前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇常见的结构设计范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
【关键词】结构设计;常见问题;探讨
discuss several common problems in structural design
guo wei-wei
(architectural design institute of shanxi jincheng jincheng shanxi 048000)
【abstract】there are many elements of design, specification does not make specific provisions, or provisions of clauses is not comprehensive, so that structural designers is easy to overlook.
【key words】structural design; common problems; discuss
结构设计中有许多内容,规范未作具体的规定,或规定的条文不全面,使结构设计人员很容易忽视。以下为本人在工作过程中所遇到的一些问题,供同行们做结构设计时参考。
1.不上人屋面活载取值问题
平时会经常遇到不上人屋面因落水管堵塞而积满水,又没人疏通,这积水何载也不能忽视。如不上人屋面女儿墙高700mm,若积满水,荷载为0.7x10=7kn/m2。而按《建筑结构荷载规范》第4.3.1条中规定不上人屋面活载取值仅为0.5 kn/m2。可见实际产生的荷载与设计规定的荷载相差较大。结构设计若按7 kn/m2考虑,那又给业主带来很大的浪费。为此,本人建议建筑设计人员在不上人屋面女儿墙根部50mm处增设泄水管,万一落水管堵塞,能及时排除屋面的积水。若能采取上述措施,按荷载规范要求,不上人屋面活载仍按0.5 kn/m2设计。对上翻边雨篷也可采取上述措施以确保结构设计不考虑积水荷载。
2.卫生间荷载取值问题
在图纸审查中有人提出,对于有分隔蹲厕的卫生间活载应按《全国民用建筑工程设计技术措施结构》中规定的8 kn/m2值进行设计,本人认为不妥。如今的卫生间隔板在建筑设计中都是采用木质板、塑料板或复合板,而非以前的预制水磨石板或砖砌体,因而只考虑蹲坑的重量就可以了。蹲坑一般抬高150mm,采用1:6水泥焦渣垫层(容重为14 kn/m3),垫层荷载为0.15x14=2.1 kn/m2,该荷载为局部荷载,又非全开间荷载,且应按恒载考虑。结构设计时可按原楼面恒载加上该部分抬高所增加的荷载就可以了,活载仍旧按《建筑结构荷载规范》第4.1.1条中规定的2.0 kn/m2计取,这样比较合理。
3.后浇带问题
《混凝土结构设计规范》第9.1.1条中规定现浇钢筋混凝土框架结构伸缩缝最大间距为55m,而9.1.3条则规定当采取后浇带分段施工、专门的预加应力措施或采取能减小混凝土温度变化或收缩的措施,伸缩缝间距可适当增大。这两条使我们在实际设计过程中较难把握。采取后浇带分段施工后究竟应控制房屋长度多少而不至于产生裂缝等不良现象呢?本人认为这取决于各地区的温差和施工条件以及采取的措施等等因素。按照温州地区的经验,在55m~70m以内时,采取设置施工后浇带及相应的构造加强措施而不设置伸缩缝,这在本人长期的工程实践中证明是切实可行的,多个工程均未产生较大的裂缝。当然,具体过程还应通过有效的分析或计算,慎重考虑多种不利因素,确定合理的伸缩缝间距。在结构设计中必须对梁柱配筋进行概念上的调整,规范也规定当增大伸缩缝间距时尚应考虑温度变化及混凝土收缩对结构的影响。首先是长向板钢筋应双层设置,并适当加强中部区域的梁板配筋,中部区域温度应力显然是比较大的。当框架结构超过70m时,本人认为必须采取特殊的措施才能不设置伸缩缝,譬如说采用预加应力,掺入抗裂外加剂等等。如果对超长结构,不能有效的分析清楚受力情况,本人建议还是应按规范要求设置伸缩缝,毕竟建筑上设缝只要处理得当还是不影响美观的。
4.板面设置温度应力筋问题
《混凝土结构设计规范》第10.1.9条规定在温度收缩应力较大的现浇板区域内,钢筋间距宜取为150~200mm,并应在板的未配筋表面布置温度收缩钢筋,板的上下表面沿纵横两个方向的配筋率均不宜小于0.1%。什么区域属于温度收缩应力较大的区域?本人认为对于规则较短的建筑物我们可以在各楼面边跨及屋面层设置相应的温度应力钢筋,而对于超长结构,则建议在超长结构的长向均应设置双层钢筋。其余部位则可因人而异,功能重要的区域设置。
5.钢筋砼水池保护层问题
《混凝土结构设计规范》第9.2.1条规定,板、墙在二a类环境的混凝土保护层厚度为20mm,《给水排水工程构筑物结构设计规范》第6.1.3条规定与水、土接触或高湿度保护层厚度为30mm,与污水接触位35 mm,《给水排水工程钢筋混凝土水池结构设计规程》第7.1.2条规定与此相同,而《地下工程防水技术规范》第4.1.6条规定防水混凝土结构迎水面钢筋保护层厚度不应小于50mm。本人以为钢筋砼水池砼保护层应按《给水排水工程钢筋混凝土水池结构设计规程》进行设计,而地下室等重要的建筑物则要按《地下工程防水技术规范》设计。
以上是本人在结构设计中经常出现的几个问题的理解,难免有片面性。在今后的设计过程中,应以规范为依据,以概念设计为补充,不断总结,使我们的设计更经济合理。
参考文献
[1] 《建筑结构荷载规范》(gb 50009-2001).
[2] 《全国民用建筑工程设计技术措施结构》.
[3] 《混凝土结构设计规范》(gb 50010-2002).
[4] 《给水排水工程构筑物结构设计规范》(gb 50069-2002).
【关键词】建筑结构;结构设计;常见问题
1 地基与基础设计中的常见问题
要把地基与基础的设计做到合理安全,设计人员就必须在进行地质勘察后方可进行设计。但是目前很多建筑并没有地质勘测报告资料,仅有的只是建设单位的口头数据以及周围建筑物的部分参考资料,设计人员的施工图仅凭盲目取小的地耐力数据进行设计;另外,在采用换土垫层进行软弱地基处理时,设计人员并不进行相关换土垫层的设计,只凭经验处置,忽略了对换土垫层宽度和厚度的计算;另外,设计人员在计算基础负荷时,并没有按照现行设计规范计算荷载值,这样导致设计既不全面,又不安全,也不经济。
2 悬挑梁设计中的常见问题
在悬挑梁的结构设计中,设计人员往往只验算了悬挑梁的强度和刚度,对其梁挠度却不加重视。悬挑梁的梁高常常因为选用过小,而导致悬挑梁截面的受压相对过高,随着梁挠度的不断增大,悬挑梁截面的受压区也随之发生变形,引起建筑梁板裂缝的出现,裂缝宽度也不断加宽。同时,悬挑梁的截面选用过小也会导致悬挑梁的截面相对受压区高度增加,致使悬挑梁的延性减小,一旦遇到竖向地震发生,极易受到破坏而失去承载力,不利于建筑的整体抗震性能。
3 承重柱截面高度设计中的常见问题
一些建筑工程为了方便进行结构受力分析,或者受到建筑尺寸的限制,或者出于建筑美观的考虑,为避免墙体表面出壳过大,常常会把承重柱截面的高度设计过小,并按轴心受压计算,同时,简化梁为铰支梁。这种做法忽略了梁柱间的刚结作用,由于柱截面的配筋很小,一旦受力,必然导致柱顶的抗弯强度不足,导致水平裂缝情况的出现。这样不但影响了房屋的实用性和耐久性,而且一旦遭遇地震影响,建筑就会面临倒塌的危险。
4 框架结构设计中的常见问题
在框架结构设计中,纵向框架与横向框架具有同等重要的地位。当前的建筑抗震设计规范中,明确规定要分别计算两个主轴方向的水平地震作用。但是设计人员往往只重视横向框架的设计而忽视纵向框架的设计。部分设计人员在对非抗震设计时将纵向梁按普通连续梁设计,致使无法符合框架对柱节点与纵筋、箍筋的配置要求。同时,梁柱在框架结构的抗震作用中起着决定性的作用,设计人员若考虑不到纵向地震的作用,在实际设计中经常会导致支座负筋、纵筋及箍筋配置均不足情况的出现。必须要在考虑空间作用的同时,大幅度增加纵筋和增大箍筋。
5 构造柱设计中的常见问题
在砖混结构中,构造柱与圈梁联结,共同形成对墙体的约束,可以防止墙体裂缝,保证承载力,增强抗震性能。但是在当前砖混结构房屋的设计中,构造柱经常被兼作承重柱使用,使得构造柱提前受力,造成构造柱对墙体的拉结和约束作用降低,而且一旦遭遇地震,在构造柱的位置上必然形成应力集中,首先遭到破坏。这样不但起不到作用,反而成为薄弱部位;另外,通常情况下,构造柱一般不另设基础,构造柱兼作承重柱使用后,一旦柱底基础发生冲切、弯曲或局部承压强度过大就会导致裂缝出现。
6 楼板设计中的常见问题
楼板在建筑工程中主要承担承重作用,楼板设计中出现的问题必将影响到梁、墙和柱等的安全性能,甚至会存在严重的质量隐患。楼板设计中常见的问题有以下几个方面:一是设计人员在设计时往往简单地将双向板按单向板进行计算,导致计算假定与实际受力不符,导致一方配筋过大,一方配筋不足,致使楼板出现裂缝;二是在民用建筑的楼板设计中,某些设计人员常常错误地将隔墙的总荷载附以该板块的总面积,造成非承重隔墙配筋不足,也导致其它部分的配筋过大,造成隔墙处楼板出现裂缝;三是双向板在两个方向都会产生弯矩,计算时应用两个方向的各自有效高度。但是有的设计者仅仅采取同样的有效高度进行配筋计算,致使双向板的有效高度偏大,配筋降低,导致开明缝现象的出现。
7 结束语
综上所述,只有加强对当前建筑结构设计中常见问题的认识与研究,秉着扎实认真的工作态度,运用先进的设计理论和技术,不断提高结构设计人员的建筑结构设计水平,才能使得建筑结构设计向着更加合理、经济和适用的方向发展,实现我国建筑结构设计向更高水准的跨越。
参考文献:
[1]王颖波.牛天宝.浅谈房屋建筑结构设计中常见问题分析[J].黑龙江科技信息.2010.
【关键词】建筑结构;设计;问题;对策
【中图分类号】TU684 【文献标识码】【文章编号】1674-3954(2011)03-0183-01
一、前言
随着我国市场经济发展以及人们对建筑物功能要求改变,人们对建筑工程产品的要求也日益增高,建筑结构设计是一项系统的、全面的工作,在设计中存在的问题是多种多样的,作为设计来讲,需要扎实的理论知识功底,灵活创新的思维和严肃认真负责的工作态度。我们要始终把提高设计质量作为终身奋斗的目标。本文就建筑结构设计中的常见问题进行初步探讨,并进一步提出解决问题的有效对策。
二、建筑结构设计的常见问题
1、剪力墙砌体结构设计
剪力墙结构,上部为多层砌体结构的房屋。该类房屋多见于沿街的旅馆、住宅、办公楼,底层为商店,餐厅、邮局等空间房屋,上部为小开间的多层砌体结构。这类建筑是解决底层需要一种比较经济的空间房屋的结构形式。部分设计者为追求单一的建筑立面造型来增加使用面积,将二层以上的部分横墙且外层挑墙移至悬挑梁上,各层设计有挑梁,但实际结构的底层挑梁承载普遍出现裂缝,该类挑梁的设计与出现裂缝在临街砌体结构房屋中比较常见。
2、楼板变形程度计算不准确
一些设计在缺乏基本的结构观念或结构布置缺乏必要措施时,采用楼板变形的计算程序。尽管程序的编程在数学力学模型上是成立的甚至是准确无误的,但在确定楼板变形程度上却很难做到准确。作为计算的大前提都无法“准确”,就不可能指望其结果会“正确”了。据此进行的结构设计肯定存在着结构不安全成分或者结构某些部位或构件安全储备过大等现象。
3、屋面梁配筋少
结构建模时, 设计人员图方便,屋面梁直接拷贝下层梁的尺寸。由于屋面梁荷载较小,计算结果配筋不多,这样屋面梁在温度变化、混凝土收缩和受力等作用下因配筋率过低而裂缝宽度较大。
三、解决建筑结构设计问题的有效对策
1、箱、筏基础底板的挑板
从结构角度来讲,如果能出挑板,能调匀边跨底板钢筋,特别是当底板钢筋通长布置时,不会因边跨钢筋而加大整个底板的通长筋,较为节约;出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基;能降低整体沉降,当荷载偏心时,在特定部位设挑板,还可调整沉降差和整体倾斜;窗井部位可以认为是挑板上砌墙,不宜再出长挑板。虽然在计算时此处板并不应按挑板计算。当然,此问题也并不是绝对的,当有数层地下室,窗井横隔墙较密,且横隔墙能与内部墙体连通时,可灵活考虑;当地下水位较高,出基础挑板,有利于解决抗浮问题;从建筑角度讲,取消挑板,可方便柔性防水做法。
2、梁、板的跨度计算
一般的手册或教科书上所讲的计算跨度,如净跨的1.1倍等,这些规定和概念仅适用于常规的结构设计,而在应用的宽扁梁中却是不适用的。梁板结构,简单点讲,可认为是在梁的中心线上有一刚性支座,取消梁的概念,将梁板统一认为是一变截面板。在扁梁结构中,梁高比板厚大不了多少时,应将计算长度取至梁中心,选梁中心处的弯距和梁厚,及梁边弯距和板厚配筋,取二者大值配筋。(借用台阶式独立基础变截面处的概念)柱子也可认为是超大截面梁,所以梁配筋时应取柱边弯距。削峰是正常的,不削峰才时有问题的。
3、沉降计算
基坑开挖时,摩擦角范围内的坑边的基底土受到约束,不反弹,坑中心的地基土反弹,回弹以弹性为主,回弹部分被人工清除。当基础较小,坑底受到很大约束,回弹可以忽略,在计算沉降时,应按基底附加应力计算。当基坑很大时,相对受到较小约束,如箱基,计算沉降时应按基底压力计算,被坑边土约束的部分可以作为安全储备,这也是计算沉降大于实际沉降的原因之一。
4、主梁有次梁处加附加筋
一般应优先加箍筋,附加箍筋可认为是:主梁箍筋在次梁截面范围无法加箍筋或箍筋短缺,在次梁两侧补上,像板上洞口附加筋。附加筋一般要有,但也不是绝对的。规范中说的比较清楚,位于梁下部或梁截面高度范围内的集中荷载,应全部由附加横向钢筋承担。也就是说,位于梁上的集中力如梁上柱、梁上后做的梁如水箱下的垫梁不必加附加筋。位于梁下部的集中力应加附加筋。但梁截面高度范围内的集中荷载可根据具体情况而定。当主次梁截面相差不大,次梁荷载较大时,应加附加筋。当主梁高度很高,次梁截面很小、荷载很小时,如快接近板上附加暗梁,主梁可不加附加筋。还有当主次梁截面均很大,如工艺要求形成的主次深梁,而荷载相对不大,主梁也可不加附加筋。总的原则,当主梁上次梁开裂后,从次梁的受压区顶至主梁底的截面高度的混凝土加箍筋能承受次梁产生的剪力时,主梁可不加附加筋。梁上集中力,产生的剪力在整个梁范围内是一样,所以抗剪满足,集中力处自然满足。主次深梁及次梁相对主梁截面、荷载较小时,也可满足。
5、设计刚性楼面
为了使程序的计算结果基本上反映结构的真实受力状况而不至于出现根本性的误差,设计时应尽可能将楼层设计成刚性楼面。要做到这一点,首先应在建筑设计甚至方案阶段就避免采用楼面有变形的平面比如楼层大开洞、外伸翼块太长、块体之间成“缩颈”连接、凹槽缺口太深等。其次要从结构布置和配筋构造上给予保证, 对于使用功能确实必需的,或者建筑效果十分优越的建筑设计,如果其平面无法完全符合刚性楼板的假定,那么在结构设计时可以通过增设连系梁板、洞口边加设暗梁边梁、提高连系梁板或暗梁边梁的配筋量、采用斜向配筋或双层配筋形式等方法,尽量满足刚性楼板的基本假设,或者弥补由于不是绝对的刚性楼板假定而产生的计算“误差”。
6、承重墙结构设计
一般房屋为矩形平面,其横向刚度远小于纵向刚度, 因此有足够数量的横墙,是提高结构抗震性能的主要途径。由震害可知,墙体多为剪切破坏,因此,为了提高横墙的抗震能力,必须提高其抗剪强度。主要措施是提高材料的强度等级,增加横墙上的轴压力。为此,应尽量使横墙成为承重和隔断合二为一的墙体。当房间较大时,设有沿进深方向的梁支承于纵墙上,使纵墙承重。楼板沿纵向搁置, 故形成横墙承重,横墙间距不入,一般可满足抗震要求,同时纵墙也因轴压力的存在而提高了抗剪能力。另一方案是纵墙承重与横墙承重沿竖向交替布置,这种方案实际应用不多。混合承重结构体系由两种结构材料弹性模量和动力性能相差很大的两种结构体系组成,因而不是一种良好的抗震结构形式。但因其能满足建筑使用要求,提供较大的使用空间,且结构经济、方便施工,应用较多。总之,选择哪种砌体结构是抗震结构设计中的关键环节,应从抗震的概念设计出发,综合建筑使用功能、技术、经济和施工等方面进行选择。
四、结束语
综上所述,结构设计是建筑工程的重要组成部分,是建筑安全应用的基础。因此,建筑结构设计人员要从基本的构件算起, ,深刻理解规范和规程的含义,并密切配合其他专业来进行设计。在工作中应事无巨细,善于反思和总结工作中的经验和教训,精益求精,只有这样才能做好建筑结构设计工作。
参考文献:
【关键词】房屋建筑结构;设计;常见问题
中图分类号:TU318文献标识码: A 文章编号:
近年来,随着我国社会主义经济的快速发展以及日常生活水平的不断提高,人们开始对各个建筑结构设计提出越来越高的要求。在设计房屋建筑结构过程中,要发展现代化设计理论,提高现代化技术的运用水平,进一步深入研究新型的环保建材、高强度建材以及轻质建材,以实现建筑结构设计的安全性、可靠性、经济性和适用性,给建筑结构设计的健康[1]。稳定持久发展提供强有力依据。
房屋建筑在地基和基础方面的设计
设计前,建设单位都会请地质勘察单位做周详的地质勘察工作,而住宅单体少或是独栋住宅都会给工程设计提供比较精确的勘察技术资料,但成片住宅或是多层住宅通常会因地勘费用存在问题而无法提供较为准确的勘察技术资料。由于地勘单位做探点时未按规定进行布置,成片住宅区仅参考同一个探点,导致地勘得出报告和实际地质情况存在较大差异。设计人员只有凭借精确、周详的地质勘察资料,才能保证地基设计和基础设计的安全、可靠、适用与合理。在设计混凝土条形基础、独立基础和阀板基础的结构与节点时,无法明确所要运用的技术参数,例如搭接长度与锚固长度就无法确定是应该使用抗震性能的还是使用非抗震性能的,导致实际操作阶段出现扯皮情况。
结构柱当作承重柱使用
房屋建筑属于砖混结构时,结构柱不仅可以提升墙体抗剪强度,还可以使结构柱连接圈梁形成一种对砌体的限制,这对抑制墙体裂缝发展,确保墙体完整,强化结构抗震性能来说有着极为重要的作用。现阶段在设计房屋结构时经常把结构柱当作是承重柱使用,该情况会造成以下几点问题的产生。
因砖砌体与混凝土在材质方面具有互不相同的弹性模量,所以在变形相同时结构柱会承载较大的压力,相对的砖砌体所承载压力就会逐渐减小,若突发地震状况,结构柱就会受到破坏,导致整个房屋结构受到严重威胁,甚至会发生坍塌现象。
结构柱通常设置在地圈梁中,并未另做基础,主要是为了能够与墙柱互相配合工作。把结构柱作为承重柱运用时,必定无法满足柱底基础对局部承压强度、抗冲切以及抗弯等要求。由于柱底基础极易因局部承压或是冲切而产生裂缝,所以一般建议按照承重柱来设计处于承重大梁下的各种柱子,依据承重柱做基础验算设计以及受力计算设计[2]。
房屋建筑在设计承重柱的截面高度上过小
对房屋承重柱的截面高度进行设计时往往会发生过小情况,这一现象大多出现在六度抗震设防地区。部分结构设计会把六度设防错误地理解成不设防,设计时故意将承重柱的具体截面高度变成比有关规定还要小的高度,加大了梁柱的相应线刚度比,方便分析实际受力情况。将梁慢慢简化成简支梁,承重柱则根据轴心受压情况进行计算,该做法虽然便于分析实际结构受力,但也给房屋建筑结构带来了极大的安全隐患。该做法的施行疏忽了梁柱节点固有的刚结作用,加上柱截面具体配筋比较小,所以结构在受力后,承重柱必定无法满足其顶端零件所需的抗弯强度,致使柱子在梁底周围就产生一条或是多条的水平裂缝,形成塑性铰。这不仅会直接影响到房屋的使用寿命,还会使居民产生恐惧心理,如果发生地震灾害,那么塑性铰就会受到毁坏,最终导致房屋坍塌。
房屋悬挑梁的实际梁高采用过小
设计者一般只注重验算悬挑梁的抗倾覆与强度,并不重视验算梁端的具体挠度。悬挑梁的实际梁高采用过小,极易增加梁截面在对应受压区域的应力,使梁截面相应受压区域出现非线性徐变,那么梁挠度就会随着时间的不断推移而逐渐增大。因挑梁变形而导致梁板产生裂缝,即挑梁变形越大,裂缝宽度就越宽,对房屋使用造成了一定的影响[3]。而挑梁变形逐步发展至后期,就会使梁支座周围上部受拉地区发生竖向裂缝,然后在四周剪弯相互作用的影响下,该竖向裂缝会逐渐向下延伸形成斜裂缝,提示梁与毁坏已相距不远。
房屋连续梁根据单梁实施设计
在设计房屋连续梁时往往会依照单梁实行设计,该现象大多发生于阳台主梁与边梁两者之间的墙体连梁设计中。因为边梁不具备较大的荷载,所以设计者不会对该部分予以高度重视,为了方便分析实际受力情况,设计者在设计连续梁时会按照单梁实施设计,导致梁位于支座上部就已不断减少负筋配置量,使得梁在支座周围上部受拉地区产生竖向裂缝,通过一段时间的发展变化,最终致使梁上部墙体和拦板等诸多围护结构发生竖向裂缝[4]。若该边梁具有较长的长度,那么将会逐渐加大支座处的具体负弯矩,使得问题变得越来越严重。
房屋楼板的设计
在房屋建筑工程中,板属于最重要的承重构件之一,其可以把屋面与楼面存在的荷载转移到与之相应的梁与墙上,如果楼板设计存在问题,那么就一定会影响到梁、柱、墙等主要构件的可靠性及安全性。一旦没有全方位考虑好整个楼板的设计,极易产生不同程度的设计质量问题,严重的甚至会形成质量安全隐患。设计楼板时常会出现以下几个方面的问题。
在实施设计过程中,为了便于计算,加上没有充分认识到板的实际受力状态,设计者一般只是很简单地把双向板依照单向板实施计算,并没有了解到长向与短向会受荷载影响而产生的变形配合问题,以至于计算假定结果和实际受力情况出现较大的差异,致使长方向发生过大配筋,而短方向却只依据结构配筋,形成配筋严重欠缺,最终导致板产生裂缝。
现浇混凝土楼板通常属于非抗震构件,在没有地震影响喜爱会出现弯矩,所以板处于支座周围上部的钢筋锚固时要因应用没有抗震性能的锚固长度,而下部钢筋则根据剪压区域的锚固系数进行取值,但如今大多数房屋建筑在设计过程中不会着重强调该点,只是粗略地概括提出,在实际建筑过程中并没有做好该项工作[5]。因此,设计者要在制图与技术交底时着重提出,使之能够做到贯彻落实。
双向板对高度进行取值时过大。处于两个方面的双向板均会出现弯矩情况,也就是说双向板在跨中正弯矩钢筋时属于纵横叠放,那么处于短跨方向中跨中钢筋要置于下方,处于长跨方向中的跨中钢筋高放置在短跨钢筋的上方,实施计算过程中要运用两个方向的单独高度。部分设计者为了便于计算,加上没有充分认识到板的实际受力状态,通常取值时会取相同高度做配筋计算,导致长跨的高度取值和具体受力情况存在较大的差异,以至于结构构件产生严重的质量安全隐患问题,甚至出现裂缝情况。
结束语
房屋建筑的结构设计是一项全面而又系统的工作,作为房屋建筑结构的设计者,应具备有专业性理论知识、创新精神、灵活逻辑思维以及良好的工作态度。设计者应在全方位了解和掌握规范的前提下,仔细做好相应的细节工作,将所学的理论知识充分体现在设计过程中,并深入探讨在设计方面存在的问题,以加强自身的设计能力,使建筑设计实现合理、安全、经济、适用的结构形式。
【参考文献】
[1]张建群,赵卫忠,邓拾坪.关于房屋建筑结构设计的探讨――地震区结构设计中应注意的问题[J].中华民居,2012,(01):79.
[2]屈俊峰.房屋建筑结构设计内容与存在问题分析[J].中小企业管理与科技(上旬刊),2009,(07):144.
[3]赵宏伟.房屋建筑结构设计体系选型及抗震设计探讨[J].山西科技,2012,27(05):31-32.
关键词:施工图;结构设计;问题
Abstract: the design personnel must ensure that the design quality in the primacy of work, and put an end to the design quality and cause for engineering accident. This paper discusses the structure design of construction drawing some common problems.
Keywords: construction drawing; Structure design; question
中图分类号:TU318文献标识码:A文章编号:
设计质量是安全的保证,任何质量问题都可能危及到建筑、 人身的安全,甚至造成国家或个人财产的损失,目前施工图设计还存在着不少缺陷,要解决这些普遍存在的质量问题,因此设计人员一定要把确保设计质量放在工作的首位,杜绝因设计质量而引发工程事故。
一、基础设计方面的问题
1、建造在斜坡上或边坡附近的建筑物和构筑物,未验算其稳定性。当设有一侧或多侧开口的地下室时,主体设计未考虑土压力影响进行受力分析,并验算整体建筑的抗倾覆和抗滑移稳定性。
2、建筑物地存在液化土层时, 未对桩基础抗震承载力进行验算。未根据具体工程情况考虑桩侧负摩阻力对基桩承载力的影响。
3、桩基础设计中, 仅按竖向荷载作用进行布桩,未验算弯矩作用下承台底部边桩的反力。尤其是框剪结构的剪力墙及剪力墙结构核心筒底部弯矩和剪力对基础承载力的影响较大, 不应遗漏。对于水位较高的地下室和短肢剪力墙、 大跨度结构等弯矩较大的承台底部桩基尚应验算是否存在向上的抗拔力。
4、有部分软弱地基采用截面尺寸较小的混凝土预制桩,且在多层建筑中采用单柱单桩或一柱两桩基础,柱底弯矩由基础梁和桩共同承受。单柱单桩或垂直于两桩连线方向的基础梁设计中, 未考虑平衡该方向柱脚在水平风荷载或地震作用下所产生弯矩因素,基础梁两端箍筋未按框架梁抗震构造要求设置箍筋加密区, 基础梁的上下主筋在桩台内锚固长度与构造做法要求未加说明。桩身考虑承受上部结构传来的弯矩作用时也未进行抗弯承载力计算,存在着抗震薄弱环节, 给工程留下潜在的隐患。
5、浅基础施工图中经常未注明基槽开挖后应进行基槽检验的要求, 桩基础施工图中经常未注明桩端持力层检验、 施工完成后的工程桩进行竖向承载力检验的要求。
6、天然地基扩展基础持力层或桩基持力层下面存在软弱下卧层,有的工程既不进行沉降验算,又不作软弱下卧层地基承载力验算。
7、压实填土地基处理问题, 有的工程处于部分挖方、 部分填方地段,填方地段采用压实填土人工处理地基,其压实填土地基的填料、 施工、 压实填土的范围以及压实填土地基检验等均未提出具体要求说明, 甚至未注明压实填土的密实度要求和地基承载力特征值要求,压实填土地基施工质量如何控制,其地基承载力能否达到设计要求等均存在疑义。
8、天然地基独立基础带梁板式的地下室底板。设计中,地下室底板与柱下独立基础埋置于同一持力层上,结构计算中仅按上部结构荷载全部由柱下独立基础承担,而地下室底板仅按一般地下室底板受荷情况进行设计,实际上整个地下室底板与柱下独立基础在上部荷载作用下, 将会一起发生沉降变形共同受力,按上述计算原则进行设计,对底板而言是偏于不安全的, 有可能会导致地下室底板承载能力不足而开裂。按照变形协调受力的原理, 应当将地下室底板与独立基础连为一体按弹性地基有限元受力分析。也可以采取如下模式: 除了柱下独立基础之外,其地下室底板与持力层之间采取褥垫处理措施。这时,底板可不参与独立基础分担上部荷载,而按底板本身承受底板与疏水垫层自重、 地下水上浮力、 人防等效荷载 (有人防时考虑)等进行设计。
9、天然地基锥体独立基础设计问题,有的基础设计锥体斜面坡度大于 1/3 , 该锥体部分砼很难振捣密实,现场施工往往是砼自然堆上,采用铲子或抹灰刀拍捣成形,其锥体部分的砼很难达到设计强度要求。
二、建筑构造方面
1、普通钢筋混凝土保护层厚度取值偏小;
2、板配筋不满足受弯构件最小配筋百分率要求;
3、框架柱全部纵向钢筋的配筋率偏小;
4、框架短柱(指剪跨比不大于 2的框架柱, 现有大部分计算软件未提供剪跨比计算结果, 现仍按框架柱的净高是否大于柱截面高度的 4倍判断)未全高加密箍筋;
5、框架梁端纵向受拉钢筋配筋率大于 2 . 5 % ;
6、框架梁端纵向受拉钢筋配筋率大于 2 %时,箍筋直径未按要求增大 2mm;
7、框架梁端截面的底面和顶面纵向钢筋配筋量的比值偏小;
8、框架梁高小于 400时加密区箍筋间距偏大(如采用@ 100 ,小于梁高的四分之一) ;
9、沿连梁全长箍筋的构造未按框架梁梁端加密区箍筋的构造要求采用;
10、外框筒梁和内筒连梁箍筋直径小于10mm;
11、平分布钢筋未要求作为连梁的腰筋在连梁范围内拉通连续配置; 当连梁截面高度大于700mm时,其两侧面沿梁高范围设置的纵向构造钢筋的直径小于 10mm;对跨高比不大于 2 . 5的连梁,梁两侧的纵向构造钢筋 (腰筋)的面积配筋率小于0 . 3 %;
12、框支梁未沿梁高配置间距不大于 200mm、直径不小于 16 mm的腰筋;
13、楼梯图中,与休息平台梁相连的两端框架短柱箍筋未全高加密, 该休息平台梁又未按框架梁抗震构造要求配筋。
三、结构计算或设计方法
1、电算过程中总信息输入的选取不当
实际施工图与电算的计算简图有不符之处主要表现在剪力墙开洞大小、 门窗洞口位置、 剪力墙长度 、剪力墙厚度 、框架柱计算高度等与施工图不符。 大都是因为结构专业计算工作进行得早,建筑平面多次调整,又未及时反提给结构专业,造成专业之间互相脱节,到施工图进入校审阶段,注意力都集中在图面上,已没有时间再一一对照建筑图,所以造成这类错误,其后果可能造成某些构件配筋失真,甚至会造成配筋不足的危险连梁刚度折减系数未进行调整 。该系数主要是考虑到剪力墙之间的连梁在计算过程中由于两端刚度很大而经常超筋,与实际情况不相吻合,故设立了连梁刚度折减系数,规定范围在0.5~1.0 之间,一般工程可取0.7,若连梁仍超限较多,也可取最小值0.5。
2、抗震概念设计不足
概念设计是建筑抗震设计的重要手段之一。 建筑抗震设防的三个水准目标通常可用 “小震不坏 ,中震可修 ,大震不倒 ”来表述,第一水准可通过承载力计算来保证,第二阶段是通过结构可靠度标准年各种分项系数来达到损坏可修的目标,而第三阶段准则是通过概念设计和各种抗震构造措施得以实现 广义上讲,概念设计是建筑抗震思想和抗震原理的实际运用,它对建筑提出了很多要求,比如规则性要求;构筑多道结构抗震防线的要求,即要求结构具有良好的吸能 耗能能力,有尽可能高的不静定次数;避免竖向承载力与刚度突变的要求,即避免地震时因塑性变形集中、 薄弱环节破坏而引起建筑整体倒塌;结构构件尽可能为延性构件的要求等等。 但在部分设计实例中,设计人员有的在底框过度层做跃层式住宅开设大洞口,有的出于造形考虑,在屋顶设置单柱支撑的长悬挑构件,有的玻璃幕墙、 网架等与主体间根本没有做连接设计,有的砖混结构钢筋混凝土圈梁在楼梯间平台处断开,有的为了大空间需要在中间层抽柱等等,都属于不符合概念设计的要求 对于上述平面错位处连接部分较薄弱的情况应按设置防震缝处理,单柱支撑的长悬挑构件应尽可能不设或改为多柱支撑,其余情况应尽可能避免。
对于平面很不规则 、刚度不均匀的复杂结构,尤其对于多塔结构 大底盘结构,在考虑扭转耦联计算时,很难确定应该取多少个振型来计算地震力,若振型数取少了,有些高振型的地震力计算不出来,结构的抗震设计不安全;而振型数取得太多,又增加很多计算工作量 一般应遵循以下原则:振型数应为 3的倍数(由于程序按三个振型一页输出);若不考虑耦联振动,计算振型数不得大于结构层数,如层数 2 时,振型数也可取为 2或 1,如层数为 5 层时,振型数可取 3,而不能取 6;若考虑耦联振动,计算振型数应大于或等于9,但又不能超过结构楼层数的3 倍;当结构层数较多或结构刚度突变较大时,振型数应取多些,多塔结构则需取得更多。
总之,无论建筑或者结构设计人员均应在今后的设计中贯穿抗震设计思想,加强概念设计。
3、局部出现的深梁未按深梁的构造要求考虑
在底部框架 - 抗震墙 、上部砖混结构的住宅建筑中,如果底层柱网布置过密,上部结构传力不直接,二层楼面局部往往会出现深梁。 例如,在某工程中,二层楼面某连续梁其中两跨净跨 2100,梁高 1000,净跨与梁高之比小于 2.5,按照混凝土规范对深梁的定义,该梁属于深梁,应深受弯构件设计并满足深梁的构造要求实际上,电算结果钢筋总量虽然正确,但设计人员却往往没有按深梁的构造进行布置,比如梁的中间支座只在上、 下部配置受力钢筋和在腹部配置构造筋,这样就与深梁的构造规定不符 连续深梁支座处,正应力沿梁高的分布规律是当跨高比大于 1.5 时,梁底以上 0.2h 范围内为受压区,再向上为受拉区,梁顶拉应力最大 仅在梁顶配置全部受力钢筋不符合正常使用极限状态支座截面的受力特点,不利于裂缝的控制 。因此,该梁的钢筋布置应按GB50010- 2002 混凝土规范第10.7.9 条,在上部 0.4h 范围内均匀布置 ZAs /3,以下 0.4h 范围内均匀布置 IAs /3,并应单独绘制断面图以表达清楚在抗震设计中,因为深梁刚度很大,房屋在地震作用下发展到塑性阶段时,塑性铰会出现在刚度相对较小的柱中,从而引起房屋的整体破坏,与抗震设计 “强柱弱梁” 的思想相悖,因此应尽可能避免深梁的出现。
4、地下室与上部结构应
作为一个整体进行结构计算地下室(层 1 或层 2, 3)大都是作为设备层 地下车库 人防平战结合而设置,空间大隔墙少,均满足不了箱基的条件,地下室顶板不能作为嵌固端来考虑,
此时将地下室作为上部结构的一部分进行共同计算,算得的结构比较真实。 当然进行地下室墙配筋计算时,还要加上土水的侧压力影响进行补充计算 如果地下室钢筋混凝土墙较多,刚度大,土体提供的侧向约束充分,埋深满足要求,同时又满足规范规定的下层与上层抗侧刚度比的要求时,可将地下室顶板作为底层嵌固点来考虑,但要慎重。
参考文献: