使用,在物理规律教学过程中,合理运用一些研究方法并适时适当地进行显性教育,使学生不仅学到了物理规律,同时也学到了科学方法,培养了能力,可谓一举多得。

例如,在牛顿第一定律的教学过程中,教师重点要向学生说明的,除了牛顿第一定律的内容外,就是讲解这个规律获得过程中所用到的一个重要的科学方法――理想实验法。在欧姆定律、牛顿第二定律等的实验探究过程中,可以重点要求学生设计实验方案,在这一过程中,使学生明确研究3个变量的关系时,通常采用“控制变量”的方法。

2.4 物理规律教学,有助于学生科学探究能力的形成

提倡对学生进行科学探究能力的培养,是新课程改革的一大亮点,在新教材的编写中贯穿了科学探究精神并安排了一些科学探究的内容。由于物理规律的实践性特点,便于在课堂教学中开展实验教学,创设问题情境,从而激发学生探究物理问题的兴趣,经历物理规律发现的过程,培养学生的科学探究能力,并能使学生更好地运用物理规律去解释生活中的物理现象、解决生活中遇到的物理问题。

2.5 物理规律教学,有助于学生情感、态度与价值观的培养

我们知道,情感、态度与价值观培养,是物理新课程改革所倡导的三维课程目标中的一个维度。在物理规律的教学过程中,无时无刻不渗透着对学生情感、态度与价值观的培养。我们在进行物理规律教学时,可以通过创造良好的物理学习氛围、对相关物理学史内容的选择性介绍、开展科技创作活动、采用科学探究的教学方式等等,对学生进行情感、态度与价值观的培养。

比如,在进行牛顿第一定律的教学过程中,就可以适当地给学生讲述一下它的发展历史,激发学生的学习兴趣,同时使学生在了解亚里士多德、伽利略、笛卡儿、牛顿等大科学家的观点的基础上,使其不畏权威、理性求真的科学态度与科学精神得到培养。而在进行万有引力定律教学的时候,可以联系神舟六号载人飞船的发射与回收过程进行讲解,把物理知识与科技发展、应用技术相结合,能使学生获得一个更为宽广的视野,有助于学生形成科学的价值观。

3 物理规律教学的基本策略

当明确了物理规律教学在新课程实施过程中所发挥的重要作用之后,为行之有效的进行物理规律教学,我们提出以下基本策略。

3.1 活化物理实验教学:为学生提供主动获得规律的机会

在物理学的产生、建立和发展过程中,物理实验是归纳物理规律、产生物理假说的实践基础,是验证理论预言和假说的主要依据;在物理规律教学中,物理实验是培养学生操作技能的主要途径,是发展学生非智力因素的一个重要环节。通过实验重现物理规律的发现历程,使学生在实验操作过程中体悟物理规律所反映的各物理量之间的相互关系,有助于更新学生头脑中的物理观念、提高物理规律的教学质量。

3.2 强化物理思想教学,使学生感受物理学的理性美

在进行物理规律教学时,为了让学生最有效地掌握好物理规律,达到课程标准所规定的能力要求,应该在规律教学的过程中渗透科学史、科学思想的教育,引起学生对物理思想在物理规律建立过程中所发挥作用的重视,使学生感受到物理学的理性美,同时给学生以更多的启示。

教师在采用此策略教学时,应明确两点:一是渗透物理思想的教学策略主要是指向学生展示物理规律建立的思想史;二是科学史的历史发展逻辑与课本上的知识逻辑并不相同,规律教学过程中要引导学生感悟到二者的异同,处理好二者之间的辨证关系,在了解真实历史发展过程的同时明了知识逻辑的呈现脉络。

3.3 重视规律应用教学,让学生体会物理学在社会发展中的作用

物理规律来源于生活实践,反过来应锻炼学生将物理规律运用于社会生活实际的能力。因此,在教学中应重视引导学生利用物理规律解决实际问题,让学生体会到物理学在社会发展中的重要地位,增强学习兴趣,进而在使用中进一步加深学生对物理规律及其物理意义的理解,这对学生能力的发展、科学素养的提升,显得尤为重要!

3.4 提升教师科学素养,为实施新课程背景下的物理规律教学奠定良好基础

我们将其作为一项策略提出,重在强调教师对新课程理念与目标的钻研、对物理规律的理解、对物理规律教学的整体认识与把握等。同时该策略也是关系到物理规律教学实施效果的重要因素,教师应努力提升自己的科学素养,进而才会有足够的信心调控物理规律教学,为学生的全面发展创造最好的先决条件,从而取得最佳教学质量。

参考文献:

欧姆定律的本质范文第4篇

关键词:数学方法;物理问题;分析

一、数学知识的应用能力在物理学习中占据着重要的地位

首先,数学是物理的语言,它以简洁精确的特点描述物理概念和规律。例如,物理量的定义,像加速度、电阻、电场强度、磁感应强度等物理量的定义均用了比值定义。在物理规律的表达如牛顿第二定律、欧姆定律等都体现了函数关系自变量与函数的关系。在运动学中如v-t图像更能形象地描述运动特点、运动过程。所以在物理概念规律时正是体现了数学的逻辑性。所以,对学生来说,需要有良好的数学基础,如公式变形、比例运算、三角函数、函数方程、图象、对数、数列……

其次,分析和解决物理问题的过程,就是应用所学物理知识和原理,将问题给出的物理情景,抽象或简化成各种概念模型和过程模型,用数学化的公式或方程表达出来,最后用数学知识解得结果。在高中物理学习中,除了要掌握概念、规律,更重要的是应用规律概念解决问题。在高中物理的学习中,解决力学、电磁学的三种途径;牛顿第二定律、能量、动量贯穿了整个高中物理的始终。从平衡等式到牛顿第二定律到动能定理机械能守恒定律,到动量定理,到动量守恒定律,无不是列方程去解决物理问题。

二、高中物理学习中数理结合的具体体现

高中物理“培养学生运用数学处理物理问题的能力”的要求是:学生能理解公式和图象的物理意义,能运用数学进行逻辑推理,得出物理结论,要学会用图象表达和处理问题;能进行定量计算,也能进行定性和半定量分析。要实现上述目标,必须在物理学习中注重数理结合。在中学阶段,运用数学工具解决物理问题的学习主要表现在以下两个方面:

1.运用数理结合进行物理概念和物理规律的学习

物理概念是对物理现象的概括,是从个别的物理现象、具体过程和状态中抽象出的具有相同本质的物理实体。它反映的是物理现象的本质属性,是构成物理知识的最基本的单位。如:加速度定义式、电场强度的定义式、磁感应强度定义式、欧姆定律,电容的定义式、决定式等,动能定理表达式、机械能守恒定律表达式、动量定理表达式、动量守恒表达式等,在抽象出一类物理现象和物理过程的共同特征和本质属性之后,用简洁的文字语言、数学式子或图表表达物理概念。

2.运用数理结合进行实验数据的处理

应用准确的实验方法得出实验数据后,从实验数据中分析、计算得出实验结论,是实验能力的主要方面。在实验数据的处理中,数学工具的应用使得处理过程显得特别简捷、直观。例如:验证匀变速实验中求解加速度我们可以用逐差法,还可用v-t图象斜率球加速度。再有在电学实验中描绘小灯泡的伏安特性曲线通过图线的变化趋势判断电阻的变化。在测电源电动势和内阻的实验中闭合电路的伏案特性曲线的截距、斜率的值各是我们沿得到的电动势和内阻值,这比列方程就解更准些。

三、物理解题中常用的数学知识

物理解题运用的数学方法通常包括方程(组)法、比例法等。

1.方程法

在物理计算题中是通过物理方程求解物理未知量的,方程组是由描述物理情景中的物理概念,物理基本规律,各种物理量间数值关系,时间关系,空间关系的各种数学关系方程组成的。

2.比例法

比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化。应用比例法解物理题,要讨论物理公式中变量之间的比例关系,清楚公式的物理意义,

每个量在公式中的作用,所要讨论的比例关系是否成立。同时,要注意比例条件是否满足:物理过程中的变量往往有多个。讨论某两个量比例关系时要注意只有其他量为常量时才能成比例。

欧姆定律的本质范文第5篇

作为科学探究过程,无论是科学家探究物理世界还是学生学习物理知识,都必须运用科学方法与探究对象作用。在物理教学中,科学方法的学习与运用,对于学生知识的学习、能力的发展和情感-态度-价值观的教育,有着不可替代的作用。物理规律的建立过程,可以总结为三种途径:实验归纳,理论分析,提出假说。

1. 实验归纳 实验归纳是直接从实验结果中分析、归纳、概括而总结出物理规律的方法。具体过程是,首先要有丰富的感性认识和经验事实,然后对这些事物进行比较、分析,找出它们所具有的共同本质属性,再用归纳的方法,推知所有这类事物也具有这种本质属性。例如由一个物体,加在其上的外力变化几次,该物体的加速度也正比例的变化几次,推知所有物体的加速度与所受合外力成正比。经典物理学中建立的物理规律常用实验归纳法。这也是中学物理教学中应用最广的方法。例如,欧姆定律、光的折射定律、焦耳定律等,都是实验归纳的结果。

2. 理论分析 理论分析就是利用已有的物理概念和物理规律,通过逻辑推理或数学推导,得出新的物理规律的方法。常见的有理论归纳和理论演绎两种。

(1)理论归纳。理论归纳就是利用已有的物理概念和物理规律,经归纳推理,推导出更普遍的物理规律的思维方法。在物理学发展史中,如能的转化和守恒定律,就是在动能、势能、机械能和机械能守恒定律、热量、焦耳定律等概念和规律建立的基础上归纳总结建立起来的。

(2)理论演绎。理论演绎就是利用较一般的物理规律 , 经逻辑推理或数学推理,推导出特殊的物理规律的思维方法。